Search results for: driving drowsiness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 994

Search results for: driving drowsiness

994 Relationships of Driver Drowsiness and Sleep-Disordered Breathing Syndrome

Authors: Cheng-Yu Tsai, Wen-Te Liu, Yin-Tzu Lin, Chen-Chen Lo, Kang Lo

Abstract:

Background: Driving drowsiness related to inadequate or disordered sleep accounts for a major percentage of traffic accidents. Sleep-disordered breathing (SDB) syndrome is a common respiratory disorder during sleep. However, the effects of SDB syndrome on driving fatigue remain unclear. Objective: This study aims to investigate the relationship between SDB pattern and driving drowsiness. Methodologies: The physical condition while driving was obtained from the questionnaires to classify the state of driving fatigue. SDB syndrome was quantified as the polysomnography, and the air flow pattern was collected by the thermistor and nasal pressure cannula. To evaluate the desaturation, the mean hourly number of greater than 3% dips in oxygen saturation was sentenced by reregistered technologist during examination in a hospital in New Taipei City (Taiwan). The independent T-test was used to investigate the correlations between sleep disorders related index and driving drowsiness. Results: There were 880 subjects recruited in this study, who had been done polysomnography for evaluating severity for obstructive sleep apnea syndrome (OSAS) as well as completed the driver condition questionnaire. Four-hundred-eighty-four subjects (55%) were classified as fatigue group, and 396 subjects (45%) were served as the control group. Significantly higher values of snoring index (242.14 ± 205.51 /hours) were observed in the fatigue group (p < 0.01). The value of respiratory disturbance index (RDI) (31.82 ± 19.34 /hours) in fatigue group were significantly higher than the control group (p < 0.01). Conclusion: We observe the considerable association between SDB syndrome and driving drowsiness. To promote traffic safety, SDB syndrome should be controlled and alleviated.

Keywords: driving drowsiness, sleep-disordered breathing syndrome, snoring index, respiratory disturbance index.

Procedia PDF Downloads 140
993 Effects of Low Sleep Efficiency and Sleep Deprivation on Driver Physical Fatigue

Authors: Chen-Yu Tsai, Wen-Te Liu, Chen-Chen Lo, Kang Lo, Yin-Tzu Lin

Abstract:

Background: Driving drowsiness related to insufficient or disordered sleep accounts for a major percentage of vehicular accidents. Sleep deprivation is the primary reason related to low sleep efficiency. Nevertheless, the mechanism of sleep deprivation induces driving fatigue to remain unclear. Objective: The objective of this study is to associate the relationship between insufficient sleep efficiency and driving fatigue. Methodologies: The physical condition while driving was obtained from the questionnaires to classify the state of driving fatigue. Sleep efficiency was quantified as the polysomnography (PSG), and the sleep stages were sentenced by the reregistered Technologist during examination in a hospital in New Taipei City (Taiwan). The independent T-test was used to investigate the correlation between sleep efficiency, sleep stages ratio, and driving drowsiness. Results: There were 880 subjects recruited in this study, who had been done polysomnography for evaluating severity for obstructive sleep apnea syndrome (OSAS) as well as completed the driver condition questionnaire. Four-hundred-eighty-four subjects (55%) were classified as fatigue group, and 396 subjects (45%) were served as the control group. The ratio of stage three sleep (N3) (0.032 ± 0.056) in fatigue group were significantly lower than the control group (p < 0.01). The significantly higher value of snoring index (242.14 ± 205.51 /hours) was observed in the fatigue group (p < 0.01). Conclusion: We observe the considerable correlation between deep sleep reduce and driving drowsiness. To avoid drowsy driving, the sleep deprivation, and the snoring events during the sleeping time should be monitored and alleviated.

Keywords: driving drowsiness, sleep deprivation, stage three sleep, snoring index

Procedia PDF Downloads 143
992 Implementation of a Low-Cost Driver Drowsiness Evaluation System Using a Thermal Camera

Authors: Isa Moazen, Ali Nahvi

Abstract:

Driver drowsiness is a major cause of vehicle accidents, and facial images are highly valuable to detect drowsiness. In this paper, we perform our research via a thermal camera to record drivers' facial images on a driving simulator. A robust real-time algorithm extracts the features using horizontal and vertical integration projection, contours, contour orientations, and cropping tools. The features are included four target areas on the cheeks and forehead. Qt compiler and OpenCV are used with two cameras with different resolutions. A high-resolution thermal camera is used for fifteen subjects, and a low-resolution one is used for a person. The results are investigated by four temperature plots and evaluated by observer rating of drowsiness.

Keywords: advanced driver assistance systems, thermal imaging, driver drowsiness detection, feature extraction

Procedia PDF Downloads 137
991 Comparative Study of Fatigue and Drowsiness in the Night-Time Passenger Transportation Industry in Japan

Authors: Hiroshi Ikeda

Abstract:

In this research, a questionnaire survey was conducted to measure nap, drowsiness and fatigue of drivers who work long shifts, to discuss about the work environment and health conditions for taxi and bus drivers who work at night time. The questionnaire sheet used for this research was organized into the following categories: tension/tiredness, drowsiness while driving, and the nap situation during night-time work. The number of taxi drivers was 127 and the number of bus drivers was 40. Concerning the results of a comparison of nap hours of taxi and bus drivers, the taxi drivers’ nap hours are overwhelmingly shorter, and also the frequency of drivers who feel drowsiness is higher. The burden on bus drivers does not change because of the system of a two-driver rotation shift. In particular, the working environment of the taxi driver may lead to greater fatigue accumulation than the bus driver’s environment.

Keywords: bus and taxi, drowsiness, fatigue, nap

Procedia PDF Downloads 326
990 Intelligent Driver Safety System Using Fatigue Detection

Authors: Samra Naz, Aneeqa Ahmed, Qurat-ul-ain Mubarak, Irum Nausheen

Abstract:

Driver safety systems protect driver from accidents by sensing signs of drowsiness. The paper proposes a technique which can detect the signs of drowsiness and make corresponding decisions to make the driver alert. This paper presents a technique in which the driver will be continuously monitored by a camera and his eyes, head and mouth movements will be observed. If the drowsiness signs are detected on the basis of these three movements under the predefined criteria, driver will be declared as sleepy and he will get alert with the help of alarms. Three robust techniques of drowsiness detection are combined together to make a robust system that can prevent form accident.

Keywords: drowsiness, eye closure, fatigue detection, yawn detection

Procedia PDF Downloads 292
989 A Clinician’s Perspective on Electroencephalography Annotation and Analysis for Driver Drowsiness Estimation

Authors: Ruxandra Aursulesei, David O’Callaghan, Cian Ryan, Diarmaid O’Cualain, Viktor Varkarakis, Alina Sultana, Joseph Lemley

Abstract:

Human errors caused by drowsiness are among the leading causes of road accidents. Neurobiological research gives information about the electrical signals emitted by neurons firing within the brain. Electrical signal frequencies can be determined by attaching bio-sensors to the head surface. By observing the electrical impulses and the rhythmic interaction of neurons with each other, we can predict the mental state of a person. In this paper, we aim to better understand intersubject and intrasubject variability in terms of electrophysiological patterns that occur at the onset of drowsiness and their evolution with the decreasing of vigilance. The purpose is to lay the foundations for an algorithm that detects the onset of drowsiness before the physical signs become apparent.

Keywords: electroencephalography, drowsiness, ADAS, annotations, clinician

Procedia PDF Downloads 114
988 The Association between Obstructive Sleep Apnea Syndrome and Driver Fatigue in North Taiwan Urban Areas

Authors: Cheng-Yu Tsai, Wen-Te Liu, Chen-Chen Lo, Yin-Tzu Lin, Kang Lo

Abstract:

Background: Driving fatigue related to inadequate or disordered sleep accounts for a major percentage of traffic accidents. Obstructive sleep apnea syndrome (OSAS) is a common respiratory disorder during sleep. However, the effects of OSAS severity on driving drowsiness remain unclear. Objective: The aim of this study is to investigate the relationship between OSAS severity and driving fatigue. Methodologies: The physical condition while driving was obtained from the questionnaires to classify the state of driving fatigue. OSAS severity was quantified as the polysomnography, and the mean hourly number of greater than 3% dips in oxygen saturation during examination in a hospital in New Taipei City (Taiwan). The severity of OSAS was diagnosed by the apnea and hypopnea index (AHI) with the American Academy of Sleep Medicine (AASM) guideline. The logistic regression model was used to examine the associations after adjusted age, gender, neck circumstance, waist circumstance, and body mass index (BMI). Results: There were 880 subjects recruited in this study, who had been done polysomnography for evaluating severity for OSAS as well as completed the driver condition questionnaire. 752 subjects were diagnosed with OSA, and 484 subjects had fatigue driving behavior in the past week. Patients diagnosed with OSAS had a 9.42-fold higher odds ratio (p < 0.01, 95% CI = 5.41 – 16.42) of driving drowsiness for cohorts with a normal degree. Conclusion: We observe the considerable correlation between OSAS and driving fatigue. For the purpose of promoting traffic safety, OSAS should be monitored and treated.

Keywords: obstructive sleep apnea syndrome, driving fatigue, polysomnography, apnea and hypopnea index

Procedia PDF Downloads 132
987 Influence of Vibration Amplitude on Reaction Time and Drowsiness Level

Authors: Mohd A. Azizan, Mohd Z. Zali

Abstract:

It is well established that exposure to vibration has an adverse effect on human health, comfort, and performance. However, there is little quantitative knowledge on performance combined with drowsiness level during vibration exposure. This paper reports a study investigating the influence of vibration amplitude on seated occupant reaction time and drowsiness level. Eighteen male volunteers were recruited for this experiment. Before commencing the experiment, total transmitted acceleration measured at interfaces between the seat pan and seatback to human body was adjusted to become 0.2 ms-2 r.m.s and 0.4 ms-2 r.m.s for each volunteer. Seated volunteers were exposed to Gaussian random vibration with frequency band 1-15 Hz at two level of amplitude (low vibration amplitude and medium vibration amplitude) for 20-minutes in separate days. For the purpose of drowsiness measurement, volunteers were asked to complete 10-minutes PVT test before and after vibration exposure and rate their subjective drowsiness by giving score using Karolinska Sleepiness Scale (KSS) before vibration, every 5-minutes interval and following 20-minutes of vibration exposure. Strong evidence of drowsiness was found as there was a significant increase in reaction time and number of lapse following exposure to vibration in both conditions. However, the effect is more apparent in medium vibration amplitude. A steady increase of drowsiness level can also be observed in KSS in all volunteers. However, no significant differences were found in KSS between low vibration amplitude and medium vibration amplitude. It is concluded that exposure to vibration has an adverse effect on human alertness level and more pronounced at higher vibration amplitude. Taken together, these findings suggest a role of vibration in promoting drowsiness, especially at higher vibration amplitude.

Keywords: drowsiness, human vibration, karolinska sleepiness scale, psychomotor vigilance test

Procedia PDF Downloads 281
986 Shift Work and Its Consequences

Authors: Parastoo Vasli

Abstract:

In today's society, more and more people work during ‘non-standard’ working hours, including shift and night work, which are perceived danger factors for health, safety, and social prosperity. Appropriate preventive and protective measures are needed to reduce side effects and ensure that the worker can adapt sufficiently. Of the many health effects associated with shift work, sleep disorders are the most widely recognized. The most troubling acute symptoms are difficulty falling asleep, short sleep, and drowsiness during working hours that last for days on end. The outcomes checked on plainly exhibit that shift work is related to expanded mental, social, and physiological drowsiness. Apparently, the effects are due to circadian and hemostatic compounds (sleep loss). Drowsiness is especially evident during night shifts and may lead to drowsiness in real workplace accidents. In some occupations, this is clearly a risk that could endanger human lives and has enormous financial outcomes. These dangers clearly affect a large number of people and should be of great importance to society. In particular, safety on night shifts is consistently reduced.

Keywords: shift work, night work, safety, health, drowsiness

Procedia PDF Downloads 224
985 Cognition of Driving Context for Driving Assistance

Authors: Manolo Dulva Hina, Clement Thierry, Assia Soukane, Amar Ramdane-Cherif

Abstract:

In this paper, we presented our innovative way of determining the driving context for a driving assistance system. We invoke the fusion of all parameters that describe the context of the environment, the vehicle and the driver to obtain the driving context. We created a training set that stores driving situation patterns and from which the system consults to determine the driving situation. A machine-learning algorithm predicts the driving situation. The driving situation is an input to the fission process that yields the action that must be implemented when the driver needs to be informed or assisted from the given the driving situation. The action may be directed towards the driver, the vehicle or both. This is an ongoing work whose goal is to offer an alternative driving assistance system for safe driving, green driving and comfortable driving. Here, ontologies are used for knowledge representation.

Keywords: cognitive driving, intelligent transportation system, multimodal system, ontology, machine learning

Procedia PDF Downloads 366
984 Reduction of the Number of Traffic Accidents by Function of Driver's Anger Detection

Authors: Masahiro Miyaji

Abstract:

When a driver happens to be involved in some traffic congestion or after traffic incidents, the driver may fall in a state of anger. State of anger may encounter decisive risk resulting in severer traffic accidents. Preventive safety function using driver’s psychosomatic state with regard to anger may be one of solutions which would avoid that kind of risks. Identifying driver’s anger state is important to create countermeasures to prevent the risk of traffic accidents. As a first step, this research figured out root cause of traffic incidents by means of using Internet survey. From statistical analysis of the survey, dominant psychosomatic states immediately before traffic incidents were haste, distraction, drowsiness and anger. Then, we replicated anger state of a driver while driving, and then, replicated it by means of using driving simulator on bench test basis. Six types of facial expressions including anger were introduced as alternative characteristics. Kohonen neural network was adopted to classify anger state. Then, we created a methodology to detect anger state of a driver in high accuracy. We presented a driving support safety function. The function adapts driver’s anger state in cooperation with an autonomous driving unit to reduce the number of traffic accidents. Consequently, e evaluated reduction rate of driver’s anger in the traffic accident. To validate the estimation results, we referred the reduction rate of Advanced Safety Vehicle (ASV) as well as Intelligent Transportation Systems (ITS).

Keywords: Kohonen neural network, driver’s anger state, reduction of traffic accidents, driver’s state adaptive driving support safety

Procedia PDF Downloads 358
983 Developing a Driving Simulator with a Navigation System to Measure Driver Distraction, Workload, Driving Safety and Performance

Authors: Tamer E. Yared

Abstract:

The use of driving simulators has made laboratory testing easier. It has been proven to be valid for testing driving ability by many researchers. One benefit of using driving simulators is keeping the human subjects away from traffic hazards, which drivers usually face in a real driving environment while performing a driving experiment. In this study, a driving simulator was developed with a navigation system using a game development software (Unity 3D) and C-sharp codes to measure and evaluate driving performance, safety, and workload for different driving tasks. The driving simulator hardware included a gaming steering wheel and pedals as well as a monitor to view the driving tasks. Moreover, driver distraction was evaluated by utilizing an eye-tracking system working in conjunction with the driving simulator. Twenty subjects were recruited to evaluate driver distraction, workload, driving safety, and performance, as well as provide their feedback about the driving simulator. The subjects’ feedback was obtained by filling a survey after conducting several driving tasks. The main question of that survey was asking the subjects to compare driving on the driving simulator with real driving. Furthermore, other aspects of the driving simulator were evaluated by the subjects in the survey. The survey revealed that the recruited subjects gave an average score of 7.5 out of 10 to the driving simulator when compared to real driving, where the scores ranged between 6 and 8.5. This study is a preliminary effort that opens the door for more improvements to the driving simulator in terms of hardware and software development, which will contribute significantly to driving ability testing.

Keywords: driver distraction, driving performance, driving safety, driving simulator, driving workload, navigation system

Procedia PDF Downloads 175
982 The Effects of Sleep Deprivation on Vigilance, Fatigue, and Performance during Simulated Train Driving

Authors: Clara Theresia, Hardianto Iridiastadi

Abstract:

Drowsiness is one of the main factors that contribute to the occurrence of accidents, particularly in the transportation sector. While the effects of sleep deprivation on cognitive functions have been reported, the exact relationships remain a critical issue. This study aimed at quantifying the effects of extreme sleep deprivation on vigilance, fatigue, and performance during simulated train driving. A total of 12 participants were asked to drive a train simulator continuously for 4 hours, either in a sleep deprived condition (2-hr of sleep) or normal (8-hr of sleep) condition. Dependent variables obtained during the task included Psychomotor Vigilance Task (PVT) parameters, degree of fatigue (assessed via Visual Analogue Scale/VAS) and sleepiness (reported using Karolinska Sleepiness Scale/KSS), and driving performance (the number of speed limit violations). Findings from this study demonstrated substantial decrements in vigilance in the sleep-deprived condition. This condition also resulted in 75% increase in speed violation and a two-fold increase in the degree of fatigue and sleepiness. Extreme sleep deprivation was clearly associated with substantially poorer response. The exact effects, however, were dependent upon the types of responses.

Keywords: cognitive function, psychomotor vigilance task, sleep deprivation, train simulator

Procedia PDF Downloads 186
981 Motorist Driving Strategy-Related Factors Affecting Vehicle Fuel Efficiency

Authors: Aydin Azizi, Abdurrahman Tanira

Abstract:

With the onset of climate change and limited fuel resources, improving fuel efficiency has become an important part of the motor industry. To maximize fuel efficiency, development of technologies must come hand-in-hand with awareness of efficient driving strategies. This study aims to explore the various driving habits that can impact fuel efficiency by reviewing available literature. Such habits include sudden and unnecessary acceleration or deceleration, improper hardware maintenance, driving above or below optimum speed and idling. By studying such habits and ultimately applying it to driving techniques, in combination with improved mechanics of the car, will optimize the use of fuel.

Keywords: fuel efficiency, driving techniques, optimum speed, optimizing fuel consumption

Procedia PDF Downloads 458
980 Expert-Driving-Criteria Based on Fuzzy Logic Approach for Intelligent Driving Diagnosis

Authors: Andrés C. Cuervo Pinilla, Christian G. Quintero M., Chinthaka Premachandra

Abstract:

This paper considers people’s driving skills diagnosis under real driving conditions. In that sense, this research presents an approach that uses GPS signals which have a direct correlation with driving maneuvers. Besides, it is presented a novel expert-driving-criteria approximation using fuzzy logic which seeks to analyze GPS signals in order to issue an intelligent driving diagnosis. Based on above, this works presents in the first section the intelligent driving diagnosis system approach in terms of its own characteristics properties, explaining in detail significant considerations about how an expert-driving-criteria approximation must be developed. In the next section, the implementation of our developed system based on the proposed fuzzy logic approach is explained. Here, a proposed set of rules which corresponds to a quantitative abstraction of some traffics laws and driving secure techniques seeking to approach an expert-driving- criteria approximation is presented. Experimental testing has been performed in real driving conditions. The testing results show that the intelligent driving diagnosis system qualifies driver’s performance quantitatively with a high degree of reliability.

Keywords: driver support systems, intelligent transportation systems, fuzzy logic, real time data processing

Procedia PDF Downloads 516
979 A Multi-Agent Urban Traffic Simulator for Generating Autonomous Driving Training Data

Authors: Florin Leon

Abstract:

This paper describes a simulator of traffic scenarios tailored to facilitate autonomous driving model training for urban environments. With the rising prominence of self-driving vehicles, the need for diverse datasets is very important. The proposed simulator provides a flexible framework that allows the generation of custom scenarios needed for the validation and enhancement of trajectory prediction algorithms. Its controlled yet dynamic environment addresses the challenges associated with real-world data acquisition and ensures adaptability to diverse driving scenarios. By providing an adaptable solution for scenario creation and algorithm testing, this tool proves to be a valuable resource for advancing autonomous driving technology that aims to ensure safe and efficient self-driving vehicles.

Keywords: autonomous driving, car simulator, machine learning, model training, urban simulation environment

Procedia PDF Downloads 59
978 Head-Mounted Displays for HCI Validations While Driving

Authors: D. Reich, R. Stark

Abstract:

To provide reliable and valid findings when evaluating innovative in-car devices in the automotive context highly realistic driving environments are recommended. Nowadays, in-car devices are mostly evaluated due to driving simulator studies followed by real car driving experiments. Driving simulators are characterized by high internal validity, but weak regarding ecological validity. Real car driving experiments are ecologically valid, but difficult to standardize, more time-robbing and costly. One economizing suggestion is to implement more immersive driving environments when applying driving simulator studies. This paper presents research comparing non-immersive standard PC conditions with mobile and highly immersive Oculus Rift conditions while performing the Lane Change Task (LCT). Subjective data with twenty participants show advantages regarding presence and immersion experience when performing the LCT with the Oculus Rift, but affect adversely cognitive workload and simulator sickness, compared to non-immersive PC condition.

Keywords: immersion, oculus rift, presence, situation awareness

Procedia PDF Downloads 187
977 Prevention of Road Accidents by Computerized Drowsiness Detection System

Authors: Ujjal Chattaraj, P. C. Dasbebartta, S. Bhuyan

Abstract:

This paper aims to propose a method to detect the action of the driver’s eyes, using the concept of face detection. There are three major key contributing methods which can rapidly process the framework of the facial image and hence produce results which further can program the reactions of the vehicles as pre-programmed for the traffic safety. This paper compares and analyses the methods on the basis of their reaction time and their ability to deal with fluctuating images of the driver. The program used in this study is simple and efficient, built using the AdaBoost learning algorithm. Through this program, the system would be able to discard background regions and focus on the face-like regions. The results are analyzed on a common computer which makes it feasible for the end users. The application domain of this experiment is quite wide, such as detection of drowsiness or influence of alcohols in drivers or detection for the case of identification.

Keywords: AdaBoost learning algorithm, face detection, framework, traffic safety

Procedia PDF Downloads 157
976 Distracted Driving among Young Drivers in Qatar

Authors: Khaled Shaaban

Abstract:

Distracted driving, which includes anything that distracts a driver from the main task of driving, is one of the main causes of traffic accidents in modern societies. The objective of this research was to understand the type of activities that young drivers perform while driving in Qatar and to identify which activities cause the most distraction to the driver based on their experience. The data was collected through administered questionnaires in the city of Doha, Qatar. According to the participants, the majority reported that they use their cell phone all the time or occasionally while driving. Other significantly cited activities while driving included listening to music or radio, talking with passengers, and eating, drinking or smoking. When asked about the activities that distract the driver, using cell phone was listed as the most distracting activity followed by mental activities and adjusting GPS and audio device vehicle.

Keywords: driver distraction, young drivers, cell phone use, Qatar

Procedia PDF Downloads 490
975 The Combined Methodology To Detect Onboard Driver Fatigue

Authors: K. Senthil Nathan, P. Rajasekaran

Abstract:

Fatigue is a feeling of extreme physical or mental tiredness. Almost everyone becomes fatigued at some time, but driver’s fatigue is a serious problem that leads to thousands of automobile crashes each year. Fatigue process is often a change from the alertness and vigor state to the tiredness and weakness state. It is not only accompanied by drowsiness but also has a negative impact on mood. There have been studies to detect and quantify fatigue from the measurement of physiology variables such as electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG). This project involves a multimodal sensing of driver’s drowsiness. The first method is to count the eye blinking rate. In the second level, we authenticate the results of eye blink module with a grip sensor. The Flexiforce sensor is placed over the steering wheel. In the third level, the activities are sensed, the time elapsed from the driver’s last activity is counted here. The activities in the sense: Changing gear, applying brake, pressing sound horns, and turning the steering wheel. Absence of these activities is also an indicator of fatigue.

Keywords: eye blink sensor, Flexiforce sensor, EEG, EOG, EMG

Procedia PDF Downloads 482
974 Gender Differences in the Prediction of Smartphone Use While Driving: Personal and Social Factors

Authors: Erez Kita, Gil Luria

Abstract:

This study examines gender as a boundary condition for the relationship between the psychological variable of mindfulness and the social variable of income with regards to the use of smartphones by young drivers. The use of smartphones while driving increases the likelihood of a car accident, endangering young drivers and other road users. The study sample included 186 young drivers who were legally permitted to drive without supervision. The subjects were first asked to complete questionnaires on mindfulness and income. Next, their smartphone use while driving was monitored over a one-month period. This study is unique as it used an objective smartphone monitoring application (rather than self-reporting) to count the number of times the young participants actually touched their smartphones while driving. The findings show that gender moderates the effects of social and personal factors (i.e., income and mindfulness) on the use of smartphones while driving. The pattern of moderation was similar for both social and personal factors. For men, mindfulness and income are negatively associated with the use of smartphones while driving. These factors are not related to the use of smartphones by women drivers. Mindfulness and income can be used to identify male populations that are at risk of using smartphones while driving. Interventions that improve mindfulness can be used to reduce the use of smartphones by male drivers.

Keywords: mindfulness, using smartphones while driving, income, gender, young drivers

Procedia PDF Downloads 170
973 Exergy Losses Relation with Driving Forces in Heat Transfer Process

Authors: S. Ali Ashrafizadeh, M. Amidpour, N. Hedayat

Abstract:

Driving forces along with transfer coefficient affect on heat transfer rate, on the other hand, with regard to the relation of these forces with irriversibilities they are effective on exergy losses. Therefore, the driving forces can be used as a relation between heat transfer rate, transfer coefficients and exergy losses. In this paper, first, the relation of the exergetic efficiency and resistant forces is obtained, next the relation between exergy efficiency, relative driving force, heat transfer rate and heat resistances is considered. In all cases, results are argued graphically. Finally, a case study inspected by obtained results.

Keywords: heat transfer, exergy losses, exergetic efficiency, driving forces

Procedia PDF Downloads 602
972 Yawning Computing Using Bayesian Networks

Authors: Serge Tshibangu, Turgay Celik, Zenzo Ncube

Abstract:

Road crashes kill nearly over a million people every year, and leave millions more injured or permanently disabled. Various annual reports reveal that the percentage of fatal crashes due to fatigue/driver falling asleep comes directly after the percentage of fatal crashes due to intoxicated drivers. This percentage is higher than the combined percentage of fatal crashes due to illegal/Un-Safe U-turn and illegal/Un-Safe reversing. Although a relatively small percentage of police reports on road accidents highlights drowsiness and fatigue, the importance of these factors is greater than we might think, hidden by the undercounting of their events. Some scenarios show that these factors are significant in accidents with killed and injured people. Thus the need for an automatic drivers fatigue detection system in order to considerably reduce the number of accidents owing to fatigue.This research approaches the drivers fatigue detection problem in an innovative way by combining cues collected from both temporal analysis of drivers’ faces and environment. Monotony in driving environment is inter-related with visual symptoms of fatigue on drivers’ faces to achieve fatigue detection. Optical and infrared (IR) sensors are used to analyse the monotony in driving environment and to detect the visual symptoms of fatigue on human face. Internal cues from drivers faces and external cues from environment are combined together using machine learning algorithms to automatically detect fatigue.

Keywords: intelligent transportation systems, bayesian networks, yawning computing, machine learning algorithms

Procedia PDF Downloads 455
971 Eco-Drive Predictive Analytics

Authors: Sharif Muddsair, Eisels Martin, Giesbrecht Eugenie

Abstract:

With development of society increase the demand for the movement of people also increases gradually. The various modes of the transport in different extent which expat impacts, which depends on mainly technical-operating conditions. The up-to-date telematics systems provide the transport industry a revolutionary. Appropriate use of these systems can help to substantially improve the efficiency. Vehicle monitoring and fleet tracking are among services used for improving efficiency and effectiveness of utility vehicle. There are many telematics systems which may contribute to eco-driving. Generally, they can be grouped according to their role in driving cycle. • Before driving - eco-route selection, • While driving – Advanced driver assistance, • After driving – remote analysis. Our point of interest is regulated in third point [after driving – remote analysis]. TS [Telematics-system] make it possible to record driving patterns in real time and analysis the data later on, So that driver- classification-specific hints [fast driver, slow driver, aggressive driver…)] are given to imitate eco-friendly driving style. Together with growing number of vehicle and development of information technology, telematics become an ‘active’ research subject in IT and the car industry. Telematics has gone a long way from providing navigation solution/assisting the driver to become an integral part of the vehicle. Today’s telematics ensure safety, comfort and become convenience of the driver.

Keywords: internet of things, iot, connected vehicle, cv, ts, telematics services, ml, machine learning

Procedia PDF Downloads 303
970 The Effects of Using Telephone and Social Media Applications While Driving in Kuwait

Authors: Bashaiar Alsanaa

Abstract:

Social media have totally converged with social life all around the globe. Using social media applications and mobile phones have become somewhat of an addiction to most people. Driving while using mobile applications falls under such addiction when usage is not of urgency. This study aims to investigate the impact of using such applications while driving in the small rich state of Kuwait, where most people juggle more than one phone for different purposes. Positive and negative effects will be explored in detail as well as causes for these effects and possible reasons. A full range of recommendations will be presented so as to give other countries a specific case study upon which to build solutions and remedies to this emerging and dangerous social phenomenon.

Keywords: social media, driving, mobile applications, communication

Procedia PDF Downloads 359
969 Optimal Driving Strategies for a Hybrid Street Type Motorcycle: Modelling and Control

Authors: Jhon Vargas, Gilberto Osorio-Gomez, Tatiana Manrique

Abstract:

This work presents an optimal driving strategy proposal for a 125 c.c. street-type hybrid electric motorcycle with a parallel configuration. The results presented in this article are complementary regarding the control proposal of a hybrid motorcycle. In order to carry out such developments, a representative dynamic model of the motorcycle is used, in which also are described different optimization functionalities for predetermined driving modes. The purpose is to implement an off-line optimal driving strategy which distributes energy to both engines by minimizing an objective torque requirement function. An optimal dynamic contribution is found from the optimization routine, and the optimal percentage contribution for vehicle cruise speed is implemented in the proposed online PID controller.

Keywords: dynamic model, driving strategies, parallel hybrid motorcycle, PID controller, optimization

Procedia PDF Downloads 187
968 Social Media Effects on Driving: An Exploratory Study Applied to Drivers in Kuwait

Authors: Bashaiar Alsanaa

Abstract:

Social media have totally converged with social life all around the globe. Using social media applications and mobile phones have become somewhat of an addiction to most people. Driving while using mobile applications falls under such addiction when usage is not of urgency. This study aims to investigate the impact of using such applications while driving in the small, rich state of Kuwait, where most people juggle more than one phone for different purposes. Positive and negative effects will be explored in detail as well as causes for these effects and possible reasons. A full range of recommendations will be presented so as to give other countries a specific case study upon which to build solutions and remedies to this emerging and dangerous social phenomenon.

Keywords: communications, driving, mobile, social media

Procedia PDF Downloads 332
967 Research on Morning Commuting Behavior under Autonomous Vehicle Environment Based on Activity Method

Authors: Qing Dai, Zhengkui Lin, Jiajia Zhang, Yi Qu

Abstract:

Based on activity method, this paper focuses on morning commuting behavior when commuters travel with autonomous vehicles (AVs). Firstly, a net utility function of commuters is constructed by the activity utility of commuters at home, in car and at workplace, and the disutility of travel time cost and that of schedule delay cost. Then, this net utility function is applied to build an equilibrium model. Finally, under the assumption of constant marginal activity utility, the properties of equilibrium are analyzed. The results show that, in autonomous driving, the starting and ending time of morning peak and the number of commuters who arrive early and late at workplace are the same as those in manual driving. In automatic driving, however, the departure rate of arriving early at workplace is higher than that of manual driving, while the departure rate of arriving late is just the opposite. In addition, compared with manual driving, the departure time of arriving at workplace on time is earlier and the number of people queuing at the bottleneck is larger in automatic driving. However, the net utility of commuters and the total net utility of system in automatic driving are greater than those in manual driving.

Keywords: autonomous cars, bottleneck model, activity utility, user equilibrium

Procedia PDF Downloads 108
966 Safety Tolerance Zone for Driver-Vehicle-Environment Interactions under Challenging Conditions

Authors: Matjaž Šraml, Marko Renčelj, Tomaž Tollazzi, Chiara Gruden

Abstract:

Road safety is a worldwide issue with numerous and heterogeneous factors influencing it. On the side, driver state – comprising distraction/inattention, fatigue, drowsiness, extreme emotions, and socio-cultural factors highly affect road safety. On the other side, the vehicle state has an important role in mitigating (or not) the road risk. Finally, the road environment is still one of the main determinants of road safety, defining driving task complexity. At the same time, thanks to technological development, a lot of detailed data is easily available, creating opportunities for the detection of driver state, vehicle characteristics and road conditions and, consequently, for the design of ad hoc interventions aimed at improving driver performance, increase awareness and mitigate road risks. This is the challenge faced by the i-DREAMS project. i-DREAMS, which stands for a smart Driver and Road Environment Assessment and Monitoring System, is a 3-year project funded by the European Union’s Horizon 2020 research and innovation program. It aims to set up a platform to define, develop, test and validate a ‘Safety Tolerance Zone’ to prevent drivers from getting too close to the boundaries of unsafe operation by mitigating risks in real-time and after the trip. After the definition and development of the Safety Tolerance Zone concept and the concretization of the same in an Advanced driver-assistance system (ADAS) platform, the system was tested firstly for 2 months in a driving simulator environment in 5 different countries. After that, naturalistic driving studies started for a 10-month period (comprising a 1-month pilot study, 3-month baseline study and 6 months study implementing interventions). Currently, the project team has approved a common evaluation approach, and it is developing the assessment of the usage and outcomes of the i-DREAMS system, which is turning positive insights. The i-DREAMS consortium consists of 13 partners, 7 engineering universities and research groups, 4 industry partners and 2 partners (European Transport Safety Council - ETSC - and POLIS cities and regions for transport innovation) closely linked to transport safety stakeholders, covering 8 different countries altogether.

Keywords: advanced driver assistant systems, driving simulator, safety tolerance zone, traffic safety

Procedia PDF Downloads 66
965 Optimal Trajectories for Highly Automated Driving

Authors: Christian Rathgeber, Franz Winkler, Xiaoyu Kang, Steffen Müller

Abstract:

In this contribution two approaches for calculating optimal trajectories for highly automated vehicles are presented and compared. The first one is based on a non-linear vehicle model, used for evaluation. The second one is based on a simplified model and can be implemented on a current ECU. In usual driving situations both approaches show very similar results.

Keywords: trajectory planning, direct method, indirect method, highly automated driving

Procedia PDF Downloads 530