Search results for: horizontal and vertical component of earthquake
4712 The Simultaneous Effect of Horizontal and Vertical Earthquake Components on the Seismic Response of Buckling-Restrained Braced Frame
Authors: Mahdi Shokrollahi
Abstract:
Over the past years, much research has been conducted on the vulnerability of structures to earthquakes, which only horizontal components of the earthquake were considered in their seismic analysis and vertical earthquake acceleration especially in near-fault area was less considered. The investigation of the mappings shows that vertical earthquake acceleration can be significantly closer to the maximum horizontal earthquake acceleration, and even exceeds it in some cases. This study has compared the behavior of different members of three steel moment frame with a buckling-restrained brace (BRB), one time only by considering the horizontal component and again by considering simultaneously the horizontal and vertical components under the three mappings of the near-fault area and the effect of vertical acceleration on structural responses is investigated. Finally, according to the results, the vertical component of the earthquake has a greater effect on the axial force of the columns and the vertical displacement of the middle of the beams of the different classes and less on the lateral displacement of the classes.Keywords: vertical earthquake acceleration, near-fault area, steel frame, horizontal and vertical component of earthquake, buckling-restrained brace
Procedia PDF Downloads 1774711 Reinforced Concrete Box Girder Bridge Hinge Replacement and Horizontal and Vertical Earthquake Restrainers
Authors: Kumars ZandParsa, Quynh Nguyen, Hadi Moradi
Abstract:
There are old cast-in-place concrete box girder bridges in California with inter-span hinges that are designed based on old earthquake codes. Hinge removal is part of the bridges’ earthquake retrofitting project, and hinges were removed and replaced with modified hinges per new earthquake codes. The span that has a hinge is divided into short and long cantilevers in which the short cantilever supports the long cantilever. In the recent bridge hinge replacement, the length of the short and long cantilevers were 20ft and 80ft, respectively. The seat in the new design is wider than the old design, and the horizontal and vertical movements of the deck at the hinge location must be computed to check if restraints are needed. In this paper, besides considering the conventional reinforced concrete box girder bridges, the hinge removal operations, along with the response spectrum analysis based on the El Centro 1940 earthquake, will be presented to verify if vertical and horizontal restrainers are needed.Keywords: hinge replacement, restrainers, vertical earthquake, response spectrum analysis
Procedia PDF Downloads 5784710 Analysis of Building Response from Vertical Ground Motions
Authors: George C. Yao, Chao-Yu Tu, Wei-Chung Chen, Fung-Wen Kuo, Yu-Shan Chang
Abstract:
Building structures are subjected to both horizontal and vertical ground motions during earthquakes, but only the horizontal ground motion has been extensively studied and considered in design. Most of the prevailing seismic codes assume the vertical component to be 1/2 to 2/3 of the horizontal one. In order to understand the building responses from vertical ground motions, many earthquakes records are studied in this paper. System identification methods (ARX Model) are used to analyze the strong motions and to find out the characteristics of the vertical amplification factors and the natural frequencies of buildings. Analysis results show that the vertical amplification factors for high-rise buildings and low-rise building are 1.78 and 2.52 respectively, and the average vertical amplification factor of all buildings is about 2. The relationship between the vertical natural frequency and building height was regressed to a suggested formula in this study. The result points out an important message; the taller the building is, the greater chance of resonance of vertical vibration on the building will be.Keywords: vertical ground motion, vertical amplification factor, natural frequency, component
Procedia PDF Downloads 3134709 Studying Frame-Resistant Steel Structures under Near Field Ground Motion
Authors: S. A. Hashemi, A. Khoshraftar
Abstract:
This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectly-plastic behavior was performed using Ram Perform-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of the ground motion may increase the axial load significantly in the interior columns and consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.Keywords: inelastic behavior, non-linear dynamic analysis, steel structure, vertical component
Procedia PDF Downloads 3164708 Variation of Base Width of a Typical Concrete Gravity Dam under Different Seismic Conditions Using Static Seismic Loading
Authors: Prasanna Kumar Khaund, Sukanya Talukdar
Abstract:
A concrete gravity dam is a major hydraulic structure and it is very essential to consider the earthquake forces, to get a proper design base width, so that the entire weight of the dam resists the overturning moment due to earthquake and other forces. The main objective of this study is to obtain the design base width of a dam for different seismic conditions by varying the earthquake coefficients in both vertical and horizontal directions. This shall be done by equating the factor of safety against overturning, factor of safety against sliding and factor of safety against shear friction factor for a dam with their limiting values, under both tail water and no tail water condition. The shape of the Mettur dam in India is considered for the study. The study has been done taking a constant head of water at the reservoir, which is the maximum reservoir water level and a constant height of tail water. Using linear approximation method of Newton Raphson, the obtained equations against different factors of safety under different earthquake conditions are solved using a programme in C++ to get different values of base width of dam for varying earthquake conditions.Keywords: design base width, horizontal earthquake coefficient, tail water, vertical earthquake coefficient
Procedia PDF Downloads 2824707 Quantification of Effects of Structure-Soil-Structure Interactions on Urban Environment under Rayleigh Wave Loading
Authors: Neeraj Kumar, J. P. Narayan
Abstract:
The effects of multiple Structure-Soil-Structure Interactions (SSSI) on the seismic wave-field is generally disregarded by earthquake engineers, particularly the surface waves which cause more damage to buildings. Closely built high rise buildings exchange substantial seismic energy with each other and act as a full-coupled dynamic system. In this paper, SSI effects on the building responses and the free field motion due to a small city consisting 25- homogenous buildings blocks of 10-storey are quantified. The rocking and translational behavior of building under Rayleigh wave loading is studied for different dimensions of the building. The obtained dynamic parameters of buildings revealed a reduction in building roof drift with an increase in number of buildings ahead of the considered building. The strain developed by vertical component of Rayleigh may cause tension in structural components of building. A matching of fundamental frequency of building for the horizontal component of Rayleigh wave with that for vertically incident SV-wave is obtained. Further, the fundamental frequency of building for the vertical vibration is approximately twice to that for horizontal vibration. The city insulation has caused a reduction of amplitude of Rayleigh wave up to 19.3% and 21.6% in the horizontal and vertical components, respectively just outside the city. Further, the insulating effect of city was very large at fundamental frequency of buildings for both the horizontal and vertical components. Therefore, it is recommended to consider the insulating effects of city falling in the path of Rayleigh wave propagation in seismic hazard assessment for an area.Keywords: structure-soil-structure interactions, Rayleigh wave propagation, finite difference simulation, dynamic response of buildings
Procedia PDF Downloads 2154706 Behaviour of Laterally Loaded Pile Groups in Cohesionless Soil
Authors: V. K. Arora, Suraj Prakash
Abstract:
Pile foundations are provided to transfer the vertical and horizontal loads of superstructures like high rise buildings, bridges, offshore structures etc. to the deep strata in the soil. These vertical and horizontal loads are due to the loads coming from the superstructure and wind, water thrust, earthquake, and earth pressure, respectively. In a pile foundation, piles are used in groups. Vertical piles in a group of piles are more efficient to take vertical loads as compared to horizontal loads and when the horizontal load per pile exceeds the bearing capacity of the vertical piles in that case batter piles are used with vertical piles because batter piles can take more lateral loads than vertical piles. In this paper, a model study was conducted on three vertical pile group with single positive and negative battered pile subjected to lateral loads. The batter angle for battered piles was ±35◦ with the vertical axis. Piles were spaced at 2.5d (d=diameter of pile) to each other. The soil used for model test was cohesionless soil. Lateral loads were applied in three stages on all the pile groups individually and it was found that under the repeated action of lateral loading, the deflection of the piles increased under the same loading. After comparing the results, it was found that the pile group with positive batter pile fails at 28 kgf and the pile group with negative batter pile fails at 24 kgf so it shows that positive battered piles are stronger than the negative battered piles.Keywords: vertical piles, positive battered piles, negative battered piles, cohesionless soil, lateral loads, model test
Procedia PDF Downloads 4044705 Behavior of a Vertical Pile under the Effect of an Inclined Load
Authors: Fathi Mohamed Abdrabbo, Khaled Elsayed Gaaver, Musab Musa Eldooma
Abstract:
This paper presents an attempt made to investigate the behavior of a single vertical steel hollow pile embedded in sand subjected to compressive inclined load at various inclination angles α through FEM package MIDAS GTS/NX 2019. The effect of the inclination angle and slenderness ratio on the performance of the pile was investigated. Inclined load caring capacity and pile stiffness, as well as lateral deformation profiles along with the pile, were presented. The global, vertical, and horizontal load displacements, as well as the deformation profiles along with the pile and the pile stiffness, are significantly affected by α. Whereas P-Y curves of the pile are independent of α., also the slenderness ratios are markedly affecting the behavior of the pile. In addition, there was a noticeable effect of the horizontal component on the vertical behavior of the pile, whereas there was no influence of the presence of vertical load on the horizontal behavior of the pile.Keywords: deep foundations, piles, inclined load, pile deformations
Procedia PDF Downloads 1714704 Torsional Design Method of Asymmetric and Irregular Building under Horizontal Earthquake Action
Authors: Radhwane Boudjelthia
Abstract:
Based upon elaborate analysis on torsional design methods of asymmetric and irregular structure under horizontal earthquake action, it points out that the main design principles of an asymmetric building subjected to horizontal earthquake are: the torsion of vertical members induced by the torsion angle of the floor (rigid diaphragm) cannot exceed the allowable value, the inter-story displacement at outermost frame or shear wall should be less than that required by design code, stresses in plane of the slab should be controlled within acceptable extent under different intensity earthquakes. That current seismic design code only utilizes the torsion displacement ratio to control the floor torsion, which seems not reasonable enough since its connotation is the multiple of the floor torsion angle and the distance of floor mass center to the edge frame or shear wall.Keywords: earthquake, building, seismic forces, displacement, resonance, response
Procedia PDF Downloads 3454703 A Comprehensive Approach in Calculating the Impact of the Ground on Radiated Electromagnetic Fields Due to Lightning
Authors: Lahcene Boukelkoul
Abstract:
The influence of finite ground conductivity is of great importance in calculating the induced voltages from the radiated electromagnetic fields due to lightning. In this paper, we try to give a comprehensive approach to calculate the impact of the ground on the radiated electromagnetic fields to lightning. The vertical component of lightning electric field is calculated with a reasonable approximation assuming a perfectly conducting ground in case the observation point does not exceed a few kilometres from the lightning channel. However, for distant observation points the radiated vertical component of lightning electric field is attenuated due finitely conducting ground. The attenuation is calculated using the expression elaborated for both low and high frequencies. The horizontal component of the electric field, however, is more affected by a finite conductivity of a ground. Besides, the contribution of the horizontal component of the electric field, to induced voltages on an overhead transmission line, is greater than that of the vertical component. Therefore, the calculation of the horizontal electric field is great concern for the simulation of lightning-induced voltages. For field to transmission lines coupling the ground impedance is calculated for early time behaviour and for low frequency range.Keywords: power engineering, radiated electromagnetic fields, lightning-induced voltages, lightning electric field
Procedia PDF Downloads 4014702 Behavior of A Vertical Pile Under the Effect of an Inclined Load in Loose Sand
Authors: Fathi Mohamed Abdrabbo, Khaled Esayed Gaaver, Musab Musa Eldooma
Abstract:
This paper presents an attempt made to investigate the behavior of a single vertical steel hollow pile embedded in sand subjected to compressive inclined load at various inclination angles α through FEM package MIDAS GTS/NX 2019. The effect of the inclination angle and slenderness ratio on the performance of the pile was investigated. Inclined load caring capacity and pile stiffness, as well as lateral deformation profiles along with the pile, were presented. The global, vertical, and horizontal load displacements of pile head, as well as the deformation profiles along the pile and the pile stiffness, are significantly affected by α. It was observed that the P-Y curves of the pile-soil system are independent of α. Also, the slenderness ratios are markedly affecting the behavior of the pile. In addition, there was a noticeable effect of the horizontal load component of the applied load on the vertical behavior of the pile, whereas there was no influence of the presence of vertical load on the horizontal behavior of the pile.Keywords: deep foundation, piles, inclined load, pile deformations
Procedia PDF Downloads 1484701 Horizontal and Vertical Illuminance Correlations in a Case Study for Shaded South Facing Surfaces
Authors: S. Matour, M. Mahdavinejad, R. Fayaz
Abstract:
Daylight utilization is a key factor in achieving visual and thermal comfort, and energy savings in integrated building design. However, lack of measured data related to this topic has become a major challenge with the increasing need for integrating lighting concepts and simulations in the early stages of design procedures. The current paper deals with the values of daylight illuminance on horizontal and south facing vertical surfaces; the data are estimated using IESNA model and measured values of the horizontal and vertical illuminance, and a regression model with an acceptable linear correlation is obtained. The resultant illuminance frequency curves are useful for estimating daylight availability on south facing surfaces in Tehran. In addition, the relationship between indirect vertical illuminance and the corresponding global horizontal illuminance is analyzed. A simple parametric equation is proposed in order to predict the vertical illumination on a shaded south facing surface. The equation correlates the ratio between the vertical and horizontal illuminance to the solar altitude and is used with another relationship for prediction of the vertical illuminance. Both equations show good agreement, which allows for calculation of indirect vertical illuminance on a south facing surface at any time throughout the year.Keywords: Tehran daylight availability, horizontal illuminance, vertical illuminance, diffuse illuminance
Procedia PDF Downloads 2024700 Translational and Rotational Effect of Earthquake Ground Motion on a Bridge Substructure
Authors: Tauhidur Rahman, Gitartha Kalita
Abstract:
In this study a four span box girder bridge is considered and effect of the rotational and translational earthquake ground motion have been thoroughly investigated. This study is motivated by the fact that in many countries the translational and rotational components of earthquake ground motion, especially rocking, is not adequately considered in analysing the overall response of the structures subjected to earthquake ground excitations. Much consideration is given to only the horizontal components of the earthquake ground motion during the response analysis of structures. In the present research work, P waves, SV waves and Rayleigh wave excitations are considered for different angle of incidence. In the present paper, the four span bridge is model considering the effects of vertical and rocking components of P, SV and Rayleigh wave excitations. Ground responses namely displacement, velocity and acceleration of the substructures of the bridge have been considered for rotational and translational effects in addition to the horizontal ground motion due to earthquake and wind.Keywords: ground motion, response, rotational effects, translational effects
Procedia PDF Downloads 4464699 Analytical and Numerical Study of Formation of Sporadic E Layer with Taking into Account Horizontal and Vertical In-Homogeneity of the Horizontal Wind
Authors: Giorgi Dalakishvili, Goderdzi G. Didebulidze, Maya Todua
Abstract:
The possibility of sporadic E (Es) layer formation in the mid-latitude nighttime lower thermosphere by horizontal homogeneous and inhomogeneous (vertically and horizontally changing) winds is investigated in 3D by analytical and numerical solutions of continuity equation for dominant heavy metallic ions Fe+. The theory of influence of wind velocity direction, value, and its shear on formation of sporadic E is developed in case of presence the effect of horizontally changing wind (the effect of horizontal convergence). In this case, the horizontal wind with horizontal shear, characterized by compressibility and/or vortices, can provide an additional influence on heavy metallic ions Fe+ horizontal convergence and Es layers density, which can be formed by their vertical convergence caused as by wind direction and values and by its horizontal shear as well. The horizontal wind value and direction have significant influence on ion vertical drift velocity and its minimal negative values of divergence necessary for development of ion vertical convergence into sporadic E type layer. The horizontal wind horizontal shear, in addition to its vertical shear, also influences the ion drift velocity value and its vertical changes and correspondingly on formation of sporadic E layer and its density. The atmospheric gravity waves (AGWs), with relatively smaller horizontal wave length than planetary waves and tidal motion, can significantly influence location of ion vertical drift velocity nodes (where Es layers formation expectable) and its vertical and horizontal shear providing ion vertical convergence into thin layer. Horizontal shear can cause additional influence in the Es layers density than in the case of only wind value and vertical shear only. In this case, depending on wind direction and value in the height region of the lower thermosphere about 90-150 km occurs heavy metallic ions (Fe+) vertical convergence into thin sporadic E type layer. The horizontal wind horizontal shear also can influence on ions horizontal convergence and density and location Es layers. The AGWs modulate the horizontal wind direction and values and causes ion additional horizontal convergence, while the vertical changes (shear) causes additional vertical convergence than in the case without vertical shear. Influence of horizontal shear on sporadic E density and the importance of vertical compressibility of the lower thermosphere, which also can be influenced by AGWs, is demonstrated numerically. For the given wavelength and background wind, the predictability of formation Es layers and its possible location regions are shown. Acknowledgements: This study was funded by Georgian Shota Rustaveli National Science Foundation Grant no. FR17-357.Keywords: in-homogeneous, sporadic E, thermosphere, wind
Procedia PDF Downloads 1564698 The Effect of Vertical Shear-link in Improving the Seismic Performance of Structures with Eccentrically Bracing Systems
Authors: Mohammad Reza Baradaran, Farhad Hamzezarghani, Mehdi Rastegari Ghiri, Zahra Mirsanjari
Abstract:
Passive control methods can be utilized to build earthquake resistant structures, and also to strengthen the vulnerable ones. One of the most effective, yet simple passive control methods is the use of vertical shear-links (VSL) in systems with eccentric bracing. In fact, vertical shear-links dissipate the earthquake energy and act like a ductile fuse. In this paper, we studied the effect of this system in increasing the ductility and energy dissipation and also modeled the behavior of this type of eccentric bracing, and compared the hysteresis diagram of the modeled samples with the laboratory samples. We studied several samples of frames with vertical shear-links in order to assess the behavior of this type of eccentric bracing. Each of these samples was modeled in finite element software ANSYS 9.0, and was analyzed under the static cyclic loading. It was found that vertical shear-links have a more stable hysteresis loops. Another analysis showed that using honeycomb beams as the horizontal beam along with steel reinforcement has no negative effect on the hysteresis behavior of the sample.Keywords: vertical shear-link, passive control, cyclic analysis, energy dissipation, honeycomb beam
Procedia PDF Downloads 4954697 Seismic Microzonation Analysis for Damage Mapping of the 2006 Yogyakarta Earthquake, Indonesia
Authors: Fathul Mubin, Budi E. Nurcahya
Abstract:
In 2006, a large earthquake ever occurred in the province of Yogyakarta, which caused considerable damage. This is the basis need to investigate the seismic vulnerability index in around of the earthquake zone. This research is called microzonation of earthquake hazard. This research has been conducted at the site and surrounding of Prambanan Temple, includes homes and civil buildings. The reason this research needs to be done because in the event of an earthquake in 2006, there was damage to the temples at Prambanan temple complex and its surroundings. In this research, data collection carried out for 60 minutes using three component seismograph measurements at 165 points with spacing of 1000 meters. The data recorded in time function were analyzed using the spectral ratio method, known as the Horizontal to Vertical Spectral Ratio (HVSR). Results from this analysis are dominant frequency (Fg) and maximum amplification factor (Ag) are used to obtain seismic vulnerability index. The results of research showed the dominant frequency range from 0.5 to 30 Hz and the amplification is in interval from 0.5 to 9. Interval value for seismic vulnerability index is 0.1 to 50. Based on distribution maps of seismic vulnerability index and impact of buildings damage seemed for suitability. For further research, it needs to survey to the east (klaten) and south (Bantul, DIY) to determine a full distribution maps of seismic vulnerability index.Keywords: amplification factor, dominant frequency, microzonation analysis, seismic vulnerability index
Procedia PDF Downloads 1924696 Investigation of Soil Slopes Stability
Authors: Nima Farshidfar, Navid Daryasafar
Abstract:
In this paper, the seismic stability of reinforced soil slopes is studied using pseudo-dynamic analysis. Equilibrium equations that are applicable to the every kind of failure surface are written using Horizontal Slices Method. In written equations, the balance of the vertical and horizontal forces and moment equilibrium is fully satisfied. Failure surface is assumed to be log-spiral, and non-linear equilibrium equations obtained for the system are solved using Newton-Raphson Method. Earthquake effects are applied as horizontal and vertical pseudo-static coefficients to the problem. To solve this problem, a code was developed in MATLAB, and the critical failure surface is calculated using genetic algorithm. At the end, comparing the results obtained in this paper, effects of various parameters and the effect of using pseudo - dynamic analysis in seismic forces modeling is presented.Keywords: soil slopes, pseudo-dynamic, genetic algorithm, optimization, limit equilibrium method, log-spiral failure surface
Procedia PDF Downloads 3374695 Natural Frequency Analysis of Small-Scale Arch Structure by Shaking Table Test
Authors: Gee-Cheol Kim, Joo-Won Kang
Abstract:
Structural characteristics of spatial structure are different from that of rahmen structures and it has many factors that are unpredictable experientially. Both horizontal and vertical earthquake should be considered because of seismic behaviour characteristics of spatial structures. This experimental study is conducted about seismic response characteristics of roof structure according to the effect of columns or walls, through scale model of arch structure that has the basic dynamic characteristics of spatial structure. Though remarkable response is not occurred for horizontal direction in the region of higher frequency than the region of frequency that seismic energy is concentrated, relatively large response is occurred in vertical direction. It is proved that seismic response of arch structure with column is varied according to property of column.Keywords: arch structure, seismic response, shaking table, spatial structure
Procedia PDF Downloads 3654694 Influence of Displacement Amplitude and Vertical Load on the Horizontal Dynamic and Static Behavior of Helical Wire Rope Isolators
Authors: Nicolò Vaiana, Mariacristina Spizzuoco, Giorgio Serino
Abstract:
In this paper, the results of experimental tests performed on a Helical Wire Rope Isolator (HWRI) are presented in order to describe the dynamic and static behavior of the selected metal device in three different displacements ranges, namely small, relatively large, and large displacements ranges, without and under the effect of a vertical load. A testing machine, allowing to apply horizontal displacement or load histories to the tested bearing with a constant vertical load, has been adopted to perform the dynamic and static tests. According to the experimental results, the dynamic behavior of the tested device depends on the applied displacement amplitude. Indeed, the HWRI displays a softening and a hardening stiffness at small and relatively large displacements, respectively, and a stronger nonlinear stiffening behavior at large displacements. Furthermore, the experimental tests reveal that the application of a vertical load allows to have a more flexible device with higher damping properties and that the applied vertical load affects much less the dynamic response of the metal device at large displacements. Finally, a decrease in the static to dynamic effective stiffness ratio with increasing displacement amplitude has been observed.Keywords: base isolation, earthquake engineering, experimental hysteresis loops, wire rope isolators
Procedia PDF Downloads 4324693 Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components
Authors: Masahiro Yoneda
Abstract:
The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2 fw, 3 fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge.Keywords: simplified method, human walking vertical force, higher component, pedestrian bridge vibration
Procedia PDF Downloads 4344692 Experimental Investigation of Flow Structure around a Rectangular Cylinder in Different Configurations
Authors: Cemre Polat, Dogan B. Saydam, Mustafa Soyler, Coskun Ozalp
Abstract:
In this study, the flow structure was investigated by particle imaging velocimetry (PIV) method at Re = 26000 for two different rectangular cylinders placed perpendicular and parallel to the flow direction. After obtaining streamwise and spanwise velocity data, average vorticity, streamlines, velocity magnitude, turbulence kinetic energy, root mean square of streamwise and spanwise velocity fluctuations are calculated, and critical points of flow structure are explained. As a result of the study, it was seen that the vertical configuration has less effect on the flow structure in the back region of the body compared to the horizontal configuration. When the streamwise velocity component is examined in both configurations, it is seen that the negative velocity component is stronger on the long sides compared to the short sides. It has been observed that the vertically positioned cylinder expands the flow separation point compared to the horizontally positioned cylinder; also the vertical cylinder creates an increase in turbulence kinetic energy compared to the horizontal cylinder.Keywords: bluff body, flow characteristics, PIV, rectangular cylinder
Procedia PDF Downloads 1514691 Seismic Fragility of Base-Isolated Multi-Story Piping System in Critical Facilities
Authors: Bu Seog Ju, Ho Young Son, Yong Hee Ryu
Abstract:
This study is focused on the evaluation of seismic fragility of multi-story piping system installed in critical structures, isolated with triple friction pendulum bearing. The concept of this study is to isolate the critical building structure as well as nonstructural component, especially piping system in order to mitigate the earthquake damage and achieve the reliable seismic design. Then, the building system and multi-story piping system was modeled in OpenSees. In particular, the triple friction pendulum isolator was accounted for the vertical and horizontal coupling behavior in the building system subjected to seismic ground motions. Consequently, in order to generate the seismic fragility of base-isolated multi-story piping system, 21 selected seismic ground motions were carried out, by using Monte Carlo Simulation accounted for the uncertainties in demand. Finally, the system-level fragility curves corresponding to the limit state of the piping system was conducted at each T-joint system, which was commonly failure points in piping systems during and after an earthquake. Additionally, the system-level fragilities were performed to the first floor and second floor level in critical structures.Keywords: fragility, friction pendulum bearing, nonstructural component, seismic
Procedia PDF Downloads 1504690 Permissible Horizontal Displacements during the Construction of Vertical Shafts in Soft Soils at the Valley of Mexico: Case History
Authors: Joel M. De La Rosa R.
Abstract:
In this paper, the results obtained when monitoring the horizontal deformations of the soil mass are detailed, during each of the construction stages of several vertical shafts located in the soft soils of the Valley of Mexico, by means of the flotation method. From the analysis of these results, the magnitude and percentage relationship with respect to the diameter and depth of excavation of the horizontal deformations that occurred during the monitoring period is established. Based on the horizontal deformation monitoring system and the information provided by the supervisor's site log, the construction stages that have the greatest impact on deformations are established. Additionally, an analysis of the deformations is carried out, which takes into account the resistance and deformability characteristics of the excavated soils, as well as the prevailing hydraulic conditions. This work will allow construction engineers and institutions in charge of infrastructure works in the Valley of Mexico to establish permissible ranges for horizontal deformations that can occur in very soft and saturated soils, during the different construction stages; improving response protocols to potentially dangerous behaviors.Keywords: vertical shaft, flotation method, very soft clays, construction supervision
Procedia PDF Downloads 1864689 Influence of Readability of Paper-Based Braille on Vertical and Horizontal Dot Spacing in Braille Beginners
Authors: K. Doi, T. Nishimura, H. Fujimoto
Abstract:
The number of people who become visually impaired and do not have sufficient tactile experiences has increased by various disease. Especially, many acquired visually impaired persons due to accidents, disorders, and aging cannot adequately read Braille. It is known that learning Braille requires a great deal of time and the acquisition of various skills. In our previous studies, we reported one of the problems in learning Braille. Concretely, the standard Braille size is too small for Braille beginners. And also we are short of the objective data regarding easily readable Braille size. Therefore, it is necessary to conduct various experiments for evaluating Braille size that would make learning easier for beginners. In this study, for the purpose of investigating easy-to-read conditions of vertical and horizontal dot spacing for beginners, we conducted one Braille reading experiment. In this our experiment, we prepared test pieces by use of our original Braille printer with controlling function of Braille size. We specifically considered Braille beginners with acquired visual impairments who were unfamiliar with Braille. Therefore, ten sighted subjects with no experience of reading Braille participated in this experiment. Size of vertical and horizontal dot spacing was following conditions. Each dot spacing was 2.0, 2.3, 2.5, 2.7, 2.9, 3.1mm. The subjects were asked to read one Braille character with controlled Braille size. The results of this experiment reveal that Braille beginners can read Braille accurately and quickly when both vertical and horizontal dot spacing are 3.1 mm or more. This knowledge will be helpful data in considering Braille size for acquired visually impaired persons.Keywords: paper-based Braille, vertical and horizontal dot spacing, readability, acquired visual impairment, Braille beginner
Procedia PDF Downloads 1784688 Analyzing Time Lag in Seismic Waves and Its Effects on Isolated Structures
Authors: Faizan Ahmad, Jenna Wong
Abstract:
Time lag between peak values of horizontal and vertical seismic waves is a well-known phenomenon. Horizontal and vertical seismic waves, secondary and primary waves in nature respectively, travel through different layers of soil and the travel time is dependent upon the medium of wave transmission. In seismic analysis, many standardized codes do not require the actual vertical acceleration to be part of the analysis procedure. Instead, a factor load addition for a particular site is used to capture strength demands in case of vertical excitation. This study reviews the effects of vertical accelerations to analyze the behavior of a linearly rubber isolated structure in different time lag situations and frequency content by application of historical and simulated ground motions using SAP2000. The response of the structure is reviewed under multiple sets of ground motions and trends based on time lag and frequency variations are drawn. The accuracy of these results is discussed and evaluated to provide reasoning for use of real vertical excitations in seismic analysis procedures, especially for isolated structures.Keywords: seismic analysis, vertical accelerations, time lag, isolated structures
Procedia PDF Downloads 3344687 Seismic Assessment of Flat Slab and Conventional Slab System for Irregular Building Equipped with Shear Wall
Authors: Muhammad Aji Fajari, Ririt Aprilin Sumarsono
Abstract:
Particular instability of structural building under lateral load (e.g earthquake) will rise due to irregularity in vertical and horizontal direction as stated in SNI 03-1762-2012. The conventional slab has been considered for its less contribution in increasing the stability of the structure, except special slab system such as flat slab turned into account. In this paper, the analysis of flat slab system at Sequis Tower located in South Jakarta will be assessed its performance under earthquake. It consists of 6 floors of the basement where the flat slab system is applied. The flat slab system will be the main focus in this paper to be compared for its performance with conventional slab system under earthquake. Regarding the floor plan of Sequis Tower basement, re-entrant corner signed for this building is 43.21% which exceeded the allowable re-entrant corner is 15% as stated in ASCE 7-05 Based on that, the horizontal irregularity will be another concern for analysis, otherwise vertical irregularity does not exist for this building. Flat slab system is a system where the slabs use drop panel with shear head as their support instead of using beams. Major advantages of flat slab application are decreasing dead load of structure, removing beams so that the clear height can be maximized, and providing lateral resistance due to lateral load. Whilst, deflection at middle strip and punching shear are problems to be detail considered. Torsion usually appears when the structural member under flexure such as beam or column dimension is improper in ratio. Considering flat slab as alternative slab system will keep the collapse due to torsion down. Common seismic load resisting system applied in the building is a shear wall. Installation of shear wall will keep the structural system stronger and stiffer affecting in reduced displacement under earthquake. Eccentricity of shear wall location of this building resolved the instability due to horizontal irregularity so that the earthquake load can be absorbed. Performing linear dynamic analysis such as response spectrum and time history analysis due to earthquake load is suitable as the irregularity arise so that the performance of structure can be significantly observed. Utilization of response spectrum data for South Jakarta which PGA 0.389g is basic for the earthquake load idealization to be involved in several load combinations stated on SNI 03-1726-2012. The analysis will result in some basic seismic parameters such as period, displacement, and base shear of the system; besides the internal forces of the critical member will be presented. Predicted period of a structure under earthquake load is 0.45 second, but as different slab system applied in the analysis then the period will show a different value. Flat slab system will probably result in better performance for the displacement parameter compare to conventional slab system due to higher contribution of stiffness to the whole system of the building. In line with displacement, the deflection of the slab will result smaller for flat slab than a conventional slab. Henceforth, shear wall will be effective to strengthen the conventional slab system than flat slab system.Keywords: conventional slab, flat slab, horizontal irregularity, response spectrum, shear wall
Procedia PDF Downloads 1914686 Analysis of Ionosphere Anomaly Before Great Earthquake in Java on 2009 Using GPS Tec Data
Authors: Aldilla Damayanti Purnama Ratri, Hendri Subakti, Buldan Muslim
Abstract:
Ionosphere’s anomalies as an effect of earthquake activity is a phenomenon that is now being studied in seismo-ionospheric coupling. Generally, variation in the ionosphere caused by earthquake activity is weaker than the interference generated by different source, such as geomagnetic storms. However, disturbances of geomagnetic storms show a more global behavior, while the seismo-ionospheric anomalies occur only locally in the area which is largely determined by magnitude of the earthquake. It show that the earthquake activity is unique and because of its uniqueness it has been much research done thus expected to give clues as early warning before earthquake. One of the research that has been developed at this time is the approach of seismo-ionospheric-coupling. This study related the state in the lithosphere-atmosphere and ionosphere before and when earthquake occur. This paper choose the total electron content in a vertical (VTEC) in the ionosphere as a parameter. Total Electron Content (TEC) is defined as the amount of electron in vertical column (cylinder) with cross-section of 1m2 along GPS signal trajectory in ionosphere at around 350 km of height. Based on the analysis of data obtained from the LAPAN agency to identify abnormal signals by statistical methods, obtained that there are an anomaly in the ionosphere is characterized by decreasing of electron content of the ionosphere at 1 TECU before the earthquake occurred. Decreasing of VTEC is not associated with magnetic storm that is indicated as an earthquake precursor. This is supported by the Dst index showed no magnetic interference.Keywords: earthquake, DST Index, ionosphere, seismoionospheric coupling, VTEC
Procedia PDF Downloads 5854685 Adaptation of Projection Profile Algorithm for Skewed Handwritten Text Line Detection
Authors: Kayode A. Olaniyi, Tola. M. Osifeko, Adeola A. Ogunleye
Abstract:
Text line segmentation is an important step in document image processing. It represents a labeling process that assigns the same label using distance metric probability to spatially aligned units. Text line detection techniques have successfully been implemented mainly in printed documents. However, processing of the handwritten texts especially unconstrained documents has remained a key problem. This is because the unconstrained hand-written text lines are often not uniformly skewed. The spaces between text lines may not be obvious, complicated by the nature of handwriting and, overlapping ascenders and/or descenders of some characters. Hence, text lines detection and segmentation represents a leading challenge in handwritten document image processing. Text line detection methods that rely on the traditional global projection profile of the text document cannot efficiently confront with the problem of variable skew angles between different text lines. Hence, the formulation of a horizontal line as a separator is often not efficient. This paper presents a technique to segment a handwritten document into distinct lines of text. The proposed algorithm starts, by partitioning the initial text image into columns, across its width into chunks of about 5% each. At each vertical strip of 5%, the histogram of horizontal runs is projected. We have worked with the assumption that text appearing in a single strip is almost parallel to each other. The algorithm developed provides a sliding window through the first vertical strip on the left side of the page. It runs through to identify the new minimum corresponding to a valley in the projection profile. Each valley would represent the starting point of the orientation line and the ending point is the minimum point on the projection profile of the next vertical strip. The derived text-lines traverse around any obstructing handwritten vertical strips of connected component by associating it to either the line above or below. A decision of associating such connected component is made by the probability obtained from a distance metric decision. The technique outperforms the global projection profile for text line segmentation and it is robust to handle skewed documents and those with lines running into each other.Keywords: connected-component, projection-profile, segmentation, text-line
Procedia PDF Downloads 1234684 Effect of Wind Braces to Earthquake Resistance of Steel Structures
Authors: H. Gokdemir
Abstract:
All structures are subject to vertical and lateral loads. Under these loads, structures make deformations and deformation values of structural elements mustn't exceed their capacity for structural stability. Especially, lateral loads cause critical deformations because of their random directions and magnitudes. Wind load is one of the lateral loads which can act in any direction and any magnitude. Although wind has nearly no effect on reinforced concrete structures, it must be considered for steel structures, roof systems and slender structures like minarets. Therefore, every structure must be able to resist wind loads acting parallel and perpendicular to any side. One of the effective methods for resisting lateral loads is assembling cross steel elements between columns which are called as wind bracing. These cross elements increases lateral rigidity of a structure and prevent exceeding of deformation capacity of the structural system. So, this means cross elements are also effective in resisting earthquake loads too. In this paper; Effects of wind bracing to earthquake resistance of structures are studied. Structure models (with and without wind bracing) are generated and these models are solved under both earthquake and wind loads with different seismic zone parameters. It is concluded by the calculations that; in low-seismic risk zones, wind bracing can easily resist earthquake loads and no additional reinforcement for earthquake loads is necessary. Similarly; in high-seismic risk zones, earthquake cross elements resist wind loads too.Keywords: wind bracings, earthquake, steel structures, vertical and lateral loads
Procedia PDF Downloads 4694683 Numerical Analysis of Prefabricated Horizontal Drain Induced Consolidation Using ABAQUS
Authors: Anjana R. Menon, Anjana Bhasi
Abstract:
This paper deals with the numerical analysis of Prefabricated Horizontal Drain (PHD) induced consolidation of clayey deposits, using ABAQUS. PHDs are much like Prefabricated Vertical Drains (PVDs) installed in horizontal layers, used mainly for enhancing the consolidation of clayey fill embankments, and dredged mud deposits. The efficiency of the system depends mainly on the spacing and layout of the drain. Hence, two spacing related parameters are defined, namely WH (width to horizontal spacing ratio) and VH (vertical to horizontal spacing ratio), and the finite element models are developed based on plane strain unit cell conditions under various combinations of these parameters. The analysis results, in terms of degree of consolidation (U), are compared with the established theories. Based on the analysis, a set of equations are proposed to analyse the PHD induced consolidation. The proposed method is found to be reasonably accurate. Further, the effect of PHDs at different spacing ratios, in accelerating consolidation of a clayey embankment fill is analysed in terms of pore pressure dissipation rate, and settlement. The PHD is found to accelerate the rate of pore pressure dissipation by more than 50%, thus reducing the time for final settlement significantly.Keywords: ABAQUS, consolidation, plane strain, prefabricated horizontal drain
Procedia PDF Downloads 358