Search results for: estimating%20positions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 626

Search results for: estimating%20positions

386 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network

Authors: Abdolreza Memari

Abstract:

In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.

Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model

Procedia PDF Downloads 458
385 A Fast Algorithm for Electromagnetic Compatibility Estimation for Radio Communication Network Equipment in a Complex Electromagnetic Environment

Authors: C. Temaneh-Nyah

Abstract:

Electromagnetic compatibility (EMC) is the ability of a Radio Communication Equipment (RCE) to operate with a desired quality of service in a given Electromagnetic Environment (EME) and not to create harmful interference with other RCE. This paper presents an algorithm which improves the simulation speed of estimating EMC of RCE in a complex EME, based on a stage by stage frequency-energy criterion of filtering. This algorithm considers different interference types including: Blocking and intermodulation. It consist of the following steps: simplified energy criterion where filtration is based on comparing the free space interference level to the industrial noise, frequency criterion which checks whether the interfering emissions characteristic overlap with the receiver’s channels characteristic and lastly the detailed energy criterion where the real channel interference level is compared to the noise level. In each of these stages, some interference cases are filtered out by the relevant criteria. This reduces the total number of dual and different combinations of RCE involved in the tedious detailed energy analysis and thus provides an improved simulation speed.

Keywords: electromagnetic compatibility, electromagnetic environment, simulation of communication network

Procedia PDF Downloads 189
384 A Comparative Study of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Extreme Value Theory (EVT) Model in Modeling Value-at-Risk (VaR)

Authors: Longqing Li

Abstract:

The paper addresses the inefficiency of the classical model in measuring the Value-at-Risk (VaR) using a normal distribution or a Student’s t distribution. Specifically, the paper focuses on the one day ahead Value-at-Risk (VaR) of major stock market’s daily returns in US, UK, China and Hong Kong in the most recent ten years under 95% confidence level. To improve the predictable power and search for the best performing model, the paper proposes using two leading alternatives, Extreme Value Theory (EVT) and a family of GARCH models, and compares the relative performance. The main contribution could be summarized in two aspects. First, the paper extends the GARCH family model by incorporating EGARCH and TGARCH to shed light on the difference between each in estimating one day ahead Value-at-Risk (VaR). Second, to account for the non-normality in the distribution of financial markets, the paper applies Generalized Error Distribution (GED), instead of the normal distribution, to govern the innovation term. A dynamic back-testing procedure is employed to assess the performance of each model, a family of GARCH and the conditional EVT. The conclusion is that Exponential GARCH yields the best estimate in out-of-sample one day ahead Value-at-Risk (VaR) forecasting. Moreover, the discrepancy of performance between the GARCH and the conditional EVT is indistinguishable.

Keywords: Value-at-Risk, Extreme Value Theory, conditional EVT, backtesting

Procedia PDF Downloads 296
383 Presentation of a Mix Algorithm for Estimating the Battery State of Charge Using Kalman Filter and Neural Networks

Authors: Amin Sedighfar, M. R. Moniri

Abstract:

Determination of state of charge (SOC) in today’s world becomes an increasingly important issue in all the applications that include a battery. In fact, estimation of the SOC is a fundamental need for the battery, which is the most important energy storage in Hybrid Electric Vehicles (HEVs), smart grid systems, drones, UPS and so on. Regarding those applications, the SOC estimation algorithm is expected to be precise and easy to implement. This paper presents an online method for the estimation of the SOC of Valve-Regulated Lead Acid (VRLA) batteries. The proposed method uses the well-known Kalman Filter (KF), and Neural Networks (NNs) and all of the simulations have been done with MATLAB software. The NN is trained offline using the data collected from the battery discharging process. A generic cell model is used, and the underlying dynamic behavior of the model has used two capacitors (bulk and surface) and three resistors (terminal, surface, and end), where the SOC determined from the voltage represents the bulk capacitor. The aim of this work is to compare the performance of conventional integration-based SOC estimation methods with a mixed algorithm. Moreover, by containing the effect of temperature, the final result becomes more accurate. 

Keywords: Kalman filter, neural networks, state-of-charge, VRLA battery

Procedia PDF Downloads 159
382 Software Reliability Prediction Model Analysis

Authors: Lela Mirtskhulava, Mariam Khunjgurua, Nino Lomineishvili, Koba Bakuria

Abstract:

Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.

Keywords: exponential distribution, conditional mean time to failure, distribution function, mathematical model, software reliability

Procedia PDF Downloads 434
381 The Revealed Preference Methods in Economic Valuation of Environmental Goods: A Review

Authors: Sara Sousa

Abstract:

The environmental goods and services have often been neglected in crucial decisions affecting the environment mainly because the difficulty in estimating their economic value, since we are dealing with non-market goods and, thus, without a price associated. Nevertheless, the inexistence of prices does not necessarily mean these goods have no value. The environment is a key element in today's society that seeks to be as sustainable as possible, where the environmental assets have both use and non-use values. To estimate the use value, researchers may apply the revealed preference methods. This paper provides a theoretical review of the main concepts and methodologies on the economic valuation of the environment, with particular emphasis on the revealed preference techniques. Based on a detailed literature review, this study concludes that, despite some inherent limitations, the revealed preference methodologies – travel cost, hedonic price, and averting behaviour – represent essential tools for the researchers who accept the challenge to estimate the use value of environmental goods and services based on the actual individuals` behaviour. The main purpose of this study is to contribute to an increased theoretical information on the economic valuation of environmental assets, allowing researchers and policymakers to improve future decisions regarding the environment.

Keywords: economic valuation, environmental goods, revealed preference methods, total economic value

Procedia PDF Downloads 97
380 Verification of Space System Dynamics Using the MATLAB Identification Toolbox in Space Qualification Test

Authors: Yuri V. Kim

Abstract:

This article presents a new approach to the Functional Testing of Space Systems (SS). It can be considered as a generic test and used for a wide class of SS that from the point of view of System Dynamics and Control may be described by the ordinary differential equations. Suggested methodology is based on using semi-natural experiment- laboratory stand that doesn’t require complicated, precise and expensive technological control-verification equipment. However, it allows for testing system as a whole totally assembled unit during Assembling, Integration and Testing (AIT) activities, involving system hardware (HW) and software (SW). The test physically activates system input (sensors) and output (actuators) and requires recording their outputs in real time. The data is then inserted in laboratory PC where it is post-experiment processed by Matlab/Simulink Identification Toolbox. It allows for estimating system dynamics in form of estimation of system differential equations by the experimental way and comparing them with expected mathematical model prematurely verified by mathematical simulation during the design process.

Keywords: system dynamics, space system ground tests and space qualification, system dynamics identification, satellite attitude control, assembling, integration and testing

Procedia PDF Downloads 129
379 Ultra-High Frequency Passive Radar Coverage for Cars Detection in Semi-Urban Scenarios

Authors: Pedro Gómez-del-Hoyo, Jose-Luis Bárcena-Humanes, Nerea del-Rey-Maestre, María-Pilar Jarabo-Amores, David Mata-Moya

Abstract:

A study of achievable coverages using passive radar systems in terrestrial traffic monitoring applications is presented. The study includes the estimation of the bistatic radar cross section of different commercial vehicle models that provide challenging low values which make detection really difficult. A semi-urban scenario is selected to evaluate the impact of excess propagation losses generated by an irregular relief. A bistatic passive radar exploiting UHF frequencies radiated by digital video broadcasting transmitters is assumed. A general method of coverage estimation using electromagnetic simulators in combination with estimated car average bistatic radar cross section is applied. In order to reduce the computational cost, hybrid solution is implemented, assuming free space for the target-receiver path but estimating the excess propagation losses for the transmitter-target one.

Keywords: bistatic radar cross section, passive radar, propagation losses, radar coverage

Procedia PDF Downloads 307
378 Rationalized Haar Transforms Approach to Design of Observer for Control Systems with Unknown Inputs

Authors: Joon-Hoon Park

Abstract:

The fundamental concept of observability is important in both theoretical and practical points of modern control systems. In modern control theory, a control system has criteria for determining the design solution exists for the system parameters and design objectives. The idea of observability relates to the condition of observing or estimating the state variables from the output variables that is generally measurable. To design closed-loop control system, the practical problems of implementing the feedback of the state variables must be considered and implementing state feedback control problem has been existed in this case. All the state variables are not available, so it is requisite to design and implement an observer that will estimate the state variables form the output parameters. However sometimes unknown inputs are presented in control systems as practical cases. This paper presents a design method and algorithm for observer of control system with unknown input parameters based on Rationalized Haar transform. The proposed method is more advantageous than the other numerical method.

Keywords: orthogonal functions, rationalized Haar transforms, control system observer, algebraic method

Procedia PDF Downloads 335
377 An Estimating Parameter of the Mean in Normal Distribution by Maximum Likelihood, Bayes, and Markov Chain Monte Carlo Methods

Authors: Autcha Araveeporn

Abstract:

This paper is to compare the parameter estimation of the mean in normal distribution by Maximum Likelihood (ML), Bayes, and Markov Chain Monte Carlo (MCMC) methods. The ML estimator is estimated by the average of data, the Bayes method is considered from the prior distribution to estimate Bayes estimator, and MCMC estimator is approximated by Gibbs sampling from posterior distribution. These methods are also to estimate a parameter then the hypothesis testing is used to check a robustness of the estimators. Data are simulated from normal distribution with the true parameter of mean 2, and variance 4, 9, and 16 when the sample sizes is set as 10, 20, 30, and 50. From the results, it can be seen that the estimation of MLE, and MCMC are perceivably different from the true parameter when the sample size is 10 and 20 with variance 16. Furthermore, the Bayes estimator is estimated from the prior distribution when mean is 1, and variance is 12 which showed the significant difference in mean with variance 9 at the sample size 10 and 20.

Keywords: Bayes method, Markov chain Monte Carlo method, maximum likelihood method, normal distribution

Procedia PDF Downloads 327
376 Small Fixed-Wing UAV Physical Based Modeling, Simulation, and Validation

Authors: Ebrahim H. Kapeel, Ehab Safwat, Hossam Hendy, Ahmed M. Kamel, Yehia Z. Elhalwagy

Abstract:

Motivated by the problem of the availability of high-fidelity flight simulation models for small unmanned aerial vehicles (UAVs). This paper focuses on the geometric-mass inertia modeling and the actuation system modeling for the small fixed-wing UAVs. The UAV geometric parameters for the body, wing, horizontal and vertical tail are physically measured. Pendulum experiment with high-grade sensors and data analysis using MATLAB is used to estimate the airplane moment of inertia (MOI) model. Finally, UAV’s actuation system is modeled by estimating each servo transfer function by using the system identification, which uses experimental measurement for input and output angles through using field-programmable gate array (FPGA). Experimental results for the designed models are given to illustrate the effectiveness of the methodology. It also gives a very promising result to finalize the open-loop flight simulation model through modeling the propulsion system and the aerodynamic system.

Keywords: unmanned aerial vehicle, geometric-mass inertia model, system identification, Simulink

Procedia PDF Downloads 151
375 Classifying Facial Expressions Based on a Motion Local Appearance Approach

Authors: Fabiola M. Villalobos-Castaldi, Nicolás C. Kemper, Esther Rojas-Krugger, Laura G. Ramírez-Sánchez

Abstract:

This paper presents the classification results about exploring the combination of a motion based approach with a local appearance method to describe the facial motion caused by the muscle contractions and expansions that are presented in facial expressions. The proposed feature extraction method take advantage of the knowledge related to which parts of the face reflects the highest deformations, so we selected 4 specific facial regions at which the appearance descriptor were applied. The most common used approaches for feature extraction are the holistic and the local strategies. In this work we present the results of using a local appearance approach estimating the correlation coefficient to the 4 corresponding landmark-localized facial templates of the expression face related to the neutral face. The results let us to probe how the proposed motion estimation scheme based on the local appearance correlation computation can simply and intuitively measure the motion parameters for some of the most relevant facial regions and how these parameters can be used to recognize facial expressions automatically.

Keywords: facial expression recognition system, feature extraction, local-appearance method, motion-based approach

Procedia PDF Downloads 386
374 Modeling and Performance Evaluation of an Urban Corridor under Mixed Traffic Flow Condition

Authors: Kavitha Madhu, Karthik K. Srinivasan, R. Sivanandan

Abstract:

Indian traffic can be considered as mixed and heterogeneous due to the presence of various types of vehicles that operate with weak lane discipline. Consequently, vehicles can position themselves anywhere in the traffic stream depending on availability of gaps. The choice of lateral positioning is an important component in representing and characterizing mixed traffic. The field data provides evidence that the trajectory of vehicles in Indian urban roads have significantly varying longitudinal and lateral components. Further, the notion of headway which is widely used for homogeneous traffic simulation is not well defined in conditions lacking lane discipline. From field data it is clear that following is not strict as in homogeneous and lane disciplined conditions and neighbouring vehicles ahead of a given vehicle and those adjacent to it could also influence the subject vehicles choice of position, speed and acceleration. Given these empirical features, the suitability of using headway distributions to characterize mixed traffic in Indian cities is questionable, and needs to be modified appropriately. To address these issues, this paper attempts to analyze the time gap distribution between consecutive vehicles (in a time-sense) crossing a section of roadway. More specifically, to characterize the complex interactions noted above, the influence of composition, manoeuvre types, and lateral placement characteristics on time gap distribution is quantified in this paper. The developed model is used for evaluating various performance measures such as link speed, midblock delay and intersection delay which further helps to characterise the vehicular fuel consumption and emission on urban roads of India. Identifying and analyzing exact interactions between various classes of vehicles in the traffic stream is essential for increasing the accuracy and realism of microscopic traffic flow modelling. In this regard, this study aims to develop and analyze time gap distribution models and quantify it by lead lag pair, manoeuvre type and lateral position characteristics in heterogeneous non-lane based traffic. Once the modelling scheme is developed, this can be used for estimating the vehicle kilometres travelled for the entire traffic system which helps to determine the vehicular fuel consumption and emission. The approach to this objective involves: data collection, statistical modelling and parameter estimation, simulation using calibrated time-gap distribution and its validation, empirical analysis of simulation result and associated traffic flow parameters, and application to analyze illustrative traffic policies. In particular, video graphic methods are used for data extraction from urban mid-block sections in Chennai, where the data comprises of vehicle type, vehicle position (both longitudinal and lateral), speed and time gap. Statistical tests are carried out to compare the simulated data with the actual data and the model performance is evaluated. The effect of integration of above mentioned factors in vehicle generation is studied by comparing the performance measures like density, speed, flow, capacity, area occupancy etc under various traffic conditions and policies. The implications of the quantified distributions and simulation model for estimating the PCU (Passenger Car Units), capacity and level of service of the system are also discussed.

Keywords: lateral movement, mixed traffic condition, simulation modeling, vehicle following models

Procedia PDF Downloads 317
373 Working Title: Estimating the Power Output of Photovoltaics in Kuwait Using a Monte Carlo Approach

Authors: Mohammad Alshawaf, Rahmat Poudineh, Nawaf Alhajeri

Abstract:

The power generated from photovoltaic (PV) modules is non-dispatchable on demand due to the stochastic nature of solar radiation. The random variations in the measured intensity of solar irradiance are due to clouds and, in the case of arid regions, dust storms which decrease the intensity of intensity of solar irradiance. Therefore, modeling PV power output using average, maximum, or minimum solar irradiance values is inefficient to predict power generation reliably. The overall objective of this paper is to predict the power output of PV modules using Monte Carlo approach based the weather and solar conditions measured in Kuwait. Given the 250 Wp PV module used in study, the average daily power output is 1021 Wh/day. The maximum power was generated in April and the minimum power was generated in January 1187 Wh/day and 823 Wh/day respectively. The certainty of the daily predictions varies seasonally and according to the weather conditions. The output predictions were far more certain in the summer months, for example, the 80% certainty range for August is 89 Wh/day, whereas the 80% certainty range for April is 250 Wh/day.

Keywords: Monte Carlo, solar energy, variable renewable energy, Kuwait

Procedia PDF Downloads 104
372 Physical and Mechanical Characterization of Limestone in the Quarry of Meftah (Algeria)

Authors: Khaled Benyounes

Abstract:

Determination of the rock mechanical properties such as unconfined compressive strength UCS, Young’s modulus E, and tensile strength by the Brazilian test Rtb is considered to be the most important component in drilling and mining engineering project. Research related to establishing correlation between strength and physical parameters of rocks has always been of interest to mining and reservoir engineering. For this, many rock blocks of limestone were collected from the quarry located in Meftah (Algeria), the cores were crafted in the laboratory using a core drill. This work examines the relationships between mechanical properties and some physical properties of limestone. Many empirical equations are established between UCS and physical properties of limestone (such as dry bulk density, velocity of P-waves, dynamic Young’s modulus, alteration index, and total porosity). Other correlations, UCS - tensile strength, dynamic Young’s modulus - static Young’s modulus have been find. Based on the Mohr-Coulomb failure criterion, we were able to establish mathematical relationships that will allow estimating the cohesion and internal friction angle from UCS and indirect tensile strength. Results from this study can be useful for mining industry for resolve range of geomechanical problems such as slope stability.

Keywords: limestone, mechanical strength, Young’s modulus, porosity

Procedia PDF Downloads 603
371 Estimation of Population Mean Using Characteristics of Poisson Distribution: An Application to Earthquake Data

Authors: Prayas Sharma

Abstract:

This paper proposed a generalized class of estimators, an exponential class of estimators based on the adaption of Sharma and Singh (2015) and Solanki and Singh (2013), and a simple difference estimator for estimating unknown population mean in the case of Poisson distributed population in simple random sampling without replacement. The expressions for mean square errors of the proposed classes of estimators are derived from the first order of approximation. It is shown that the adapted version of Solanki and Singh (2013), the exponential class of estimator, is always more efficient than the usual estimator, ratio, product, exponential ratio, and exponential product type estimators and equally efficient to simple difference estimator. Moreover, the adapted version of Sharma and Singh's (2015) estimator is always more efficient than all the estimators available in the literature. In addition, theoretical findings are supported by an empirical study to show the superiority of the constructed estimators over others with an application to earthquake data of Turkey.

Keywords: auxiliary attribute, point bi-serial, mean square error, simple random sampling, Poisson distribution

Procedia PDF Downloads 117
370 Estimating the Power Influence of an Off-Grid Photovoltaic Panel on the Indicting Rate of a Storage System (Batteries)

Authors: Osamede Asowata

Abstract:

The current resurgence of interest in the use of renewable energy is driven by the need to reduce the high environmental impact of fossil-based energy. The aim of this paper is to evaluate the effect of a stationary PV panel on the charging rate of deep-cycle valve regulated lead-acid (DCVRLA) batteries. Stationary PV panels are set to a fixed tilt and orientation angle, which plays a major role in dictating the output power of a PV panel and subsequently on the charging time of a DCVRLA battery. In a basic PV system, an energy storage device that stores the power from the PV panel is necessary due to the fluctuating nature of the PV voltage caused by climatic conditions. The charging and discharging times of a DCVRLA battery were determined for a twelve month period from January through December 2012. Preliminary results, which include regression analysis (R2), conversion-time per week and work-time per day, indicate that a 36 degrees tilt angle produces a good charging rate for a latitude of 26 degrees south throughout the year.

Keywords: tilt and orientation angles, solar chargers, PV panels, storage devices, direct solar radiation.

Procedia PDF Downloads 218
369 Feature Extraction and Impact Analysis for Solid Mechanics Using Supervised Finite Element Analysis

Authors: Edward Schwalb, Matthias Dehmer, Michael Schlenkrich, Farzaneh Taslimi, Ketron Mitchell-Wynne, Horen Kuecuekyan

Abstract:

We present a generalized feature extraction approach for supporting Machine Learning (ML) algorithms which perform tasks similar to Finite-Element Analysis (FEA). We report results for estimating the Head Injury Categorization (HIC) of vehicle engine compartments across various impact scenarios. Our experiments demonstrate that models learned using features derived with a simple discretization approach provide a reasonable approximation of a full simulation. We observe that Decision Trees could be as effective as Neural Networks for the HIC task. The simplicity and performance of the learned Decision Trees could offer a trade-off of a multiple order of magnitude increase in speed and cost improvement over full simulation for a reasonable approximation. When used as a complement to full simulation, the approach enables rapid approximate feedback to engineering teams before submission for full analysis. The approach produces mesh independent features and is further agnostic of the assembly structure.

Keywords: mechanical design validation, FEA, supervised decision tree, convolutional neural network.

Procedia PDF Downloads 105
368 Estimation of Aquifer Properties Using Pumping Tests: Case Study of Pydibhimavaram Industrial Area, Srikakulam, India

Authors: G. Venkata Rao, P. Kalpana, R. Srinivasa Rao

Abstract:

Adequate and reliable estimates of aquifer parameters are of utmost importance for proper management of vital groundwater resources. At present scenario the ground water is polluted because of industrial waste disposed over the land and the contaminants are transported in the aquifer from one area to another area which is depending on the characteristics of the aquifer and contaminants. To know the contaminant transport, the accurate estimation of aquifer properties is highly needed. Conventionally, these properties are estimated through pumping tests carried out on water wells. The occurrence and movement of ground water in the aquifer are characteristically defined by the aquifer parameters. The pumping (aquifer) test is the standard technique for estimating various hydraulic properties of aquifer systems, viz, transmissivity (T), hydraulic conductivity (K), storage coefficient (S) etc., for which the graphical method is widely used. The study area for conducting pumping test is Pydibheemavaram Industrial area near the coastal belt of Srikulam, AP, India. The main objective of the present work is to estimate the aquifer properties for developing contaminant transport model for the study area.

Keywords: aquifer, contaminant transport, hydraulic conductivity, industrial waste, pumping test

Procedia PDF Downloads 417
367 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System

Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva

Abstract:

Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.

Keywords: energy production, meteorological data, irradiance decomposition, solar photovoltaic system

Procedia PDF Downloads 104
366 A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures

Authors: Adriano Z. Zambom, Preethi Ravikumar

Abstract:

One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified.

Keywords: additive model, nonparametric regression, variable selection, Akaike Information Criteria

Procedia PDF Downloads 238
365 Estimation of Missing Values in Aggregate Level Spatial Data

Authors: Amitha Puranik, V. S. Binu, Seena Biju

Abstract:

Missing data is a common problem in spatial analysis especially at the aggregate level. Missing can either occur in covariate or in response variable or in both in a given location. Many missing data techniques are available to estimate the missing data values but not all of these methods can be applied on spatial data since the data are autocorrelated. Hence there is a need to develop a method that estimates the missing values in both response variable and covariates in spatial data by taking account of the spatial autocorrelation. The present study aims to develop a model to estimate the missing data points at the aggregate level in spatial data by accounting for (a) Spatial autocorrelation of the response variable (b) Spatial autocorrelation of covariates and (c) Correlation between covariates and the response variable. Estimating the missing values of spatial data requires a model that explicitly account for the spatial autocorrelation. The proposed model not only accounts for spatial autocorrelation but also utilizes the correlation that exists between covariates, within covariates and between a response variable and covariates. The precise estimation of the missing data points in spatial data will result in an increased precision of the estimated effects of independent variables on the response variable in spatial regression analysis.

Keywords: spatial regression, missing data estimation, spatial autocorrelation, simulation analysis

Procedia PDF Downloads 343
364 Pseudo Modal Operating Deflection Shape Based Estimation Technique of Mode Shape Using Time History Modal Assurance Criterion

Authors: Doyoung Kim, Hyo Seon Park

Abstract:

Studies of System Identification(SI) based on Structural Health Monitoring(SHM) have actively conducted for structural safety. Recently SI techniques have been rapidly developed with output-only SI paradigm for estimating modal parameters. The features of these output-only SI methods consist of Frequency Domain Decomposition(FDD) and Stochastic Subspace Identification(SSI) are using the algorithms based on orthogonal decomposition such as singular value decomposition(SVD). But the SVD leads to high level of computational complexity to estimate modal parameters. This paper proposes the technique to estimate mode shape with lower computational cost. This technique shows pseudo modal Operating Deflections Shape(ODS) through bandpass filter and suggests time history Modal Assurance Criterion(MAC). Finally, mode shape could be estimated from pseudo modal ODS and time history MAC. Analytical simulations of vibration measurement were performed and the results with mode shape and computation time between representative SI method and proposed method were compared.

Keywords: modal assurance criterion, mode shape, operating deflection shape, system identification

Procedia PDF Downloads 378
363 Artificial Neural Network Based Approach for Estimation of Individual Vehicle Speed under Mixed Traffic Condition

Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh

Abstract:

Developing speed model is a challenging task particularly under mixed traffic condition where the traffic composition plays a significant role in determining vehicular speed. The present research has been conducted to model individual vehicular speed in the context of mixed traffic on an urban arterial. Traffic speed and volume data have been collected from three midblock arterial road sections in New Delhi. Using the field data, a volume based speed prediction model has been developed adopting the methodology of Artificial Neural Network (ANN). The model developed in this work is capable of estimating speed for individual vehicle category. Validation results show a great deal of agreement between the observed speeds and the predicted values by the model developed. Also, it has been observed that the ANN based model performs better compared to other existing models in terms of accuracy. Finally, the sensitivity analysis has been performed utilizing the model in order to examine the effects of traffic volume and its composition on individual speeds.

Keywords: speed model, artificial neural network, arterial, mixed traffic

Procedia PDF Downloads 358
362 On Estimating the Low Income Proportion with Several Auxiliary Variables

Authors: Juan F. Muñoz-Rosas, Rosa M. García-Fernández, Encarnación Álvarez-Verdejo, Pablo J. Moya-Fernández

Abstract:

Poverty measurement is a very important topic in many studies in social sciences. One of the most important indicators when measuring poverty is the low income proportion. This indicator gives the proportion of people of a population classified as poor. This indicator is generally unknown, and for this reason, it is estimated by using survey data, which are obtained by official surveys carried out by many statistical agencies such as Eurostat. The main feature of the mentioned survey data is the fact that they contain several variables. The variable used to estimate the low income proportion is called as the variable of interest. The survey data may contain several additional variables, also named as the auxiliary variables, related to the variable of interest, and if this is the situation, they could be used to improve the estimation of the low income proportion. In this paper, we use Monte Carlo simulation studies to analyze numerically the performance of estimators based on several auxiliary variables. In this simulation study, we considered real data sets obtained from the 2011 European Union Survey on Income and Living Condition. Results derived from this study indicate that the estimators based on auxiliary variables are more accurate than the naive estimator.

Keywords: inclusion probability, poverty, poverty line, survey sampling

Procedia PDF Downloads 418
361 Evaluation of Best-Fit Probability Distribution for Prediction of Extreme Hydrologic Phenomena

Authors: Karim Hamidi Machekposhti, Hossein Sedghi

Abstract:

The probability distributions are the best method for forecasting of extreme hydrologic phenomena such as rainfall and flood flows. In this research, in order to determine suitable probability distribution for estimating of annual extreme rainfall and flood flows (discharge) series with different return periods, precipitation with 40 and discharge with 58 years time period had been collected from Karkheh River at Iran. After homogeneity and adequacy tests, data have been analyzed by Stormwater Management and Design Aid (SMADA) software and residual sum of squares (R.S.S). The best probability distribution was Log Pearson Type III with R.S.S value (145.91) and value (13.67) for peak discharge and Log Pearson Type III with R.S.S values (141.08) and (8.95) for maximum discharge in Jelogir Majin and Pole Zal stations, respectively. The best distribution for maximum precipitation in Jelogir Majin and Pole Zal stations was Log Pearson Type III distribution with R.S.S values (1.74&1.90) and then Pearson Type III distribution with R.S.S values (1.53&1.69). Overall, the Log Pearson Type III distributions are acceptable distribution types for representing statistics of extreme hydrologic phenomena in Karkheh River at Iran with the Pearson Type III distribution as a potential alternative.

Keywords: Karkheh River, Log Pearson Type III, probability distribution, residual sum of squares

Procedia PDF Downloads 169
360 Genetic Evaluation of Locally Flock Sheep in Gabaraka Village

Authors: Salim Omar Raoof

Abstract:

This study was conducted in a private local sheep herd at Gabaraka village-Kirkuk-Iraq. Analysis of 77 ewes recorded and 7 Rams of local sheep presented in Gabaraka village farm plain, the age of ewes ranged between (2-4) years. The aim of this study is to investigate the genetic and non-genetic factors (type of birth, sex, and age of dam) affecting daily milk yield (DMY), birth weight (BW), weaning weight (WW) and Gain characteristics of local sheep raised under Iraq conditions, and it also aims at estimating heritability’s, BLUP. The overall mean of daily milk yield, (BW), (WW), and gain. Was 444.15gm,4.92kg,43.08kg, and 38.16kg, respectively. The results showed there was a significant effect of the type of birth and sex on (BW) and (WW). Also, the age of the dam had a significant effect on daily milk yield (BW), (WW), and gain. Generally, the estimate of heritability of DMP, BWT, WWT, and Gain tend to be 0.22, 0.17, 0.27, and 0.22, respectively. The breeding value (BLUP) for rams ranged between (-0.1684 to 0.188), (-0.205 to 0.310), and ( -0.0171 to 0.029) according to growth traits of Lambs BW, WW, and Gain, respectively. It concluded that the selection of ewes and rams at the population level in planned selection schemes is based on BLUP value and heritability.

Keywords: locally sheep, milk yield, Genetic parameters, BLUP value

Procedia PDF Downloads 42
359 Temporal Variation of Reference Evapotranspiration in Central Anatolia Region, Turkey and Meteorological Drought Analysis via Standardized Precipitation Evapotranspiration Index Method

Authors: Alper Serdar Anli

Abstract:

Analysis of temporal variation of reference evapotranspiration (ET0) is important in arid and semi-arid regions where water resources are limited. In this study, temporal variation of reference evapotranspiration (ET0) and meteorological drought analysis through SPEI (Standardized Precipitation Evapotranspiration Index) method have been carried out in provinces of Central Anatolia Region, Turkey. Reference evapotranspiration of concerning provinces in the region has been estimated using Penman-Monteith method and one calendar year has been split up four periods as r1, r2, r3 and r4. Temporal variation of reference evapotranspiration according to four periods has been analyzed through parametric Dickey-Fuller test and non-parametric Mann-Whitney U test. As a result, significant increasing trends for reference evapotranspiration have been detected and according to SPEI method used for estimating meteorological drought in provinces, mild drought has been experienced in general, and however there have been also a significant amount of events where moderate and severely droughts occurred.

Keywords: central Anatolia region, drought index, Penman-Monteith, reference evapotranspiration, temporal variation

Procedia PDF Downloads 283
358 Dynamic Response of Doubly Curved Composite Shell with Embedded Shape Memory Alloys Wires

Authors: Amin Ardali, Mohammadreza Khalili, Mohammadreza Rezai

Abstract:

In this paper, dynamic response of thin smart composite panel subjected to low-velocity transverse impact is investigated. Shape memory wires are used to reinforced curved composite panel in a smart way. One-dimensional thermodynamic constitutive model by Liang and Rogers is used for estimating the structural recovery stress. The two degrees-of-freedom mass-spring model is used for evaluation of the contact force between the curved composite panel and the impactor. This work is benefited from the Hertzian linear contact model which is linearized for the impact analysis of curved composite panel. The governing equations of curved panel are provided by first-order shear theory and solved by Fourier series related to simply supported boundary condition. For this purpose, the equation of doubly curved panel motion included the uniform in-plane forces is obtained. By the present analysis, the curved panel behavior under low-velocity impact, and also the effect of the impact parameters, the shape memory wire and the curved panel dimensions are studied.

Keywords: doubly curved shell, SMA wire, impact response, smart material, shape memory alloy

Procedia PDF Downloads 368
357 Introduction of Robust Multivariate Process Capability Indices

Authors: Behrooz Khalilloo, Hamid Shahriari, Emad Roghanian

Abstract:

Process capability indices (PCIs) are important concepts of statistical quality control and measure the capability of processes and how much processes are meeting certain specifications. An important issue in statistical quality control is parameter estimation. Under the assumption of multivariate normality, the distribution parameters, mean vector and variance-covariance matrix must be estimated, when they are unknown. Classic estimation methods like method of moment estimation (MME) or maximum likelihood estimation (MLE) makes good estimation of the population parameters when data are not contaminated. But when outliers exist in the data, MME and MLE make weak estimators of the population parameters. So we need some estimators which have good estimation in the presence of outliers. In this work robust M-estimators for estimating these parameters are used and based on robust parameter estimators, robust process capability indices are introduced. The performances of these robust estimators in the presence of outliers and their effects on process capability indices are evaluated by real and simulated multivariate data. The results indicate that the proposed robust capability indices perform much better than the existing process capability indices.

Keywords: multivariate process capability indices, robust M-estimator, outlier, multivariate quality control, statistical quality control

Procedia PDF Downloads 249