Search results for: clinical manifestations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3639

Search results for: clinical manifestations

9 Preparedness and Control of Mosquito-Borne Diseases: Experiences from Northwestern Italy

Authors: Federica Verna, Alessandra Pautasso, Maria Caramelli, Cristiana Maurella, Walter Mignone, Cristina Casalone

Abstract:

Mosquito-Borne Diseases (MBDs) are dangerously increasing in prevalence, geographical distribution and severity, representing an emerging threat for both humans and animals. Interaction between multiple disciplines is needed for an effective early warning, surveillance and control of MBDs, according to the One Health concept. This work reports the integrated surveillance system enforced by IZSPLV in Piedmont, Liguria and Valle d’Aosta regions (Northwestern Italy) in order to control MDBs spread. Veterinary services and local human health authority are involved in an information network, to connect the surveillance of human clinical cases with entomological surveillance and veterinary monitoring in order to implement control measures in case of outbreak. A systematic entomological surveillance is carried out during the vector season using mosquitoes traps located in sites selected according to risk factors. Collected mosquitoes are counted, identified to species level by morphological standard classification keys and pooled by collection site, date and species with a maximum of 100 individuals. Pools are analyzed, after RNA extraction, by Real Time RT-PCR distinctive for West Nile Virus (WNV) Lineage 1 and Lineage 2, Real Time RT-PCR USUTU virus (USUV) and a traditional flavivirus End-point RT-PCR. Positive pools are sequenced and the related sequences employed to perform a basic local alignment search tool (BLAST) in the GenBank library. Positive samples are sent to the National Reference Centre for Animal Exotic Diseases (CESME, Teramo) for confirmation. With particular reference to WNV, after the confirmation, as provided by national legislation, control measures involving both local veterinary and human health services are activated: equine sera are randomly sampled within a 4 km radius from the positive collection sites and tested with ELISA kit and WNV NAT screening of blood donors is introduced. This surveillance network allowed to detect since 2011 USUV circulation in this area of Italy. WNV was detected in Piedmont and Liguria for the first time in 2014 in mosquitoes. During the 2015 vector season, we observed the expansion of its activity in Piedmont. The virus was detected in almost all Provinces both in mosquitoes (6 pools) and animals (19 equine sera, 4 birds). No blood bag tested resulted infected. The first neuroinvasive human case occurred too. Competent authorities should be aware of a potentially increased risk of MBDs activity during the 2016 vector season. This work shows that this surveillance network allowed to early detect the presence of MBDs in humans and animals, and provided useful information to public authorities, in order to apply control measures. Finally, an additional value of our diagnostic protocol is the ability to detect all viruses belonging to the Flaviviridae family, considering the emergence caused by other Flaviviruses in humans such as the recent Zika virus infection in South America. Italy has climatic and environmental features conducive to Zika virus transmission, the competent vector and many travellers from Brazil reported every year.

Keywords: integrated surveillance, mosquito borne disease, West Nile virus, Zika virus

Procedia PDF Downloads 330
8 Prospects of Acellular Organ Scaffolds for Drug Discovery

Authors: Inna Kornienko, Svetlana Guryeva, Natalia Danilova, Elena Petersen

Abstract:

Drug toxicity often goes undetected until clinical trials, the most expensive and dangerous phase of drug development. Both human cell culture and animal studies have limitations that cannot be overcome by improvements in drug testing protocols. Tissue engineering is an emerging alternative approach to creating models of human malignant tumors for experimental oncology, personalized medicine, and drug discovery studies. This new generation of bioengineered tumors provides an opportunity to control and explore the role of every component of the model system including cell populations, supportive scaffolds, and signaling molecules. An area that could greatly benefit from these models is cancer research. Recent advances in tissue engineering demonstrated that decellularized tissue is an excellent scaffold for tissue engineering. Decellularization of donor organs such as heart, liver, and lung can provide an acellular, naturally occurring three-dimensional biologic scaffold material that can then be seeded with selected cell populations. Preliminary studies in animal models have provided encouraging results for the proof of concept. Decellularized Organs preserve organ microenvironment, which is critical for cancer metastasis. Utilizing 3D tumor models results greater proximity of cell culture morphological characteristics in a model to its in vivo counterpart, allows more accurate simulation of the processes within a functioning tumor and its pathogenesis. 3D models allow study of migration processes and cell proliferation with higher reliability as well. Moreover, cancer cells in a 3D model bear closer resemblance to living conditions in terms of gene expression, cell surface receptor expression, and signaling. 2D cell monolayers do not provide the geometrical and mechanical cues of tissues in vivo and are, therefore, not suitable to accurately predict the responses of living organisms. 3D models can provide several levels of complexity from simple monocultures of cancer cell lines in liquid environment comprised of oxygen and nutrient gradients and cell-cell interaction to more advanced models, which include co-culturing with other cell types, such as endothelial and immune cells. Following this reasoning, spheroids cultivated from one or multiple patient-derived cell lines can be utilized to seed the matrix rather than monolayer cells. This approach furthers the progress towards personalized medicine. As an initial step to create a new ex vivo tissue engineered model of a cancer tumor, optimized protocols have been designed to obtain organ-specific acellular matrices and evaluate their potential as tissue engineered scaffolds for cultures of normal and tumor cells. Decellularized biomatrix was prepared from animals’ kidneys, urethra, lungs, heart, and liver by two decellularization methods: perfusion in a bioreactor system and immersion-agitation on an orbital shaker with the use of various detergents (SDS, Triton X-100) in different concentrations and freezing. Acellular scaffolds and tissue engineered constructs have been characterized and compared using morphological methods. Models using decellularized matrix have certain advantages, such as maintaining native extracellular matrix properties and biomimetic microenvironment for cancer cells; compatibility with multiple cell types for cell culture and drug screening; utilization to culture patient-derived cells in vitro to evaluate different anticancer therapeutics for developing personalized medicines.

Keywords: 3D models, decellularization, drug discovery, drug toxicity, scaffolds, spheroids, tissue engineering

Procedia PDF Downloads 270
7 Unidentified Remains with Extensive Bone Disease without a Clear Diagnosis

Authors: Patricia Shirley Almeida Prado, Selma Paixão Argollo, Maria De Fátima Teixeira Guimarães, Leticia Matos Sobrinho

Abstract:

Skeletal differential diagnosis is essential in forensic anthropology in order to differentiate skeletal trauma from normal osseous variation and pathological processes. Thus, part of forensic anthropological field is differentiate skeletal criminal injuries from the normal skeletal variation (bone fusion or nonunion, transitional vertebrae and other non-metric traits), non-traumatic skeletal pathology (myositis ossificans, arthritis, bone metastasis, osteomyelitis) from traumatic skeletal pathology (myositis ossificans traumatic) avoiding misdiagnosis. This case shows the importance of effective pathological diagnosis in order to accelerate the identification process of skeletonized human remains. THE CASE: An unidentified skeletal remains at the medico legal institute Nina Rodrigues-Salvador, of a male young adult (29 to 40 years estimated) showing a massive heterotopic ossification on its right tibia at upper epiphysis and adjacent articular femur surface; an extensive ossification on the right clavicle (at the sternal extremity) also presenting an heterotopic ossification at right scapulae (upper third of scapulae lateral margin and infraglenoid tubercule) and at the head of right humerus at the shoulder joint area. Curiously, this case also shows an unusual porosity in certain vertebrae´s body and in some tarsal and carpal bones. Likewise, his left fifth metacarpal bones (right and left) showed a healed fracture which led both bones distorted. Based on identification, of pathological conditions in human skeletal remains literature and protocols these alterations can be misdiagnosed and this skeleton may present more than one pathological process. The anthropological forensic lab at Medico-legal Institute Nina Rodrigues in Salvador (Brazil) adopts international protocols to ancestry, sex, age and stature estimations, also implemented well-established conventions to identify pathological disease and skeletal alterations. The most compatible diagnosis for this case is hematogenous osteomyelitis due to following findings: 1: the healed fracture pattern at the clavicle showing a cloaca which is a pathognomonic for osteomyelitis; 2: the metacarpals healed fracture does not present cloaca although they developed a periosteal formation. 3: the superior articular surface of the right tibia shows an extensive inflammatory healing process that extends to adjacent femur articular surface showing some cloaca at tibia bone disease. 4: the uncommon porosities may result from hematogenous infectious process. The fractures probably have occurred in a different moments based on the healing process; the tibia injury is more extensive and has not been reorganized, while metacarpals and clavicle fracture is properly healed. We suggest that the clavicle and tibia´s fractures were infected by an existing infectious disease (syphilis, tuberculosis, brucellosis) or an existing syndrome (Gorham’s disease), which led to the development of osteomyelitis. This hypothesis is supported by the fact that different bones are affected in diverse levels. Like the metacarpals that do not show the cloaca, but then a periosteal new bone formation; then the unusual porosities do not show a classical osteoarthritic processes findings as the marginal osteophyte, pitting and new bone formation, they just show an erosive process without bone formation or osteophyte. To confirm and prove our hypothesis we are working on different clinical approaches like DNA, histopathology and other image exams to find the correct diagnostic.

Keywords: bone disease, forensic anthropology, hematogenous osteomyelitis, human identification, human remains

Procedia PDF Downloads 299
6 Exploratory Characterization of Antibacterial Efficacy of Synthesized Nanoparticles on Staphylococcus Isolates from Hospital Specimens in Saudi Arabia

Authors: Reham K. Sebaih, Afaf I. Shehata , Awatif A. Hindi, Tarek Gheith, Amal A. Hazzani Anas Al-Orjan

Abstract:

Staphylococci spp are ubiquitous gram-positive bacteria is often associated with infections, especially nosocomial infections, and antibiotic resistanceStudy pathogenic bacteria and its use as a tool in the technology of Nano biology and molecular genetics research of the latest research trends of modern characterization and definition of different multiresistant of bacteria including Staphylococci. The Staphylococci are widespread all over the world and particularly in Saudi Arabia The present work study was conducted to evaluate the effect of five different types of nanoparticles (biosynthesized zinc oxide, Spherical and rod of each silver and gold nanoparticles) and their antibacterial impact on the Staphylococcus species. Ninety-six isolates of Staphylococcus species. Staphylococcus aureus, Staphylococcus epidermidis, MRSA were collected from different sources during the period between March 2011G to June 2011G. All isolates were isolated from inpatients and outpatients departments at Royal Commission Hospital in Yanbu Industrial, Saudi Arabia. High percentage isolation from males(55%) than females (45%). Staphylococcus epidermidis from males was (47%), (28%), and(25%). For Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA. Isolates from females were Staphylococcus aureus with higher percent of (47%), (30%), and (23%) for MRSA, Staphylococcus epidermidis. Staphylococcus aureus from wound swab were the highest percent (51.42%) followed by vaginal swab (25.71%). Staphylococcus epidermidis were founded with higher percentage in blood (37.14%) and wound swab (34.21%) respectively related to other. The highest percentage of methicillin-resistant Staphylococcus aureus (MRSA)(80.77%) were isolated from wound swab, while those from nostrils were (19.23%). Staphylococcus species were isolates in highest percentage from hospital Emergency department with Staphylococcus aureus (59.37%), Methicillin-resistant Staphylococcus aureus (MRSA) (28.13%)and Staphylococcus epidermidis (12.5%) respectively. Evaluate the antibacterial property of Zinc oxide, Silver, and Gold nanoparticles as an alternative to conventional antibacterial agents Staphylococci isolates from hospital sources we screened them. Gold and Silver rods Nanoparticles to be sensitive to all isolates of Staphylococcus species. Zinc oxide Nanoparticles gave sensitivity impact range(52%) and (48%). The Gold and Silver spherical nanoparticles did not showed any effect on Staphylococci species. Zinc Oxide Nanoparticles gave bactericidal impact (25%) and bacteriostatic impact (75%) for of Staphylococci species. Detecting the association of nanoparticles with Staphylococci isolates imaging by scanning electron microscope (SEM) of some bacteriostatic isolates for Zinc Oxide nanoparticles on Staphylococcus aureus, Staphylococcus epidermidis and Methicillin resistant Staphylococcus aureus(MRSA), showed some Overlapping Bacterial cells with lower their number and appearing some appendages with deformities in external shape. Molecular analysis was applied by Multiplex polymerase chain reaction (PCR) used for the identification of genes within Staphylococcal pathogens. A multiplex polymerase chain reaction (PCR) method has been developed using six primer pairs to detect different genes using 50bp and 100bp DNA ladder marker. The range of Molecular gene typing ranging between 93 bp to 326 bp for Staphylococcus aureus and Methicillin resistant Staphylococcus aureus by TSST-1,mecA,femA and eta, while the bands border were from 546 bp to 682 bp for Staphylococcus epidermidis using icaAB and atlE. Sixteen isolation of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for the femA gene at 132bp,this allowed the using of this gene as an internal positive control, fifteen isolates of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for mecA gene at163bp.This gene was responsible for antibiotic resistant Methicillin, Two isolates of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for the TSST-1 gene at326bp which is responsible for toxic shock syndrome in some Staphylococcus species, None were positive for eta gene at 102bpto that was responsible for Exfoliative toxins. Six isolates of Staphylococcus epidermidis were positive for atlE gene at 682 bp which is responsible for the initial adherence, three isolates of Staphylococcus epidermidis were positive for icaAB gene at 546bp that are responsible for mediates the formation of the biofilm. In conclusion, this study demonstrates the ability of the detection of the genes to discriminate between infecting Staphylococcus strains and considered biological tests, they may potentiate the clinical criteria used for the diagnosis of septicemia or catheter-related infections.

Keywords: multiplex polymerase chain reaction, toxic shock syndrome, Staphylococcus aureus, nosocomial infections

Procedia PDF Downloads 311
5 Synthesis of Chitosan/Silver Nanocomposites: Antibacterial Properties and Tissue Regeneration for Thermal Burn Injury

Authors: B.L. España-Sánchez, E. Luna-Hernández, R.A. Mauricio-Sánchez, M.E. Cruz-Soto, F. Padilla-Vaca, R. Muñoz, L. Granados-López, L.R. Ovalle-Flores, J.L. Menchaca-Arredondo, G. Luna-Bárcenas

Abstract:

Treatment of burn injured has been considered an important clinical problem due to the fluid control and the presence of microorganisms during the healing process. Conventional treatment includes antiseptic techniques, topical medication and surgical removal of damaged skin, to avoid bacterial growth. In order to accelerate this process, different alternatives for tissue regeneration have been explored, including artificial skin, polymers, hydrogels and hybrid materials. Some requirements consider a nonreactive organic polymer with high biocompatibility and skin adherence, avoiding bacterial infections. Chitin-derivative biopolymer such as chitosan (CS) has been used in skin regeneration following third-degree burns. The biological interest of CS is associated with the improvement of tissue cell stimulation, biocompatibility and antibacterial properties. In particular, antimicrobial properties of CS can be significantly increased when is blended with nanostructured materials. Silver-based nanocomposites have gained attention in medicine due to their high antibacterial properties against pathogens, related to their high surface area/volume ratio at nanomolar concentrations. Silver nanocomposites can be blended or synthesized with chitin-derivative biopolymers in order to obtain a biodegradable/antimicrobial hybrid with improved physic-mechanical properties. In this study, nanocomposites based on chitosan/silver nanoparticles (CS/nAg) were synthesized by the in situ chemical reduction method, improving their antibacterial properties against pathogenic bacteria and enhancing the healing process in thermal burn injuries produced in an animal model. CS/nAg was prepared in solution by the chemical reduction method, using AgNO₃ as precursor. CS was dissolved in acetic acid and mixed with different molar concentrations of AgNO₃: 0.01, 0.025, 0.05 and 0.1 M. Solutions were stirred at 95°C during 20 hours, in order to promote the nAg formation. CS/nAg solutions were placed in Petri dishes and dried, to obtain films. Structural analyses confirm the synthesis of silver nanoparticles (nAg) by means of UV-Vis and TEM, with an average size of 7.5 nm and spherical morphology. FTIR analyses showed the complex formation by the interaction of hydroxyl and amine groups with metallic nanoparticles, and surface chemical analysis (XPS) shows low concentration of Ag⁰/Ag⁺ species. Topography surface analyses by means of AFM shown that hydrated CS form a mesh with an average diameter of 10 µm. Antibacterial activity against S. aureus and P. aeruginosa was improved in all evaluated conditions, such as nAg loading and interaction time. CS/nAg nanocomposites films did not show Ag⁰/Ag⁺ release in saline buffer and rat serum after exposition during 7 days. Healing process was significantly enhanced by the presence of CS/nAg nanocomposites, inducing the production of myofibloblasts, collagen remodelation, blood vessels neoformation and epidermis regeneration after 7 days of injury treatment, by means of histological and immunohistochemistry assays. The present work suggests that hydrated CS/nAg nanocomposites can be formed a mesh, improving the bacterial penetration and the contact with embedded nAg, producing complete growth inhibition after 1.5 hours. Furthermore, CS/nAg nanocomposites improve the cell tissue regeneration in thermal burn injuries induced in rats. Synthesis of antibacterial, non-toxic, and biocompatible nanocomposites can be an important issue in tissue engineering and health care applications.

Keywords: antibacterial, chitosan, healing process, nanocomposites, silver

Procedia PDF Downloads 258
4 A Low-Cost Disposable PDMS Microfluidic Cartridge with Reagent Storage Silicone Blisters for Isothermal DNA Amplification

Authors: L. Ereku, R. E. Mackay, A. Naveenathayalan, K. Ajayi, W. Balachandran

Abstract:

Over the past decade the increase of sexually transmitted infections (STIs) especially in the developing world due to high cost and lack of sufficient medical testing have given rise to the need for a rapid, low cost point of care medical diagnostic that is disposable and most significantly reproduces equivocal results achieved within centralised laboratories. This paper present the development of a disposable PDMS microfluidic cartridge incorporating blisters filled with reagents required for isothermal DNA amplification in clinical diagnostics and point-of-care testing. In view of circumventing the necessity for external complex microfluidic pumps, designing on-chip pressurised fluid reservoirs is embraced using finger actuation and blister storage. The fabrication of the blisters takes into consideration three proponents that include: material characteristics, fluid volume and structural design. Silicone rubber is the chosen material due to its good chemical stability, considerable tear resistance and moderate tension/compression strength. The case of fluid capacity and structural form go hand in hand as the reagent need for the experimental analysis determines the volume size of the blisters, whereas the structural form has to be designed to provide low compression stress when deformed for fluid expulsion. Furthermore, the top and bottom section of the blisters are embedded with miniature polar opposite magnets at a defined parallel distance. These magnets are needed to lock or restrain the blisters when fully compressed so as to prevent unneeded backflow as a result of elasticity. The integrated chip is bonded onto a large microscope glass slide (50mm x 75mm). Each part is manufactured using a 3D printed mould designed using Solidworks software. Die-casting is employed, using 3D printed moulds, to form the deformable blisters by forcing a proprietary liquid silicone rubber through the positive mould cavity. The set silicone rubber is removed from the cast and prefilled with liquid reagent and then sealed with a thin (0.3mm) burstable layer of recast silicone rubber. The main microfluidic cartridge is fabricated using classical soft lithographic techniques. The cartridge incorporates microchannel circuitry, mixing chamber, inlet port, outlet port, reaction chamber and waste chamber. Polydimethylsiloxane (PDMS, QSil 216) is mixed and degassed using a centrifuge (ratio 10:1) is then poured after the prefilled blisters are correctly positioned on the negative mould. Heat treatment of about 50C to 60C in the oven for about 3hours is needed to achieve curing. The latter chip production stage involves bonding the cured PDMS to the glass slide. A plasma coroner treater device BD20-AC (Electro-Technic Products Inc., US) is used to activate the PDMS and glass slide before they are both joined and adequately compressed together, then left in the oven over the night to ensure bonding. There are two blisters in total needed for experimentation; the first will be used as a wash buffer to remove any remaining cell debris and unbound DNA while the second will contain 100uL amplification reagents. This paper will present results of chemical cell lysis, extraction using a biopolymer paper membrane and isothermal amplification on a low-cost platform using the finger actuated blisters for reagent storage. The platform has been shown to detect 1x105 copies of Chlamydia trachomatis using Recombinase Polymerase Amplification (RPA).

Keywords: finger actuation, point of care, reagent storage, silicone blisters

Procedia PDF Downloads 341
3 Development of an Omaha System-Based Remote Intervention Program for Work-Related Musculoskeletal Disorders (WMSDs) Among Front-Line Nurses

Authors: Tianqiao Zhang, Ye Tian, Yanliang Yin, Yichao Tian, Suzhai Tian, Weige Sun, Shuhui Gong, Limei Tang, Ruoliang Tang

Abstract:

Introduction: Healthcare workers, especially the nurses all over the world, are highly vulnerable to work-related musculoskeletal disorders (WMSDs), experiencing high rates of neck, shoulder, and low back injuries, due to the unfavorable working conditions. To reduce WMSDs among nursing personnel, many workplace interventions have been developed and implemented. Unfortunately, the ongoing Covid-19 (SARS-CoV-2) pandemic has posed great challenges to the ergonomic practices and interventions in healthcare facilities, particularly the hospitals, since current Covid-19 mitigation measures, such as social distancing and working remotely, has substantially minimized in-person gatherings and trainings. On the other hand, hospitals throughout the world have been short-staffed, resulting in disturbance of shift scheduling and more importantly, the increased job demand among the available caregivers, particularly the doctors and nurses. With the latest development in communication technology, remote intervention measures have been developed as an alternative, without the necessity of in-person meetings. The Omaha System (OS) is a standardized classification system for nursing practices, including a problem classification system, an intervention system, and an outcome evaluation system. This paper describes the development of an OS-based ergonomic intervention program. Methods: First, a comprehensive literature search was performed among worldwide electronic databases, including PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), between journal inception to May 2020, resulting in a total of 1,418 scientific articles. After two independent screening processes, the final knowledge pool included eleven randomized controlled trial studies to develop the draft of the intervention program with Omaha intervention subsystem as the framework. After the determination of sample size needed for statistical power and the potential loss to follow-up, a total of 94 nurses from eight clinical departments agreed to provide written, informed consent to participate in the study, which were subsequently assigned into two random groups (i.e., intervention vs. control). A subgroup of twelve nurses were randomly selected to participate in a semi-structured interview, during which their general understanding and awareness of musculoskeletal disorders and potential interventions was assessed. Then, the first draft was modified to reflect the findings from these interviews. Meanwhile, the tentative program schedule was also assessed. Next, two rounds of consultation were conducted among experts in nursing management, occupational health, psychology, and rehabilitation, to further adjust and finalize the intervention program. The control group had access to all the information and exercise modules at baseline, while an interdisciplinary research team was formed and supervised the implementation of the on-line intervention program through multiple social media groups. Outcome measures of this comparative study included biomechanical load assessed by the Quick Exposure Check and stresses due to awkward body postures. Results and Discussion: Modification to the draft included (1) supplementing traditional Chinese medicine practices, (2) adding the use of assistive patient handling equipment, and (3) revising the on-line training method. Information module should be once a week, lasting about 20 to 30 minutes, for a total of 6 weeks, while the exercise module should be 5 times a week, each lasting about 15 to 20 minutes, for a total of 6 weeks.

Keywords: ergonomic interventions, musculoskeletal disorders (MSDs), omaha system, nurses, Covid-19

Procedia PDF Downloads 131
2 Identification of the Antimicrobial Property of Double Metal Oxide/Bioactive Glass Nanocomposite Against Multi Drug Resistant Staphylococcus aureus Causing Implant Infections

Authors: M. H. Pazandeh, M. Doudi, S. Barahimi, L. Rahimzadeh Torabi

Abstract:

The use of antibiotics is essential in reducing the occurrence of adverse effects and inhibiting the emergence of antibiotic resistance in microbial populations. The necessity for a novel methodology concerning local administration of antibiotics has arisen, with particular focus on dealing with localized infections prompted by bacterial colonization of medical devices or implant materials. Bioactive glasses (BG) are extensively employed in the field of regenerative medicine, encompassing a diverse range of materials utilized for drug delivery systems. In the present investigation, various drug carriers for imipenem and tetracycline, namely single systems BG/SnO2, BG/NiO with varying proportions of metal oxide, and nanocomposite BG/SnO2/NiO, were synthesized through the sol-gel technique. The antibacterial efficacy of the synthesized samples was assessed through the utilization of the disk diffusion method with the aim of neutralizing Staphylococcus aureus as the bacterial model. The current study involved the examination of the bioactivity of two samples, namely BG10SnO2/10NiO and BG20SnO2, which were chosen based on their heightened bacterial inactivation properties. This evaluation entailed the employment of two techniques: the measurement of the pH of simulated body fluid (SBF) solution and the analysis of the sample tablets through X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The sample tablets were submerged in SBF for varying durations of 7, 14, and 28 days. The bioactivity of the composite bioactive glass sample was assessed through characterization of alterations in its surface morphology, structure, and chemical composition. This evaluation was performed using scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction spectroscopy. Subsequently, the sample was immersed in simulated liquids to simulate its behavior in biological environments. The specific body fat percentage (SBF) was assessed over a 28-day period. The confirmation of the formation of a hydroxyapatite surface layer serves as a distinct indicator of bioactivity. The infusion of antibiotics into the composite bioactive glass specimen was done separately, and then the release kinetics of tetracycline and imipenem were tested in simulated body fluid (SBF). Antimicrobial effectiveness against various bacterial strains have been proven in numerous instances using both melt and sol-gel techniques to create multiple bioactive glass compositions. An elevated concentration of calcium ions within a solution has been observed to cause an increase in the pH level. In aqueous suspensions, bioactive glass particles manifest a significant antimicrobial impact. The composite bioactive glass specimen exhibits a gradual and uninterrupted release, which is highly desirable for a drug delivery system over a span of 72 hours. The reduction in absorption, which signals the loss of a portion of the antibiotic during the loading process from the initial phosphate-buffered saline solution, indicates the successful bonding of the two antibiotics to the surfaces of the bioactive glass samples. The sample denoted as BG/10SnO2/10NiO exhibits a higher loading of particles compared to the sample designated as BG/20SnO2 in the context of bioactive glass. The enriched sample demonstrates a heightened bactericidal impact on the bacteria under investigation while concurrently preserving its antibacterial characteristics. Tailored bioactive glass that incorporates hydroxyapatite, with a regulated and efficient release of drugs targeting bacterial infections, holds promise as a potential framework for bone implant scaffolds following rigorous clinical evaluation, thereby establishing potential future biomedical uses. During the modification process, the introduction of metal oxides into bioactive glass resulted in improved antibacterial characteristics, particularly in the composite bioactive glass sample that displayed the highest level of efficiency.

Keywords: antibacterial, bioactive glasses, implant infections, multi drug resistant

Procedia PDF Downloads 57
1 Reducing the Risk of Alcohol Relapse after Liver-Transplantation

Authors: Rebeca V. Tholen, Elaine Bundy

Abstract:

Background: Liver transplantation (LT) is considered the only curative treatment for end-stage liver disease Background: Liver transplantation (LT) is considered the only curative treatment for end-stage liver disease (ESLD). The effects of alcoholism can cause irreversible liver damage, cirrhosis and subsequent liver failure. Alcohol relapse after transplant occurs in 20-50% of patients and increases the risk for recurrent cirrhosis, organ rejection, and graft failure. Alcohol relapse after transplant has been identified as a problem among liver transplant recipients at a large urban academic transplant center in the United States. Transplantation will reverse the complications of ESLD, but it does not treat underlying alcoholism or reduce the risk of relapse after transplant. The purpose of this quality improvement project is to implement and evaluate the effectiveness of a High-Risk Alcoholism Relapse (HRAR) Scale to screen and identify patients at high-risk for alcohol relapse after receiving an LT. Methods: The HRAR Scale is a predictive tool designed to determine the severity of alcoholism and risk of relapse after transplant. The scale consists of three variables identified as having the highest predictive power for early relapse including, daily number of drinks, history of previous inpatient treatment for alcoholism, and the number of years of heavy drinking. All adult liver transplant recipients at a large urban transplant center were screened with the HRAR Scale prior to hospital discharge. A zero to two ordinal score is ranked for each variable, and the total score ranges from zero to six. High-risk scores are between three to six. Results: Descriptive statistics revealed 25 patients were newly transplanted and discharged from the hospital during an 8-week period. 40% of patients (n=10) were identified as being high-risk for relapse and 60% low-risk (n=15). The daily number of drinks were determined by alcohol content (1 drink = 15g of ethanol) and number of drinks per day. 60% of patients reported drinking 9-17 drinks per day, and 40% reported ≤ 9 drinks. 50% of high-risk patients reported drinking ≥ 25 years, 40% for 11-25 years, and 10% ≤ 11 years. For number of inpatient treatments for alcoholism, 50% received inpatient treatment one time, 20% ≥ 1, and 30% reported never receiving inpatient treatment. Findings reveal the importance and value of a validated screening tool as a more efficient method than other screening methods alone. Integration of a structured clinical tool will help guide the drinking history portion of the psychosocial assessment. Targeted interventions can be implemented for all high-risk patients. Conclusions: Our findings validate the effectiveness of utilizing the HRAR scale to screen and identify patients who are a high-risk for alcohol relapse post-LT. Recommendations to help maintain post-transplant sobriety include starting a transplant support group within the organization for all high-risk patients. (ESLD). The effects of alcoholism can cause irreversible liver damage, cirrhosis and subsequent liver failure. Alcohol relapse after transplant occurs in 20-50% of patients, and increases the risk for recurrent cirrhosis, organ rejection, and graft failure. Alcohol relapse after transplant has been identified as a problem among liver transplant recipients at a large urban academic transplant center in the United States. Transplantation will reverse the complications of ESLD, but it does not treat underlying alcoholism or reduce the risk of relapse after transplant. The purpose of this quality improvement project is to implement and evaluate the effectiveness of a High-Risk Alcoholism Relapse (HRAR) Scale to screen and identify patients at high-risk for alcohol relapse after receiving a LT. Methods: The HRAR Scale is a predictive tool designed to determine severity of alcoholism and risk of relapse after transplant. The scale consists of three variables identified as having the highest predictive power for early relapse including, daily number of drinks, history of previous inpatient treatment for alcoholism, and the number of years of heavy drinking. All adult liver transplant recipients at a large urban transplant center were screened with the HRAR Scale prior to hospital discharge. A zero to two ordinal score is ranked for each variable, and the total score ranges from zero to six. High-risk scores are between three to six. Results: Descriptive statistics revealed 25 patients were newly transplanted and discharged from the hospital during an 8-week period. 40% of patients (n=10) were identified as being high-risk for relapse and 60% low-risk (n=15). The daily number of drinks were determined by alcohol content (1 drink = 15g of ethanol) and number of drinks per day. 60% of patients reported drinking 9-17 drinks per day, and 40% reported ≤ 9 drinks. 50% of high-risk patients reported drinking ≥ 25 years, 40% for 11-25 years, and 10% ≤ 11 years. For number of inpatient treatments for alcoholism, 50% received inpatient treatment one time, 20% ≥ 1, and 30% reported never receiving inpatient treatment. Findings reveal the importance and value of a validated screening tool as a more efficient method than other screening methods alone. Integration of a structured clinical tool will help guide the drinking history portion of the psychosocial assessment. Targeted interventions can be implemented for all high-risk patients. Conclusions: Our findings validate the effectiveness of utilizing the HRAR scale to screen and identify patients who are a high-risk for alcohol relapse post-LT. Recommendations to help maintain post-transplant sobriety include starting a transplant support group within the organization for all high-risk patients.

Keywords: alcoholism, liver transplant, quality improvement, substance abuse

Procedia PDF Downloads 91