Search results for: ceramic hollow fiber membrane
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2766

Search results for: ceramic hollow fiber membrane

156 Condition Assessment and Diagnosis for Aging Drinking Water Pipeline According to Scientific and Reasonable Methods

Authors: Dohwan Kim, Dongchoon Ryou, Pyungjong Yoo

Abstract:

In public water facilities, drinking water distribution systems have played an important role along with water purification systems. The water distribution network is one of the most expensive components of water supply infrastructure systems. To improve the reliability for the drinking rate of tap water, advanced water treatment processes such as granular activated carbon and membrane filtration were used by water service providers in Korea. But, distrust of the people for tap water are still. Therefore, accurate diagnosis and condition assessment for water pipelines are required to supply the clean water. The internal corrosion of water pipe has increased as time passed. Also, the cross-sectional areas in pipe are reduced by the rust, deposits and tubercles. It is the water supply ability decreases as the increase of hydraulic pump capacity is required to supply an amount of water, such as the initial condition. If not, the poor area of water supply will be occurred by the decrease of water pressure. In order to solve these problems, water managers and engineers should be always checked for the current status of the water pipe, such as water leakage and damage of pipe. If problems occur, it should be able to respond rapidly and make an accurate estimate. In Korea, replacement and rehabilitation of aging drinking water pipes are carried out based on the circumstances of simply buried years. So, water distribution system management may not consider the entire water pipeline network. The long-term design and upgrading of a water distribution network should address economic, social, environmental, health, hydraulic, and other technical issues. This is a multi-objective problem with a high level of complexity. In this study, the thickness of the old water pipes, corrosion levels of the inner and outer surface for water pipes, basic data research (i.e. pipe types, buried years, accident record, embedded environment, etc.), specific resistance of soil, ultimate tensile strength and elongation of metal pipes, samples characteristics, and chemical composition analysis were performed about aging drinking water pipes. Samples of water pipes used in this study were cement mortar lining ductile cast iron pipe (CML-DCIP, diameter 100mm) and epoxy lining steel pipe (diameter 65 and 50mm). Buried years of CML-DCIP and epoxy lining steel pipe were respectively 32 and 23 years. The area of embedded environment was marine reclamation zone since 1940’s. The result of this study was that CML-DCIP needed replacement and epoxy lining steel pipe was still useful.

Keywords: drinking water distribution system, water supply, replacement, rehabilitation, water pipe

Procedia PDF Downloads 236
155 Suture Biomaterials Development from Natural Fibers: Muga Silk (Antheraea assama) and Ramie (Boehmeria nivea)

Authors: Raghuram Kandimalla, Sanjeeb Kalita, Bhaswati Choudhury, Jibon Kotoky

Abstract:

The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characteristics to market available ones. We developed novel suture biomaterial from muga silk (Antheraea assama) and ramie (Boehmeria nivea) plant fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of the fibers which supports the suitability of fibers for suture fabrication. Tensile properties of the prepared sutures were comparable with market available sutures and it found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The prepared sutures completely healed the superficial deep wound incisions within seven days in adult male wister rats leaving no rash and scar. Histopathology studies supports the wound healing ability of sutures, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Further muga suture surface modified by exposing the suture to oxygen plasma which resulted in formation of nanotopography on suture surface. Broad spectrum antibiotic amoxicillin was functionalized on the suture surface to prepare an advanced antimicrobial muga suture. Surface hydrophilicity induced by oxygen plasma results in an increase in drug-impregnation efficiency of modified muga suture by 16.7%. In vitro drug release profiles showed continuous and prolonged release of amoxicillin from suture up to 336 hours. The advanced muga suture proves to be effective against growth inhibition of Staphylococcus aureus and Escherichia coli, whereas normal muga suture offers no antibacterial activity against both types of bacteria. In vivo histopathology studies and colony-forming unit count data revealed accelerated wound healing activity of advanced suture over normal one through rapid synthesis and proliferation of collagen, hair follicle and connective tissues.

Keywords: sutures, biomaterials, silk, Ramie

Procedia PDF Downloads 290
154 Synergistic Effect of Chondroinductive Growth Factors and Synovium-Derived Mesenchymal Stem Cells on Regeneration of Cartilage Defects in Rabbits

Authors: M. Karzhauov, А. Mukhambetova, M. Sarsenova, E. Raimagambetov, V. Ogay

Abstract:

Regeneration of injured articular cartilage remains one of the most difficult and unsolved problems in traumatology and orthopedics. Currently, for the treatment of cartilage defects surgical techniques for stimulation of the regeneration of cartilage in damaged joints such as multiple microperforation, mosaic chondroplasty, abrasion and microfractures is used. However, as shown by clinical practice, they can not provide a full and sustainable recovery of articular hyaline cartilage. In this regard, the current high hopes in the regeneration of cartilage defects reasonably are associated with the use of tissue engineering approaches to restore the structural and functional characteristics of damaged joints using stem cells, growth factors and biopolymers or scaffolds. The purpose of the present study was to investigate the effects of chondroinductive growth factors and synovium-derived mesenchymal stem cells (SD-MSCs) on the regeneration of cartilage defects in rabbits. SD-MSCs were isolated from the synovium membrane of Flemish giant rabbits, and expanded in complete culture medium α-MEM. Rabbit SD-MSCs were characterized by CFU-assay and by their ability to differentiate into osteoblasts, chondrocytes and adipocytes. The effects of growth factors (TGF-β1, BMP-2, BMP-4 and IGF-I) on MSC chondrogenesis were examined in micromass pellet cultures using histological and biochemical analysis. Articular cartilage defect (4mm in diameter) in the intercondylar groove of the patellofemoral joint was performed with a kit for the mosaic chondroplasty. The defect was made until subchondral bone plate. Delivery of SD-MSCs and growth factors was conducted in combination with hyaloronic acid (HA). SD-MSCs, growth factors and control groups were compared macroscopically and histologically at 10, 30, 60 and 90 days aftrer intra-articular injection. Our in vitro comparative study revealed that TGF-β1 and BMP-4 are key chondroinductive factors for both the growth and chondrogenesis of SD-MSCs. The highest effect on MSC chondrogenesis was observed with the synergistic interaction of TGF-β1 and BMP-4. In addition, biochemical analysis of the chondrogenic micromass pellets also revealed that the levels of glycosaminoglycans and DNA after combined treatment with TGF-β1 and BMP-4 was significantly higher in comparison to individual application of these factors. In vivo study showed that for complete regeneration of cartilage defects with intra-articular injection of SD-MSCs with HA takes time 90 days. However, single injection of SD-MSCs in combiantion with TGF-β1, BMP-4 and HA significantly promoted regeneration rate of the cartilage defects in rabbits. In this case, complete regeneration of cartilage defects was observed in 30 days after intra-articular injection. Thus, our in vitro and in vivo study demonstrated that combined application of rabbit SD-MSC with chondroinductive growth factors and HA results in strong synergistic effect on the chondrogenesis significantly enhancing regeneration of the damaged cartilage.

Keywords: Mesenchymal stem cells, synovium, chondroinductive factors, TGF-β1, BMP-2, BMP-4, IGF-I

Procedia PDF Downloads 278
153 Improving the Utilization of Telfairia occidentalis Leaf Meal with Cellulase-Glucanase-Xylanase Combination and Selected Probiotic in Broiler Diets

Authors: Ayodeji Fasuyi

Abstract:

Telfairia occidentalis is a leafy vegetable commonly grown in the tropics for nutritional benefits. The use of enzymes and probiotics is becoming prominent due to the ban on antibiotics as growth promoters in many parts of the world. It is conceived that with enzymes and probiotics additives, fibrous leafy vegetables can be incorporated into poultry feeds as protein source. However, certain antinutrients were also found in the leaves of Telfairia occidentalis. Four broiler starter and finisher diets were formulated for the two phases of the broiler experiments. A mixture of fiber degrading enzymes, Roxazyme G2 (combination of cellulase, glucanase and xylanase) and probiotics (Turbotox), a growth promoter, were used in broiler diets at 1:1. The Roxazyme G2/Turbotox mixtures were used in diets containing four varying levels of Telfairia occidentalis leaf meal (TOLM) at 0, 10, 20 and 30%. Diets 1 were standard broiler diets without TOLM and Roxazyme G2 and Turbotox additives. Diets 2, 3 and 4 had enzymes and probiotics additives. Certain mineral elements such as Ca, P, K, Na, Mg, Fe, Mn, Cu and Zn were found in notable quantities viz. 2.6 g/100 g, 1.2 g/100 g, 6.2 g/100 g, 5.1 g/100 g, 4.7 g/100 g, 5875 ppm, 182 ppm, 136 ppm and 1036 ppm, respectively. Phytin, phytin-P, oxalate, tannin and HCN were also found in ample quantities viz. 189.2 mg/100 g, 120.1 mg/100 g, 80.7 mg/100 g, 43.1 mg/100 g and 61.2 mg/100 g, respectively. The average weight gain was highest at 46.3 g/bird/day for birds on 10% TOLM diet but similar (P > 0.05) to 46.2 g/bird/day for birds on 20% TOLM. The feed conversion ratio (FCR) of 2.27 was the lowest and optimum for birds on 10% TOLM although similar (P > 0.05) to 2.29 obtained for birds on 20% TOLM. FCR of 2.61 was the highest at 2.61 for birds on 30% TOLM diet. The lowest FCR of 2.27 was obtained for birds on 10% TOLM diet although similar (P > 0.05) to 2.29 for birds on 20% TOLM diet. Most carcass characteristics and organ weights were similar (P > 0.05) for the experimental birds on the different diets except for kidney, gizzard and intestinal length. The values for kidney, gizzard and intestinal length were significantly higher (P < 0.05) for birds on the TOLM diets. The nitrogen retention had the highest value of 72.37 ± 0.10% for birds on 10% TOLM diet although similar (P > 0.05) to 71.54 ± 1.89 obtained for birds on the control diet without TOLM and enzymes/probiotics mixture. There was evidence of a better utilization of TOLM as a plant protein source. The carcass characteristics and organ weights all showed evidence of uniform tissue buildup and muscles development particularly in diets containing 10% of TOLM level. There was also better nitrogen utilization in birds on the 10% TOLM diet. Considering the cheap cost of TOLM, it is envisaged that its introduction into poultry feeds as a plant protein source will ultimately reduce the cost of poultry feeds.

Keywords: Telfairia occidentalis leaf meal, enzymes, probiotics, additives

Procedia PDF Downloads 109
152 Garnet-based Bilayer Hybrid Solid Electrolyte for High-Voltage Cathode Material Modified with Composite Interface Enabler on Lithium-Metal Batteries

Authors: Kumlachew Zelalem Walle, Chun-Chen Yang

Abstract:

Solid-state lithium metal batteries (SSLMBs) are considered promising candidates for next-generation energy storage devices due to their superior energy density and excellent safety. However, recent findings have shown that the formation of lithium (Li) dendrites in SSLMBs still exhibits a terrible growth ability, which makes the development of SSLMBs have to face the challenges posed by the Li dendrite problem. In this work, an inorganic/organic mixture coating material (g-C3N4/ZIF-8/PVDF) was used to modify the surface of lithium metal anode (LMA). Then the modified LMA (denoted as g-C₃N₄@Li) was assembled with lithium nafion (LiNf) coated commercial NCM811 (LiNf@NCM811) using a bilayer hybrid solid electrolyte (Bi-HSE) that incorporated 20 wt.% (vs. polymer) LiNf coated Li6.05Ga0.25La3Zr2O11.8F0.2 ([email protected]) filler faced to the positive electrode and the other layer with 80 wt.% (vs. polymer) filler content faced to the g-C₃N₄@Li. The garnet-type Li6.05Ga0.25La3Zr2O11.8F0.2 (LG0.25LZOF) solid electrolyte was prepared via co-precipitation reaction process from Taylor flow reactor and modified using lithium nafion (LiNf), a Li-ion conducting polymer. The Bi-HSE exhibited high ionic conductivity of 6.8  10–4 S cm–1 at room temperature, and a wide electrochemical window (0–5.0 V vs. Li/Li+). The coin cell was charged between 2.8 to 4.5 V at 0.2C and delivered an initial specific discharge capacity of 194.3 mAh g–1 and after 100 cycles it maintained 81.8% of its initial capacity at room temperature. The presence of a nano-sheet g-C3N4/ZIF-8/PVDF as a composite coating material on the LMA surface suppress the dendrite growth and enhance the compatibility as well as the interfacial contact between anode/electrolyte membrane. The g-C3N4@Li symmetrical cells incorporating this hybrid electrolyte possessed excellent interfacial stability over 1000 h at 0.1 mA cm–2 and a high critical current density (1 mA cm–2). Moreover, the in-situ formation of Li3N on the solid electrolyte interface (SEI) layer as depicted from the XPS result also improves the ionic conductivity and interface contact during the charge/discharge process. Therefore, these novel multi-layered fabrication strategies of hybrid/composite solid electrolyte membranes and modification of the LMA surface using mixed coating materials have potential applications in the preparation of highly safe high-voltage cathodes for SSLMBs.

Keywords: high-voltage cathodes, hybrid solid electrolytes, garnet, graphitic-carbon nitride (g-C3N4), ZIF-8 MOF

Procedia PDF Downloads 40
151 Optimizing the Pair Carbon Xerogels-Electrolyte for High Performance Supercapacitors

Authors: Boriana Karamanova, Svetlana Veleva, Luybomir Soserov, Ana Arenillas, Francesco Lufrano, Antonia Stoyanova

Abstract:

Supercapacitors have received a lot of research attention and are promising energy storage devices due to their high power and long cycle life. In order to developed an advanced device with significant capacity for storing charge and cheap carbon materials, efforts must focus not only on improving synthesis by controlling the morphology and pore size but also on improving electrode-electrolyte compatibility of the resulting systems. The present study examines the relationship between the surface chemistry of two activated carbon xerogels, the electrolyte type, and the electrochemical properties of supercapacitors. Activated carbon xerogels were prepared by varying the initial pH of the resorcinol-formaldehyde aqueous solution. The materials produced are physicochemical characterized by DTA/TGA, porous characterization, and SEM analysis. The carbon xerogel based electrodes were prepared by spreading over glass plate a slurry containing the carbon gel, graphite, and poly vinylidene difluoride (PVDF) binder. The layer formed was dried consecutively at different temperatures and then detached by water. After, the layer was dried again to improve its mechanical stability. The developed electrode materials and the Aquivion® E87-05S membrane (Solvay Specialty Polymers), socked in Na2SO4 as a polymer electrolyte, were used to assembly the solid-state supercapacitor. Symmetric supercapacitor cells composed by same electrodes and 1 M KOH electrolytes are also assembled and tested for comparison. The supercapacitor performances are verified by different electrochemical methods - cyclic voltammetry, galvanostatic charge/discharge measurements, electrochemical impedance spectroscopy, and long-term durability tests in neutral and alkaline electrolytes. Specific capacitances, energy, and power density, energy efficiencies, and durability were compared into studied supercapacitors. Ex-situ physicochemical analyses on the synthesized materials have also been performed, which provide information about chemical and structural changes in the electrode morphology during charge / discharge durability tests. They are discussed on the basis of electrode-electrolyte interaction. The obtained correlations could be of significance in order to design sustainable solid-state supercapacitors with high power and energy density. Acknowledgement: This research is funded by the Ministry of Education and Science of Bulgaria under the National Program "European Scientific Networks" (Agreement D01-286 / 07.10.2020, D01-78/30.03.2021). Authors gratefully acknowledge.

Keywords: carbon xerogel, electrochemical tests, neutral and alkaline electrolytes, supercapacitors

Procedia PDF Downloads 108
150 Polymer Nanocomposite Containing Silver Nanoparticles for Wound Healing

Authors: Patrícia Severino, Luciana Nalone, Daniele Martins, Marco Chaud, Classius Ferreira, Cristiane Bani, Ricardo Albuquerque

Abstract:

Hydrogels produced with polymers have been used in the development of dressings for wound treatment and tissue revitalization. Our study on polymer nanocomposites containing silver nanoparticles shows antimicrobial activity and applications in wound healing. The effects are linked with the slow oxidation and Ag⁺ liberation to the biological environment. Furthermore, bacterial cell membrane penetration and metabolic disruption through cell cycle disarrangement also contribute to microbial cell death. The silver antimicrobial activity has been known for many years, and previous reports show that low silver concentrations are safe for human use. This work aims to develop a hydrogel using natural polymers (sodium alginate and gelatin) combined with silver nanoparticles for wound healing and with antimicrobial properties in cutaneous lesions. The hydrogel development utilized different sodium alginate and gelatin proportions (20:80, 50:50 and 80:20). The silver nanoparticles incorporation was evaluated at the concentrations of 1.0, 2.0 and 4.0 mM. The physico-chemical properties of the formulation were evaluated using ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. The morphological characterization was made using transmission electron microscopy (TEM). Human fibroblast (L2929) viability assay was performed with a minimum inhibitory concentration (MIC) assessment as well as an in vivo cicatrizant test. The results suggested that sodium alginate and gelatin in the (80:20) proportion with 4 mM of AgNO₃ in the (UV-Vis) exhibited a better hydrogel formulation. The nanoparticle absorption spectra of this analysis showed a maximum band around 430 - 450 nm, which suggests a spheroidal form. The TG curve exhibited two weight loss events. DSC indicated one endothermic peak at 230-250 °C, due to sample fusion. The polymers acted as stabilizers of a nanoparticle, defining their size and shape. Human fibroblast viability assay L929 gave 105 % cell viability with a negative control, while gelatin presented 96% viability, alginate: gelatin (80:20) 96.66 %, and alginate 100.33 % viability. The sodium alginate:gelatin (80:20) exhibited significant antimicrobial activity, with minimal bacterial growth at a ratio of 1.06 mg.mL⁻¹ in Pseudomonas aeruginosa and 0.53 mg.mL⁻¹ in Staphylococcus aureus. The in vivo results showed a significant reduction in wound surface area. On the seventh day, the hydrogel-nanoparticle formulation reduced the total area of injury by 81.14 %, while control reached a 45.66 % reduction. The results suggest that silver-hydrogel nanoformulation exhibits potential for wound dressing therapeutics.

Keywords: nanocomposite, wound healing, hydrogel, silver nanoparticle

Procedia PDF Downloads 81
149 Resistance Training and Ginger Consumption on Cytokines Levels

Authors: Alireza Barari, Ahmad Abdi

Abstract:

Regular body trainings cause adaption in various system in body. One of the important effect of body training is its effect on immune system. It seems that cytokines usually release after long period exercises or some exercises which cause skeletal muscular damages. If some of the cytokines which cause responses such as inflammation of cells in skeletal muscles, with manipulating of training program, it can be avoided or limited from those exercises which induct cytokines release. Ginger plant is a kind of medicinal plants which is known as a anti inflammation plant. This plant is as most precedence medicinal plants in medicine science especially in inflammation cure. The aim of the present study was the effect of selected resistance training and consumption of ginger extract on IL-1α and TNFα untrained young women. The population includes young women interested in participating in the study with the average of 30±2 years old from Abbas Abad city among which 32 participants were chosen randomly and divided into 4 four groups, resistance training (R), resistance training and ginger consumption(RG), Ginger consumption(G)and Control group(C). The training groups performed circuit resistance training at the intensity of 65-75% one repeat maximum, 3 days a week for 6 weeks. Besides resistance training, subjects were given either ginseng (5 mg/kg per day) or placebo. Prior to and 48 hours after interventions body composition was measured and blood samples were taken in order to assess serum levels of IL-1α and TNFα. Plasma levels of cytokines were measured with commercially available ELISA Kits.IL-1α kit and TNFα kit were used in this research. To demonstrate the effectiveness of the independent variable and the comparison between groups, t-test and ANOVA were used. To determine differences between the groups, the Scheffe test was used that showed significant changes in any of the variables. we observed that circuit resistance training in R and RG groups can significant decreased in weight and body mass index in untrained females (p<0.05). The results showed a significant decreased in the mean level of IL-1α levels before and after the training period in G group (p=0.046) and RG group (p=0.022). Comparison between groups also showed there was significant difference between groups R-RG and RG-C. Intergroup comparison results showed that the mean levels of TNFα before and after the training in group G (p=0.044) and RG (p=0.037), significantly decreased. Comparison between groups also showed there was significant difference between groups R–RG , R-G ,RG-C and G-C. The research shows that circuit resistance training with reducing overload method results in systemic inflammation had significant effect on IL-1α levels and TNFα. Of course, Ginger can counteract the negative effects of resistance training exercise on immune function and stability of the mast cell membrane. Considerable evidence supported the anti-inflammatory properties of ginger for several constituents, especially gingerols, shogaols, paradols, and zingerones, through decreased cytokine gene TNF α and IL-1Α expression and inhibition of cyclooxygenase 1 and 2. These established biological actions suggest that ingested ginger could block the increase in IL-1α.

Keywords: resistance training, ginger, IL-1α , TNFα

Procedia PDF Downloads 395
148 Development and Structural Characterization of a Snack Food with Added Type 4 Extruded Resistant Starch

Authors: Alberto A. Escobar Puentes, G. Adriana García, Luis F. Cuevas G., Alejandro P. Zepeda, Fernando B. Martínez, Susana A. Rincón

Abstract:

Snack foods are usually classified as ‘junk food’ because have little nutritional value. However, due to the increase on the demand and third generation (3G) snacks market, low price and easy to prepare, can be considered as carriers of compounds with certain nutritional value. Resistant starch (RS) is classified as a prebiotic fiber it helps to control metabolic problems and has anti-cancer colon properties. The active compound can be developed by chemical cross-linking of starch with phosphate salts to obtain a type 4 resistant starch (RS4). The chemical reaction can be achieved by extrusion, a process widely used to produce snack foods, since it's versatile and a low-cost procedure. Starch is the major ingredient for snacks 3G manufacture, and the seeds of sorghum contain high levels of starch (70%), the most drought-tolerant gluten-free cereal. Due to this, the aim of this research was to develop a snack (3G), with RS4 in optimal conditions extrusion (previously determined) from sorghum starch, and carry on a sensory, chemically and structural characterization. A sample (200 g) of sorghum starch was conditioned with 4% sodium trimetaphosphate/ sodium tripolyphosphate (99:1) and set to 28.5% of moisture content. Then, the sample was processed in a single screw extruder equipped with rectangular die. The inlet, transport and output temperatures were 60°C, 134°C and 70°C, respectively. The resulting pellets were expanded in a microwave oven. The expansion index (EI), penetration force (PF) and sensory analysis were evaluated in the expanded pellets. The pellets were milled to obtain flour and RS content, degree of substitution (DS), and percentage of phosphorus (% P) were measured. Spectroscopy [Fourier Transform Infrared (FTIR)], X-ray diffraction, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) analysis were performed in order to determine structural changes after the process. The results in 3G were as follows: RS, 17.14 ± 0.29%; EI, 5.66 ± 0.35 and PF, 5.73 ± 0.15 (N). Groups of phosphate were identified in the starch molecule by FTIR: DS, 0.024 ± 0.003 and %P, 0.35±0.15 [values permitted as food additives (<4 %P)]. In this work an increase of the gelatinization temperature after the crosslinking of starch was detected; the loss of granular and vapor bubbles after expansion were observed by SEM; By using X-ray diffraction, loss of crystallinity was observed after extrusion process. Finally, a snack (3G) was obtained with RS4 developed by extrusion technology. The sorghum starch was efficient for snack 3G production.

Keywords: extrusion, resistant starch, snack (3G), Sorghum

Procedia PDF Downloads 283
147 Effect of Low Calorie Sweeteners on Chemical, Sensory Evaluation and Antidiabetic of Pumpkin Jam Fortified with Soybean

Authors: Amnah M. A. Alsuhaibani, Amal N. Al-Kuraieef

Abstract:

Introduction: In the recent decades, production of low-calorie jams is needed for diabetics that comprise low calorie fruits and low calorie sweeteners. Object: the research aimed to prepare low calorie formulated pumpkin jams (fructose, stevia and aspartame) incorporated with soy bean and evaluate the jams through chemical analysis and sensory evaluation after storage for six month. Moreover, the possible effect of consumption of low calorie jams on diabetic rats was investigated. Methods: Five formulas of pumpkin jam with different sucrose, fructose, stevia and aspartame sweeteners and soy bean were prepared and stored at 10 oC for six month compared to ordinary pumpkin jam. Chemical composition and sensory evaluation of formulated jams were evaluated at zero time, 3 month and 6 month of storage. The best three acceptable pumpkin jams were taken for biological study on diabetic rats. Rats divided into group (1) served as negative control and streptozotocin induce diabetes four rat groups that were positive diabetic control (group2), rats fed on standard diet with 10% sucrose soybean jam, fructose soybean jam and stevia soybean jam (group 3, 4&5), respectively. Results: The content of protein, fat, ash and fiber were increased but carbohydrate was decreased in low calorie formulated pumpkin jams compared to ordinary jam. Production of aspartame soybean pumpkin jam had lower score of all sensory attributes compared to other jam then followed by stevia soybean Pumpkin jam. Using non nutritive sweeteners (stevia & aspartame) with soybean in processing jam could lower the score of the sensory attributes after storage for 3 and 6 months. The highest score was recorded for sucrose and fructose soybean jams followed by stevia soybean jam while aspartame soybean jam recorded the lowest score significantly. The biological evaluation showed a significant improvement in body weight and FER of rats after six weeks of consumption of standard diet with jams (Group 3,4&5) compared to Group1. Rats consumed 10% low calorie jam with nutrient sweetener (fructose) and non nutrient sweetener (stevia) soybean jam (group 4& 5) showed significant decrease in glucose level, liver function enzymes activity, and liver cholesterol & total lipids in addition of significant increase of insulin and glycogen compared to the levels of group 2. Conclusion: low calorie pumpkin jams can be prepared by low calorie sweeteners and soybean and also storage for 3 months at 10oC without change sensory attributes. Consumption of stevia pumpkin jam fortified with soybean had positive health effects on streptozoticin induced diabetes in rats.

Keywords: pumpkin jam, HFCS, aspartame, stevia, storage

Procedia PDF Downloads 155
146 Phantom and Clinical Evaluation of Block Sequential Regularized Expectation Maximization Reconstruction Algorithm in Ga-PSMA PET/CT Studies Using Various Relative Difference Penalties and Acquisition Durations

Authors: Fatemeh Sadeghi, Peyman Sheikhzadeh

Abstract:

Introduction: Block Sequential Regularized Expectation Maximization (BSREM) reconstruction algorithm was recently developed to suppress excessive noise by applying a relative difference penalty. The aim of this study was to investigate the effect of various strengths of noise penalization factor in the BSREM algorithm under different acquisition duration and lesion sizes in order to determine an optimum penalty factor by considering both quantitative and qualitative image evaluation parameters in clinical uses. Materials and Methods: The NEMA IQ phantom and 15 clinical whole-body patients with prostate cancer were evaluated. Phantom and patients were injected withGallium-68 Prostate-Specific Membrane Antigen(68 Ga-PSMA)and scanned on a non-time-of-flight Discovery IQ Positron Emission Tomography/Computed Tomography(PET/CT) scanner with BGO crystals. The data were reconstructed using BSREM with a β-value of 100-500 at an interval of 100. These reconstructions were compared to OSEM as a widely used reconstruction algorithm. Following the standard NEMA measurement procedure, background variability (BV), recovery coefficient (RC), contrast recovery (CR) and residual lung error (LE) from phantom data and signal-to-noise ratio (SNR), signal-to-background ratio (SBR) and tumor SUV from clinical data were measured. Qualitative features of clinical images visually were ranked by one nuclear medicine expert. Results: The β-value acts as a noise suppression factor, so BSREM showed a decreasing image noise with an increasing β-value. BSREM, with a β-value of 400 at a decreased acquisition duration (2 min/ bp), made an approximately equal noise level with OSEM at an increased acquisition duration (5 min/ bp). For the β-value of 400 at 2 min/bp duration, SNR increased by 43.7%, and LE decreased by 62%, compared with OSEM at a 5 min/bp duration. In both phantom and clinical data, an increase in the β-value is translated into a decrease in SUV. The lowest level of SUV and noise were reached with the highest β-value (β=500), resulting in the highest SNR and lowest SBR due to the greater noise reduction than SUV reduction at the highest β-value. In compression of BSREM with different β-values, the relative difference in the quantitative parameters was generally larger for smaller lesions. As the β-value decreased from 500 to 100, the increase in CR was 160.2% for the smallest sphere (10mm) and 12.6% for the largest sphere (37mm), and the trend was similar for SNR (-58.4% and -20.5%, respectively). BSREM visually was ranked more than OSEM in all Qualitative features. Conclusions: The BSREM algorithm using more iteration numbers leads to more quantitative accuracy without excessive noise, which translates into higher overall image quality and lesion detectability. This improvement can be used to shorter acquisition time.

Keywords: BSREM reconstruction, PET/CT imaging, noise penalization, quantification accuracy

Procedia PDF Downloads 70
145 Saco Sweet Cherry: Phenolic Profile and Biological Activity of Coloured and Non-Coloured Fractions

Authors: Catarina Bento, Ana Carolina Gonçalves, Fábio Jesus, Luís Rodrigues Silva

Abstract:

Increasing evidence suggests that a diet rich in fruits and vegetables plays important roles in the prevention of chronic diseases, such as heart disease, cancer, stroke, diabetes, Alzheimer’s disease, among others. Fruits and vegetables gained prominence due their richness in bioactive compounds, being the focus of many studies due to their biological properties acting as health promoters. Prunus avium Linnaeus (L.), commonly known as sweet cherry has been the centre of attention due to its health benefits, and has been highly studied. In Portugal, most of the cherry production comes from the Fundão region. The Saco is one of the most important cultivar produced in this region, attributed with geographical protection. In this work, we prepared 3 extracts through solid-phase extraction (SPE): a whole extract, fraction I (non-coloured phenolics) and fraction II (coloured phenolics). The three extracts were used to determine the phenolic profile of Saco cultivar by liquid chromatography with diode array detection (LC-DAD) technique. This was followed by the evaluation of their biological potential, testing the extracts’ capacity to scavenge free-radicals (DPPH•, nitric oxide (•NO) and superoxide radical (O2●-)) and to inhibit α-glucosidase enzyme of all extracts. Additionally, we evaluated, for the first time, the protective effects against peroxyl radical (ROO•)-induced hemoglobin oxidation and hemolysis in human erythrocytes. A total of 16 non-coloured phenolics were detected, 3-O-caffeoylquinic and ρ-coumaroylquinic acids were the main ones, and 6 anthocyanins were found, among which cyanidin-3-O-rutinoside represented the majority. In respect to antioxidant activity, Saco showed great antioxidant potential in a concentration-dependent manner, demonstrated through the DPPH•,•NO and O2●-radicals, and greater ability to inhibit the α-glucosidase enzyme in comparison to the regular drug acarbose used to treat diabetes. Additionally, Saco proved to be effective to protect erythrocytes against oxidative damage in a concentration-dependent manner against hemoglobin oxidation and hemolysis. Our work demonstrated that Saco cultivar is an excellent source of phenolic compounds which are natural antioxidants that easily capture reactive species, such as ROO• before they can attack the erythrocytes’ membrane. In a general way, the whole extract showed the best efficiency, most likely due to a synergetic interaction between the different compounds. Finally, comparing the two separate fractions, the coloured fraction showed the most activity in all the assays, proving to be the biggest contributor of Saco cherries’ biological activity.

Keywords: biological potential, coloured phenolics, non-coloured phenolics, sweet cherry

Procedia PDF Downloads 225
144 Progressive Damage Analysis of Mechanically Connected Composites

Authors: Şeyma Saliha Fidan, Ozgur Serin, Ata Mugan

Abstract:

While performing verification analyses under static and dynamic loads that composite structures used in aviation are exposed to, it is necessary to obtain the bearing strength limit value for mechanically connected composite structures. For this purpose, various tests are carried out in accordance with aviation standards. There are many companies in the world that perform these tests in accordance with aviation standards, but the test costs are very high. In addition, due to the necessity of producing coupons, the high cost of coupon materials, and the long test times, it is necessary to simulate these tests on the computer. For this purpose, various test coupons were produced by using reinforcement and alignment angles of the composite radomes, which were integrated into the aircraft. Glass fiber reinforced and Quartz prepreg is used in the production of the coupons. The simulations of the tests performed according to the American Society for Testing and Materials (ASTM) D5961 Procedure C standard were performed on the computer. The analysis model was created in three dimensions for the purpose of modeling the bolt-hole contact surface realistically and obtaining the exact bearing strength value. The finite element model was carried out with the Analysis System (ANSYS). Since a physical break cannot be made in the analysis studies carried out in the virtual environment, a hypothetical break is realized by reducing the material properties. The material properties reduction coefficient was determined as 10%, which is stated to give the most realistic approach in the literature. There are various theories in this method, which is called progressive failure analysis. Because the hashin theory does not match our experimental results, the puck progressive damage method was used in all coupon analyses. When the experimental and numerical results are compared, the initial damage and the resulting force drop points, the maximum damage load values ​​, and the bearing strength value are very close. Furthermore, low error rates and similar damage patterns were obtained in both test and simulation models. In addition, the effects of various parameters such as pre-stress, use of bushing, the ratio of the distance between the bolt hole center and the plate edge to the hole diameter (E/D), the ratio of plate width to hole diameter (W/D), hot-wet environment conditions were investigated on the bearing strength of the composite structure.

Keywords: puck, finite element, bolted joint, composite

Procedia PDF Downloads 73
143 Cartilage Mimicking Coatings to Increase the Life-Span of Bearing Surfaces in Joint Prosthesis

Authors: L. Sánchez-Abella, I. Loinaz, H-J. Grande, D. Dupin

Abstract:

Aseptic loosening remains as the principal cause of revision in total hip arthroplasty (THA). For long-term implantations, submicron particles are generated in vivo due to the inherent wear of the prosthesis. When this occurs, macrophages undergo phagocytosis and secretion of bone resorptive cytokines inducing osteolysis, hence loosening of the implanted prosthesis. Therefore, new technologies are required to reduce the wear of the bearing materials and hence increase the life-span of the prosthesis. Our strategy focuses on surface modification of the bearing materials with a hydrophilic coating based on cross-linked water-soluble (meth)acrylic monomers to improve their tribological behavior. These coatings are biocompatible, with high swelling capacity and antifouling properties, mimicking the properties of natural cartilage, i.e. wear resistance with a permanent hydrated layer that prevents prosthesis damage. Cartilage mimicking based coatings may be also used to protect medical device surfaces from damage and scratches that will compromise their integrity and hence their safety. However, there are only a few reports on the mechanical and tribological characteristics of this type of coatings. Clear beneficial advantages of this coating have been demonstrated in different conditions and different materials, such as Ultra-high molecular weight polyethylene (UHMWPE), Polyethylene (XLPE), Carbon-fiber-reinforced polyetheretherketone (CFR-PEEK), cobalt-chromium (CoCr), Stainless steel, Zirconia Toughened Alumina (ZTA) and Alumina. Using routine tribological experiments, the wear for UHMWPE substrate was decreased by 75% against alumina, ZTA and stainless steel. For PEEK-CFR substrate coated, the amount of material lost against ZTA and CrCo was at least 40% lower. Experiments on hip simulator allowed coated ZTA femoral heads and coated UHMWPE cups to be validated with a decrease of 80% of loss material. Further experiments on hip simulator adding abrasive particles (1 micron sized alumina particles) during 3 million cycles, on a total of 6 million, demonstrated a decreased of around 55% of wear compared to uncoated UHMWPE and uncoated XLPE. In conclusion, CIDETEC‘s hydrogel coating technology is versatile and can be adapted to protect a large range of surfaces, even in abrasive conditions.

Keywords: cartilage, hydrogel, hydrophilic coating, joint

Procedia PDF Downloads 97
142 Branched Chain Amino Acid Kinesio PVP Gel Tape from Extract of Pea (Pisum sativum L.) Based on Ultrasound-Assisted Extraction Technology

Authors: Doni Dermawan

Abstract:

Modern sports competition as a consequence of the increase in the value of the business and entertainment in the field of sport has been demanding athletes to always have excellent physical endurance performance. Physical exercise is done in a long time, and intensive may pose a risk of muscle tissue damage caused by the increase of the enzyme creatine kinase. Branched Chain Amino Acids (BCAA) is an essential amino acid that is composed of leucine, isoleucine, and valine which serves to maintain muscle tissue, keeping the immune system, and prevent further loss of coordination and muscle pain. Pea (Pisum sativum L.) is a kind of leguminous plants that are rich in Branched Chain Amino Acids (BCAA) where every one gram of protein pea contains 82.7 mg of leucine; 56.3 mg isoleucine; and 56.0 mg of valine. This research aims to develop Branched Chain Amino Acids (BCAA) from pea extract is applied in dosage forms Gel PVP Kinesio Tape technology using Ultrasound-assisted Extraction. The method used in the writing of this paper is the Cochrane Collaboration Review that includes literature studies, testing the quality of the study, the characteristics of the data collection, analysis, interpretation of results, and clinical trials as well as recommendations for further research. Extraction of BCAA in pea done using ultrasound-assisted extraction technology with optimization variables includes the type of solvent extraction (NaOH 0.1%), temperature (20-250C), time (15-30 minutes) power (80 watt) and ultrasonic frequency (35 KHz). The advantages of this extraction method are the level of penetration of the solvent into the membrane of the cell is high and can increase the transfer period so that the BCAA substance separation process more efficient. BCAA extraction results are then applied to the polymer PVP (Polyvinylpyrrolidone) Gel powder composed of PVP K30 and K100 HPMC dissolved in 10 mL of water-methanol (1: 1) v / v. Preparations Kinesio Tape Gel PVP is the BCAA in the gel are absorbed into the muscle tissue, and joints through tensile force then provides stimulation to the muscle circulation with variable pressure so that the muscle can increase the biomechanical movement and prevent damage to the muscle enzyme creatine kinase. Analysis and evaluation of test preparation include interaction, thickness, weight uniformity, humidity, water vapor permeability, the levels of the active substance, content uniformity, percentage elongation, stability testing, release profile, permeation in vitro and in vivo skin irritation testing.

Keywords: branched chain amino acid, BCAA, Kinesio tape, pea, PVP gel, ultrasound-assisted extraction

Procedia PDF Downloads 266
141 Basotho Cultural Shift: The Role of Dress in the Shift

Authors: Papali Elizabeth Maqalika

Abstract:

Introduction: Dress is used daily and can be used to define culture, and through it, individuals form a sense of self and identity. One of the characteristics of culture is that it evolves; Basotho culture is no exception to this. It has evolved through rites of entry, significant ceremonies, daily living, and an approach to others. Most of these affect and have been affected by the local/traditional dress. The study focused on the evolution of culture, and the role played by dress as it is one of the major contributors to non-verbal communication. Methodology: Secondary data were used since most of the original cultural practices are no longer held dear in the value system and so no longer practiced. Interviews were conducted to get some insights from the senior citizens and their responses compared to those of the present adults. Content analysis was used for the interview data. Results: The nature of governance in Lesotho has clearly contributed to the current cultural state of confusion. The Basotho culture has indeed shifted, and the difference in dress code explains it. Acculturation, the alteration in environments, and the type of occasions Basotho attended lately contributed to the shift. Technology brought about a difference in the mode of transport, sports, household activities, and gender roles. Conclusion and Recommendations: It was concluded that since culture is imparted through socialisation, a change in availability of most Basotho women leaves little time left for socialisation with children and resorts to other upbringing patterns, most of which are not cultural; this has brought a cultural shift. In addition, acculturation has contributed massively to the value system of Basotho. The type of dress worn by Basotho presently shifts the culture, and the shifting culture also shifts the dress required to suit the present culture. Because of the type of mindset Basotho has now, it is recommended that cultural days be observed in schools, including the multi-racial ones, and media should assist in this information transmission. The campaigns regarding the value of traditional dress and what it represents are recommended. The local dressmakers manufacturing the Seshoeshoe and any other traditional dress need to be educated about the fabric history, fiber content, and consequent care to be in a position to guide ultimate consumers of the products. Awareness campaigns that the culture shifts and may not necessarily result in negative should be ventured. Cultural exhibitions should also be held ideally at places that hold some cultural heritage. The ministry of sports and culture, together with that of tourism, should run with cultural awareness and enriching vision with a focus on education as opposed to revenue collection.

Keywords: Basotho, culture, dress, acculturation, influence, cultural heritage, socialization, non-verbal communication, Seshoeshoe

Procedia PDF Downloads 51
140 High Capacity SnO₂/Graphene Composite Anode Materials for Li-Ion Batteries

Authors: Hilal Köse, Şeyma Dombaycıoğlu, Ali Osman Aydın, Hatem Akbulut

Abstract:

Rechargeable lithium-ion batteries (LIBs) have become promising power sources for a wide range of applications, such as mobile communication devices, portable electronic devices and electrical/hybrid vehicles due to their long cycle life, high voltage and high energy density. Graphite, as anode material, has been widely used owing to its extraordinary electronic transport properties, large surface area, and high electrocatalytic activities although its limited specific capacity (372 mAh g-1) cannot fulfil the increasing demand for lithium-ion batteries with higher energy density. To settle this problem, many studies have been taken into consideration to investigate new electrode materials and metal oxide/graphene composites are selected as a kind of promising material for lithium ion batteries as their specific capacities are much higher than graphene. Among them, SnO₂, an n-type and wide band gap semiconductor, has attracted much attention as an anode material for the new-generation lithium-ion batteries with its high theoretical capacity (790 mAh g-1). However, it suffers from large volume changes and agglomeration associated with the Li-ion insertion and extraction processes, which brings about failure and loss of electrical contact of the anode. In addition, there is also a huge irreversible capacity during the first cycle due to the formation of amorphous Li₂O matrix. To obtain high capacity anode materials, we studied on the synthesis and characterization of SnO₂-Graphene nanocomposites and investigated the capacity of this free-standing anode material in this work. For this aim, firstly, graphite oxide was obtained from graphite powder using the method described by Hummers method. To prepare the nanocomposites as free-standing anode, graphite oxide particles were ultrasonicated in distilled water with SnO2 nanoparticles (1:1, w/w). After vacuum filtration, the GO-SnO₂ paper was peeled off from the PVDF membrane to obtain a flexible, free-standing GO paper. Then, GO structure was reduced in hydrazine solution. Produced SnO2- graphene nanocomposites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and X-ray diffraction (XRD) analyses. CR2016 cells were assembled in a glove box (MBraun-Labstar). The cells were charged and discharged at 25°C between fixed voltage limits (2.5 V to 0.2 V) at a constant current density on a BST8-MA MTI model battery tester with 0.2C charge-discharge rate. Cyclic voltammetry (CV) was performed at the scan rate of 0.1 mVs-1 and electrochemical impedance spectroscopy (EIS) measurements were carried out using Gamry Instrument applying a sine wave of 10 mV amplitude over a frequency range of 1000 kHz-0.01 Hz.

Keywords: SnO₂-graphene, nanocomposite, anode, Li-ion battery

Procedia PDF Downloads 203
139 Pharmacological Mechanisms of an Indolic Compound in Chemoprevention of Colonic Acf Formation in Azoxymethane-Induced Colon Cancer Rat Model and Cell Lines

Authors: Nima Samie, Sekaran Muniandy, Zahurin Mohamed, M. S. Kanthimathi

Abstract:

Although number of indole containing compounds have been reported to have anticancer properties in vitro but only a few of them show potential as anticancer compounds in vivo. The current study was to evaluate the mechanism of cytotoxicity of selected indolic compound in vivo and in vitro. In this context, we determined the potency of the compound in the induction of apoptosis, cell cycle arrest, and cytoskeleton rearrangement. HT-29, WiDr, CCD-18Co, human monocyte/macrophage CRL-9855, and B lymphocyte CCL-156 cell lines were used to determine the IC50 of the compound using the MTT assay. Analysis of apoptosis was carried out using immunofluorescence, acridine orange/ propidium iodide double staining, Annexin-V-FITC assay, evaluation of the translocation of NF-kB, oxygen radical antioxidant capacity, quenching of reactive oxygen species content, measurement of LDH release, caspase-3/-7, -8 and -9 assays and western blotting. The cell cycle arrest was examined using flowcytometry and gene expression was assessed using qPCR array. Results displayed a potent suppressive effect on HT-29 and WiDr after 24 h of treatment with IC50 value of 2.52±0.34 µg/ml and 2.13±0.65 µg/ml respectively. This cytotoxic effect on normal, monocyte/macrophage and B-cells was insignificant. Dipping in the mitochondrial membrane potential and increased release of cytochrome c from the mitochondria indicated induction of the intrinsic apoptosis pathway by the compound. Activation of this pathway was further evidenced by significant activation of caspase-9 and 3/7. The compound was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-kB translocation to the nucleus. Cell cycle arrest in the G1 phase and up-regulation of glutathione reductase, based on excessive ROS production were also observed. These findings were further investigated for inhibitory efficiency of the compound on colonic aberrant crypt foci in male rats. Rats were divided in to 5 groups: vehicle, cancer control, positive control groups and the groups treated with 25 and 50 mg/kg of compounds for 10 weeks. Administration of compound suppressed total colonic ACF formation up to 73.4%. The results also showed that treatment with the compound significantly reduced the level of malondialdehyde while increasing superoxide dismutase and catalase activities. Furthermore, the down-regulation of PCNA and Bcl2 and the up-regulation of Bax was confirmed by immunohistochemical staining. The outcome of this study suggest sthat the indolic compound is a potent anti-cancer agent against colon cancer and can be further evaluated by animal trial.

Keywords: indolic compound, chemoprevention, crypt, azoxymethane, colon cancer

Procedia PDF Downloads 324
138 De-Pigmentary Effect of Ayurvedic Treatment on Hyper-Pigmentation of Skin Due to Chloroquine: A Case Report

Authors: Sunil Kumar, Rajesh Sharma

Abstract:

Toxic epidermal necrolysis, pruritis, rashes, lichen planus like eruption, hyper pigmentation of skin are rare toxic effects of choloroquine used over a long time. Skin and mucus membrane hyper pigmentation is generally of a bluish black or grayish color and irreversible after discontinuation of the drug. According to Ayurveda, Dushivisha is the name given to any poisonous substance which is not fully endowed with the qualities of poison by nature (i.e. it acts as an impoverished or weak poison) and because of its mild potency, it remains in the body for many years causing various symptoms, one among them being discoloration of skin.The objective of this case report is to investigate the effect of Ayurvedic management of chloroquine induced hyper-pigmentation on the line of treatment of Dushivisha. Case Report: A 26-year-old female was suffering from hyper-pigmentation of the skin over the neck, forehead, temporo-mandibular joints, upper back and posterior aspect of both the arms since 8 years had history of taking Chloroquine came to Out Patient Department of National Institute of Ayurveda, Jaipur, India in Jan. 2015. The routine investigations (CBC, ESR, Eosinophil count) were within normal limits. Punch biopsy skin studied for histopathology under hematoxylin and eosin staining showed epidermis with hyper-pigmentation of the basal layer. In the papillary dermis as well as deep dermis there were scattered melanophages along with infiltration by mononuclear cells. There was no deposition of amyloid-like substances. These histopathological findings were suggestive of Chloroquine induced hyper-pigmentation. The case was treated on the line of treatment of Dushivisha and was given Vamana and Virechana (therapeutic emesis and purgation) every six months followed by Snehana karma (oleation therapy) with Panchatikta Ghrit and Swedana (sudation). Arogyavardhini Vati -1 g, Dushivishari Vati 500 mg, Mahamanjisthadi Quath 20 ml were given twelve hourly and Aragwadhadi Quath 25 ml at bed time orally. The patient started showing lightening of the pigments after six months and almost complete remission after 12 months of the treatment. Conclusion: This patient presented with the Dushivisha effect of Chloroquineandwas administered two relevant procedures from Panchakarma viz. Vamana and Virechana. Both Vamana and Virechanakarma here referred to Shodhana karma (purification procedures) eliminates accumulated toxins from the body. In this process, oleation dislodge the toxins from the tissues and sudation helps to bring them to the alimentary tract. The line of treatment did not target direct hypo pigmentary effects; rather aimed to eliminate the Dushivisha. This gave promising results in this condition.

Keywords: Ayurveda, chloroquine, Dushivisha, hyper-pigmentation

Procedia PDF Downloads 214
137 Opportunities Forensics Biology in the Study of Sperm Traces after Washing

Authors: Saule Musabekova

Abstract:

Achievements of modern science, especially genetics, led to a sharp intensification of the process of proof. Footprints, subjected to destruction-related cause-effect relationships, are sources of evidentiary information on the circumstances it was committed and the persons committed it. Currently, with the overall growth in the number of crimes against sexual inviolability or sexual freedom, and increased the proportion of the crimes where to destroy the traces of the crime perpetrators different detergents are used. A characteristic feature of modern synthetic detergents is the presence of biological additives - enzymes that break down and gradually destroy stains of protein origin. To study the nature of the influence of modern washing powders semen stains were put kinds of fabrics and prepared in advance stained sperm of men of different groups according to ABO system. For research washing machines of known manufacturers of household appliances have been used with different production characteristics, in which the test was performed and the washing of various kinds of fabrics with semen stains. After washing the tissue with spots were tested for the presence of semen stains visually preserved, establishing in them surviving sperm or their elements, we studied the possibilities of the group diagnostics on the system ABO or molecular-genetic identification. The subsequent study of these spots by morphological method showed that 100% detection of morphological sperm cells - sperm is not possible. As a result, in 30% of further studies of these traces gave weakly positive results are obtained with an immunoassay test PSA SEMIQUANT. It is noted that the percentage of positive results obtained in the study of semen traces disposed on natural fiber fabrics is higher than sperm traces disposed on synthetic fabrics. Study traces of semen, confirmed by PSA - test 3% possible to establish a genetic profile of the person and obtain any positive findings of the molecular genetic examination. In other cases, it was not a sufficient amount of material for DNA identification. Results of research and the practical expert study found, in most cases, the conclusions of the identification of sperm traces do not seem possible. This a consequence of exposure to semen traces on the material evidence of biological additives contained in modern detergents and further the influence of other effective methods. Resulting in DNA has undergone irreversible changes (degradation) under the influence of external human factors. Using molecular genetic methods can partially solve the problems arising in the study of unlaundered physical evidence for the disclosure and investigation of crimes.

Keywords: study of sperm, modern detergents, washing powders, forensic medicine

Procedia PDF Downloads 277
136 Production, Characterisation, and in vitro Degradation and Biocompatibility of a Solvent-Free Polylactic-Acid/Hydroxyapatite Composite for 3D-Printed Maxillofacial Bone-Regeneration Implants

Authors: Carlos Amnael Orozco-Diaz, Robert David Moorehead, Gwendolen Reilly, Fiona Gilchrist, Cheryl Ann Miller

Abstract:

The current gold-standard for maxillofacial reconstruction surgery (MRS) utilizes auto-grafted cancellous bone as a filler. This study was aimed towards developing a polylactic-acid/hydroxyapatite (PLA-HA) composite suitable for fused-deposition 3D printing. Functionalization of the polymer through the addition of HA was directed to promoting bone-regeneration properties so that the material can rival the performance of cancellous bone grafts in terms of bone-lesion repair. This kind of composite enables the production of MRS implants based off 3D-reconstructions from image studies – namely computed tomography – for anatomically-correct fitting. The present study encompassed in-vitro degradation and in-vitro biocompatibility profiling for 3D-printed PLA and PLA-HA composites. PLA filament (Verbatim Co.) and Captal S hydroxyapatite micro-scale HA powder (Plasma Biotal Ltd) were used to produce PLA-HA composites at 5, 10, and 20%-by-weight HA concentration. These were extruded into 3D-printing filament, and processed in a BFB-3000 3D-Printer (3D Systems Co.) into tensile specimens, and were mechanically challenged as per ASTM D638-03. Furthermore, tensile specimens were subjected to accelerated degradation in phosphate-buffered saline solution at 70°C for 23 days, as per ISO-10993-13-2010. This included monitoring of mass loss (through dry-weighing), crystallinity (through thermogravimetric analysis/differential thermal analysis), molecular weight (through gel-permeation chromatography), and tensile strength. In-vitro biocompatibility analysis included cell-viability and extracellular matrix deposition, which were performed both on flat surfaces and on 3D-constructs – both produced through 3D-printing. Discs of 1 cm in diameter and cubic 3D-meshes of 1 cm3 were 3D printed in PLA and PLA-HA composites (n = 6). The samples were seeded with 5000 MG-63 osteosarcoma-like cells, with cell viability extrapolated throughout 21 days via resazurin reduction assays. As evidence of osteogenicity, collagen and calcium deposition were indirectly estimated through Sirius Red staining and Alizarin Red staining respectively. Results have shown that 3D printed PLA loses structural integrity as early as the first day of accelerated degradation, which was significantly faster than the literature suggests. This was reflected in the loss of tensile strength down to untestable brittleness. During degradation, mass loss, molecular weight, and crystallinity behaved similarly to results found in similar studies for PLA. All composite versions and pure PLA were found to perform equivalent to tissue-culture plastic (TCP) in supporting the seeded-cell population. Significant differences (p = 0.05) were found on collagen deposition for higher HA concentrations, with composite samples performing better than pure PLA and TCP. Additionally, per-cell-calcium deposition on the 3D-meshes was significantly lower when comparing 3D-meshes to discs of the same material (p = 0.05). These results support the idea that 3D-printable PLA-HA composites are a viable resorbable material for artificial grafts for bone-regeneration. Degradation data suggests that 3D-printing of these materials – as opposed to other manufacturing methods – might result in faster resorption than currently-used PLA implants.

Keywords: bone regeneration implants, 3D-printing, in vitro testing, biocompatibility, polymer degradation, polymer-ceramic composites

Procedia PDF Downloads 131
135 The Molecular Mechanism of Vacuolar Function in Yeast Cell Homeostasis

Authors: Chang-Hui Shen, Paulina Konarzewska

Abstract:

Cell homeostasis is regulated by vacuolar activity and it has been shown that lipid composition of the vacuole plays an important role in vacuolar function. The major phosphoinositide species present in the vacuolar membrane include phosphatidylinositol 3,5-biphosphate (PI(3,5)P₂) which is generated from PI(3)P controlled by Fab1p. Deletion of FAB1 gene reduce the synthesis of PI(3,5)P₂ and thus result in enlarged or fragmented vacuoles, with neutral vacuolar pH due to reduced vacuolar H⁺-ATPase activity. These mutants also exhibited poor growth at high extracellular pH and in the presence of CaCl₂. Conversely, VPS34 regulates the synthesis of PI(3)P from phosphatidylinositol (PI), and the lack of Vps34p results in the reduction of vacuolar activity. Although the cellular observations are clear, it is still unknown about the molecular mechanism between the phospholipid biosynthesis pathway and vacuolar activity. Since both VPS34 and FAB1 are important in vacuolar activity, we hypothesize that the molecular mechanism of vacuolar function might be regulated by the transcriptional regulators of phospholipid biosynthesis. In this study, we study the role of the major phospholipid biosynthesis transcription factor, INO2, in the regulation of vacuolar activity. We first performed qRT-PCR to examine the effect of Ino2p on the expression of VPS34 and FAB1. Our results showed that VPS34 was upregulated in the presence of inositol for both WT and ino2Δ cells. However, FAB1 was only upregulated significantly in ino2Δ cells. This indicated that Ino2p might be the negative regulator for FAB1 expression. Next, growth sensitivity experiment showed that WT, vma3Δ, and ino2Δ grew well in growth medium buffered to pH 5.5 containing 10 mM CaCl₂. As cells were switched to growth medium buffered to pH 7 containing CaCl₂ WT, ino2Δ and opi1Δ showed growth reduction, whereas vma3Δ was completely nonviable. As the concentration of CaCl₂ was increased to 60 mM, ino2Δ cells showed moderate growth reduction compared to WT. This result suggests that ino2Δ cells have better vacuolar activity. Microscopic analysis and vacuolar acidification were employed to further elucidate the importance of INO2 in vacuolar homeostasis. Analysis of vacuolar morphology indicated that WT and vma3Δ cells displayed vacuoles that occupied a small area of the cell when grown in media buffered to pH 5.5. Whereas, ino2Δ displayed fragmented vacuoles. On the other hand, all strains grown in media buffered to pH 7, exhibited enlarged vacuoles that occupied most of the cell’s surface. This indicated that the presence of INO2 may play negative effect in vacuolar morphology when cells are grown in media buffered to pH 5.5. Furthermore, vacuolar acidification assay showed that only vma3Δ cells displayed notably less acidic vacuoles as cells were grown in media buffered to pH 5.5 and pH 7. Whereas, ino2Δ cells displayed more acidic pH compared to WT at pH7. Taken together, our results demonstrated the molecular mechanism of the vacuolar activity regulated by the phospholipid biosynthesis transcription factors Ino2p. Ino2p negatively regulates vacuolar activity through the expression of FAB1.

Keywords: vacuole, phospholipid, homeostasis, Ino2p, FAB1

Procedia PDF Downloads 106
134 Enhancement Effect of Compound 4-Hydroxybenzoic Acid from Petung Bamboo (Dendrocalamus Asper) Shoots on α1β2γ2S of GABA (A) Receptor Expressed in Xenopus laevis Oocytes- Preliminary Study on Its Anti-Epileptic Potential

Authors: Muhammad Bilal, Amelia Jane Llyod, Habsah Mohamad, Jia Hui Wong, Abdul Aziz Mohamed Yusoff, Jafri Malin Abdullah, Jingli Zhang

Abstract:

Epilepsy is one of the major brain afflictions occurs with uncontrolled excitation of cortex; disturbed 50 million of world’s population. About 25 percent of patients subjected to adverse effects from antiepileptic drugs (AEDs) such as depression, nausea, tremors, gastrointestinal symptoms, osteoporosis, dizziness, weight change, drowsiness, fatigue are commonly observed indications; therefore, new drugs are required to cure epilepsy. GABA is principle inhibitory neurotransmitter, control excitation of the brain. Mutation or dysfunction of GABA receptor is one of the primary causes of epilepsy, which is confirmed from many acquired models of epilepsy like traumatic brain injury, kindling, and status epilepticus models of epilepsy. GABA receptor has 3 distinct types such as GABA (A), GABA (B), GABA(C).GABA (A) receptor has 20 different subunits, α1β2γ2 subunits composition of GABA (A) receptor is the most used combination of subunits for screening of compounds against epilepsy. We expressed α1β2γ2s subunits of GABA (A) Receptor in Xenopus leavis oocytes and examined the enhancement potential of 4-Hydroxybenzoic acid compound on GABA (A) receptor via two-electrode voltage clamp current recording technique. Bamboo shoots are the young, tender offspring of bamboo, which are usually harvested after a cultivating period of 2 weeks. Proteins, acids, fat, starch, carbohydrate, fatty acid, vitamin, dietary fiber, and minerals are the major constituent found systematically in bamboo shoots. These shoots reported to have anticancer, antiviral, antibacterial activity, also possess antioxidant properties due to the presence of phenolic compounds. Student t-test analysis suggested that 4- hydroxybenzoic acid positively allosteric GABA (A) receptor, increased normalized current amplitude to 1.0304±0.0464(p value 0.032) compared with vehicle. 4-Hydrobenzoic acid, a compound from Dendrocalamus Asper bamboo shoot gives new insights for future studies on bamboo shoots with motivation for extraction of more compounds to investigate their effects on human and rodents against epilepsy, insomnia, and anxiety.

Keywords: α1β2γ2S, antiepileptic, bamboo shoots, epilepsy GABA (A) receptor, two-microelectrode voltage clamp, xenopus laevis oocytes

Procedia PDF Downloads 375
133 Switchable Lipids: From a Molecular Switch to a pH-Sensitive System for the Drug and Gene Delivery

Authors: Jeanne Leblond, Warren Viricel, Amira Mbarek

Abstract:

Although several products have reached the market, gene therapeutics are still in their first stages and require optimization. It is possible to improve their lacking efficiency by the use of carefully engineered vectors, able to carry the genetic material through each of the biological barriers they need to cross. In particular, getting inside the cell is a major challenge, because these hydrophilic nucleic acids have to cross the lipid-rich plasmatic and/or endosomal membrane, before being degraded into lysosomes. It takes less than one hour for newly endocytosed liposomes to reach highly acidic lysosomes, meaning that the degradation of the carried gene occurs rapidly, thus limiting the transfection efficiency. We propose to use a new pH-sensitive lipid able to change its conformation upon protonation at endosomal pH values, leading to the disruption of the lipidic bilayer and thus to the fast release of the nucleic acids into the cytosol. It is expected that this new pH-sensitive mechanism promote endosomal escape of the gene, thereby its transfection efficiency. The main challenge of this work was to design a preparation presenting fast-responding lipidic bilayer destabilization properties at endosomal pH 5 while remaining stable at blood pH value and during storage. A series of pH-sensitive lipids able to perform a conformational switch upon acidification were designed and synthesized. Liposomes containing these switchable lipids, as well as co-lipids were prepared and characterized. The liposomes were stable at 4°C and pH 7.4 for several months. Incubation with siRNA led to the full entrapment of nucleic acids as soon as the positive/negative charge ratio was superior to 2. The best liposomal formulation demonstrated a silencing efficiency up to 10% on HeLa cells, very similar to a commercial agent, with a lowest toxicity than the commercial agent. Using flow cytometry and microscopy assays, we demonstrated that drop of pH was required for the transfection efficiency, since bafilomycin blocked the transfection efficiency. Additional evidence was brought by the synthesis of a negative control lipid, which was unable to switch its conformation, and consequently exhibited no transfection ability. Mechanistic studies revealed that the uptake was mediated through endocytosis, by clathrin and caveolae pathways, as reported for previous lipid nanoparticle systems. This potent system was used for the treatment of hypercholesterolemia. The switchable lipids were able to knockdown PCSK9 expression on human hepatocytes (Huh-7). Its efficiency is currently evaluated on in vivo mice model of PCSK9 KO mice. In summary, we designed and optimized a new cationic pH-sensitive lipid for gene delivery. Its transfection efficiency is similar to the best available commercial agent, without the usually associated toxicity. The promising results lead to its use for the treatment of hypercholesterolemia on a mice model. Anticancer applications and pulmonary chronic disease are also currently investigated.

Keywords: liposomes, siRNA, pH-sensitive, molecular switch

Procedia PDF Downloads 184
132 Morphology, Qualitative, and Quantitative Elemental Analysis of Pheasant Eggshells in Thailand

Authors: Kalaya Sribuddhachart, Mayuree Pumipaiboon, Mayuva Youngsabanant-Areekijseree

Abstract:

The ultrastructure of 20 species of pheasant eggshells in Thailand, (Simese Fireback, Lophura diardi), (Silver Pheasant, Lophura nycthemera), (Kalij Pheasant, Lophura leucomelanos crawfurdii), (Kalij Pheasant, Lophura leucomelanos lineata), (Red Junglefowl, Gallus gallus spadiceus), (Crested Fireback, Lophura ignita rufa), (Green Peafowl, Pavo muticus), (Indian Peafowl, Pavo cristatus), (Grey Peacock Pheasant, Polyplectron bicalcaratum bicalcaratum), (Lesser Bornean Fireback, Lophura ignita ignita), (Green Junglefowl, Gallus varius), (Hume's Pheasant, Syrmaticus humiae humiae), (Himalayan Monal, Lophophorus impejanus), Golden Pheasant, Chrysolophus pictus, (Ring-Neck Pheasant, Phasianus sp.), (Reeves’s Pheasant, Syrmaticus reevesi), (Polish Chicken, Gallus sp.), (Brahma Chicken, Gallus sp.), (Yellow Golden Pheasant, Chrysolophus pictus luteus), and (Lady Amhersts Pheasant, Chrysolophus amherstiae) were studied by Secondary electron imaging (SEI) and Energy dispersive X-ray analysis (EDX) detectors of scanning electron microscope. Generally, all pheasant eggshells showed 3 layers of cuticle, palisade, and mammillary. The total thickness was ranging from 190.28±5.94-838.96±16.31µm. The palisade layer is the most thickness layer following by mammillary and cuticle layers. The palisade layer in all pheasant eggshells consisted of numerous vesicle holes that were firmly forming as network thorough the layer. The vesicle holes in all pheasant eggshells had difference porosity ranging from 0.44±0.11-0.23±0.05 µm. While the mammillary layer was the most compact layer with a variable shape (broad-base V and U-shape) connect to shell membrane. Elemental analysis by of 20 specie eggshells showed 9 apparent elements including carbon (C), oxygen (O), calcium (Ca), phosphorous (P), sulfur (S), magnesium (Mg), silicon (Si), aluminum (Al), and copper (Cu) at the percentage of 28.90- 8.33%, 60.64-27.61%, 55.30-14.49%, 1.97-0.03%, 0.08-0.03%, 0.50-0.16%, 0.30-0.04%, 0.06-0.02%, and 2.67-1.73%, respectively. It was found that Ca, C, and O showed highest elemental compositions, which essential for pheasant embryonic development, mainly presented as composited structure of calcium carbonate (CaCO3) more than 97%. Meanwhile, Mg, S, Si, Al, and P were major inorganic constituents of the eggshells which directly related to an increase of the shell hardness. Finally, the percentage of heavy metal copper (Cu) has been observed in 4 eggshell species. There are Golden Pheasant (2.67±0.16%), Indian Peafowl (2.61±0.13%), Green Peafowl (1.97±0.74%), and Silver Pheasant (1.73±0.11%), respectively. A non-significant difference was found in the percentages of 9 elements in all pheasant eggshells. This study is useful to provide the information of biology and taxonomic of pheasant study in Thailand for conservation.

Keywords: pheasants eggshells, secondary electron imaging (SEI) and energy dispersive X-ray analysis (EDX), morphology, Thailand

Procedia PDF Downloads 213
131 Bioactive Substances-Loaded Water-in-Oil/Oil-in-Water Emulsions for Dietary Supplementation in the Elderly

Authors: Agnieszka Markowska-Radomska, Ewa Dluska

Abstract:

Maintaining a bioactive substances dense diet is important for the elderly, especially to prevent diseases and to support healthy ageing. Adequate bioactive substances intake can reduce the risk of developing chronic diseases (e.g. cardiovascular, osteoporosis, neurodegenerative syndromes, diseases of the oral cavity, gastrointestinal (GI) disorders, diabetes, and cancer). This can be achieved by introducing a comprehensive supplementation of components necessary for the proper functioning of the ageing body. The paper proposes the multiple emulsions of the W1/O/W2 (water-in-oil-in-water) type as carriers for effective co-encapsulation and co-delivery of bioactive substances in supplementation of the elderly. Multiple emulsions are complex structured systems ("drops in drops"). The functional structure of the W1/O/W2 emulsion enables (i) incorporation of one or more bioactive components (lipophilic and hydrophilic); (ii) enhancement of stability and bioavailability of encapsulated substances; (iii) prevention of interactions between substances, as well as with the external environment, delivery to a specific location; and (iv) release in a controlled manner. The multiple emulsions were prepared by a one-step method in the Couette-Taylor flow (CTF) contactor in a continuous manner. In general, a two-step emulsification process is used to obtain multiple emulsions. The paper contains a proposal of emulsion functionalization by introducing pH-responsive biopolymer—carboxymethylcellulose sodium salt (CMC-Na) to the external phase, which made it possible to achieve a release of components controlled by the pH of the gastrointestinal environment. The membrane phase of emulsions was soybean oil. The W1/O/W2 emulsions were evaluated for their characteristics (drops size/drop size distribution, volume packing fraction), encapsulation efficiency and stability during storage (to 30 days) at 4ºC and 25ºC. Also, the in vitro multi-substance co-release process were investigated in a simulated gastrointestinal environment (different pH and composition of release medium). Three groups of stable multiple emulsions were obtained: emulsions I with co-encapsulated vitamins B12, B6 and resveratrol; emulsions II with vitamin A and β-carotene; and emulsions III with vitamins C, E and D3. The substances were encapsulated in the appropriate emulsion phases depending on the solubility. For all emulsions, high encapsulation efficience (over 95%) and high volume packing fraction of internal droplets (0.54-0.76) were reached. In addition, due to the presence of a polymer (CMC-Na) with adhesive properties, high encapsulation stability during emulsions storage were achieved. The co-release study of encapsulated bioactive substances confirmed the possibility to modify the release profiles. It was found that the releasing process can be controlled through the composition, structure, physicochemical parameters of emulsions and pH of the release medium. The results showed that the obtained multiple emulsions might be used as potential liquid complex carriers for controlled/modified/site-specific co-delivery of bioactive substances in dietary supplementation in the elderly.

Keywords: bioactive substance co-release, co-encapsulation, elderly supplementation, multiple emulsion

Procedia PDF Downloads 176
130 Vibration and Freeze-Thaw Cycling Tests on Fuel Cells for Automotive Applications

Authors: Gema M. Rodado, Jose M. Olavarrieta

Abstract:

Hydrogen fuel cell technologies have experienced a great boost in the last decades, significantly increasing the production of these devices for both stationary and portable (mainly automotive) applications; these are influenced by two main factors: environmental pollution and energy shortage. A fuel cell is an electrochemical device that converts chemical energy directly into electricity by using hydrogen and oxygen gases as reactive components and obtaining water and heat as byproducts of the chemical reaction. Fuel cells, specifically those of Proton Exchange Membrane (PEM) technology, are considered an alternative to internal combustion engines, mainly because of the low emissions they produce (almost zero), high efficiency and low operating temperatures (< 373 K). The introduction and use of fuel cells in the automotive market requires the development of standardized and validated procedures to test and evaluate their performance in different environmental conditions including vibrations and freeze-thaw cycles. These situations of vibration and extremely low/high temperatures can affect the physical integrity or even the excellent operation or performance of the fuel cell stack placed in a vehicle in circulation or in different climatic conditions. The main objective of this work is the development and validation of vibration and freeze-thaw cycling test procedures for fuel cell stacks that can be used in a vehicle in order to consolidate their safety, performance, and durability. In this context, different experimental tests were carried out at the facilities of the National Hydrogen Centre (CNH2). The experimental equipment used was: A vibration platform (shaker) for vibration test analysis on fuel cells in three axes directions with different vibration profiles. A walk-in climatic chamber to test the starting, operating, and stopping behavior of fuel cells under defined extreme conditions. A test station designed and developed by the CNH2 to test and characterize PEM fuel cell stacks up to 10 kWe. A 5 kWe PEM fuel cell stack in off-operation mode was used to carry out two independent experimental procedures. On the one hand, the fuel cell was subjected to a sinusoidal vibration test on the shaker in the three axes directions. It was defined by acceleration and amplitudes in the frequency range of 7 to 200 Hz for a total of three hours in each direction. On the other hand, the climatic chamber was used to simulate freeze-thaw cycles by defining a temperature range between +313 K and -243 K with an average relative humidity of 50% and a recommended ramp up and rump down of 1 K/min. The polarization curve and gas leakage rate were determined before and after the vibration and freeze-thaw tests at the fuel cell stack test station to evaluate the robustness of the stack. The results were very similar, which indicates that the tests did not affect the fuel cell stack structure and performance. The proposed procedures were verified and can be used as an initial point to perform other tests with different fuel cells.

Keywords: climatic chamber, freeze-thaw cycles, PEM fuel cell, shaker, vibration tests

Procedia PDF Downloads 90
129 Phage Therapy as a Potential Solution in the Fight against Antimicrobial Resistance

Authors: Sanjay Shukla

Abstract:

Excessive use of antibiotics is a main problem in the treatment of wounds and other chronic infections and antibiotic treatment is frequently non-curative, thus alternative treatment is necessary. Phage therapy is considered one of the most effective approaches to treat multi-drug resistant bacterial pathogens. Infections caused by Staphylococcus aureus are very efficiently controlled with phage cocktails, containing a different individual phages lysate infecting a majority of known pathogenic S. aureus strains. The aim of current study was to investigate the efficiency of a purified phage cocktail for prophylactic as well as therapeutic application in mouse model and in large animals with chronic septic infection of wounds. A total of 150 sewage samples were collected from various livestock farms. These samples were subjected for the isolation of bacteriophage by double agar layer method. A total of 27 sewage samples showed plaque formation by producing lytic activity against S. aureus in double agar overlay method out of 150 sewage samples. In TEM recovered isolates of bacteriophages showed hexagonal structure with tail fiber. In the bacteriophage (ØVS) had an icosahedral symmetry with the head size 52.20 nm in diameter and long tail of 109 nm. Head and tail were held together by connector and can be classified as a member of the Myoviridae family under the order of Caudovirale. Recovered bacteriophage had shown the antibacterial activity against the S. aureus in vitro. Cocktail (ØVS1, ØVS5, ØVS9 and ØVS 27) of phage lysate were tested to know in vivo antibacterial activity as well as the safety profile. Result of mice experiment indicated that the bacteriophage lysate was very safe, did not show any appearance of abscess formation which indicates its safety in living system. The mice were also prophylactically protected against S. aureus when administered with cocktail of bacteriophage lysate just before the administration of S. aureus which indicates that they are good prophylactic agent. The S. aureus inoculated mice were completely recovered by bacteriophage administration with 100% recovery which was very good as compere to conventional therapy. In present study ten chronic cases of wound were treated with phage lysate and follow up of these cases was done regularly up to ten days (at 0, 5 and 10 d). Result indicated that the six cases out of ten showed complete recovery of wounds within 10 d. The efficacy of bacteriophage therapy was found to be 60% which was very good as compared to the conventional antibiotic therapy in chronic septic wounds infections. Thus, the application of lytic phage in single dose proved to be innovative and effective therapy for treatment of septic chronic wounds.

Keywords: phage therapy, phage lysate, antimicrobial resistance, S. aureus

Procedia PDF Downloads 99
128 Transient Heat Transfer: Experimental Investigation near the Critical Point

Authors: Andreas Kohlhepp, Gerrit Schatte, Wieland Christoph, Spliethoff Hartmut

Abstract:

In recent years the research of heat transfer phenomena of water and other working fluids near the critical point experiences a growing interest for power engineering applications. To match the highly volatile characteristics of renewable energies, conventional power plants need to shift towards flexible operation. This requires speeding up the load change dynamics of steam generators and their heating surfaces near the critical point. In dynamic load transients, both a high heat flux with an unfavorable ratio to the mass flux and a high difference in fluid and wall temperatures, may cause problems. It may lead to deteriorated heat transfer (at supercritical pressures), dry-out or departure from nucleate boiling (at subcritical pressures), all cases leading to an extensive rise of temperatures. For relevant technical applications, the heat transfer coefficients need to be predicted correctly in case of transient scenarios to prevent damage to the heated surfaces (membrane walls, tube bundles or fuel rods). In transient processes, the state of the art method of calculating the heat transfer coefficients is using a multitude of different steady-state correlations for the momentarily existing local parameters for each time step. This approach does not necessarily reflect the different cases that may lead to a significant variation of the heat transfer coefficients and shows gaps in the individual ranges of validity. An algorithm was implemented to calculate the transient behavior of steam generators during load changes. It is used to assess existing correlations for transient heat transfer calculations. It is also desirable to validate the calculation using experimental data. By the use of a new full-scale supercritical thermo-hydraulic test rig, experimental data is obtained to describe the transient phenomena under dynamic boundary conditions as mentioned above and to serve for validation of transient steam generator calculations. Aiming to improve correlations for the prediction of the onset of deteriorated heat transfer in both, stationary and transient cases the test rig was specially designed for this task. It is a closed loop design with a directly electrically heated evaporation tube, the total heating power of the evaporator tube and the preheater is 1MW. To allow a big range of parameters, including supercritical pressures, the maximum pressure rating is 380 bar. The measurements contain the most important extrinsic thermo-hydraulic parameters. Moreover, a high geometric resolution allows to accurately predict the local heat transfer coefficients and fluid enthalpies.

Keywords: departure from nucleate boiling, deteriorated heat transfer, dryout, supercritical working fluid, transient operation of steam generators

Procedia PDF Downloads 199
127 Regeneration of Cesium-Exhausted Activated Carbons by Microwave Irradiation

Authors: Pietro P. Falciglia, Erica Gagliano, Vincenza Brancato, Alfio Catalfo, Guglielmo Finocchiaro, Guido De Guidi, Stefano Romano, Paolo Roccaro, Federico G. A. Vagliasindi

Abstract:

Cesium-137 (¹³⁷Cs) is a major radionuclide in spent nuclear fuel processing, and it represents the most important cause of contamination related to nuclear accidents. Cesium-137 has long-term radiological effects representing a major concern for the human health. Several physico-chemical methods have been proposed for ¹³⁷Cs removal from impacted water: ion-exchange, adsorption, chemical precipitation, membrane process, coagulation, and electrochemical. However, these methods can be limited by ionic selectivity and efficiency, or they present very restricted full-scale application due to equipment and chemical high costs. On the other hand, adsorption is considered a more cost-effective solution, and activated carbons (ACs) are known as a low-cost and effective adsorbent for a wide range of pollutants among which radionuclides. However, adsorption of Cs onto ACs has been investigated in very few and not exhaustive studies. In addition, exhausted activated carbons are generally discarded in landfill, that is not an eco-friendly and economic solution. Consequently, the regeneration of exhausted ACs must be considered a preferable choice. Several alternatives, including conventional thermal-, solvent-, biological- and electrochemical-regeneration, are available but are affected by several economic or environmental concerns. Microwave (MW) irradiation has been widely used in industrial and environmental applications and it has attracted many attentions to regenerating activated carbons. The growing interest in MW irradiation is based on the passive ability of the irradiated medium to convert a low power irradiation energy into a rapid and large temperature increase if the media presents good dielectric features. ACs are excellent MW-absorbers, with a high mechanical strength and a good resistance towards heating process. This work investigates the feasibility of MW irradiation for the regeneration of Cs-exhausted ACs. Adsorption batch experiments were carried out using commercially available granular activated carbon (GAC), then Cs-saturated AC samples were treated using a controllable bench-scale 2.45-GHz MW oven and investigating different adsorption-regeneration cycles. The regeneration efficiency (RE), weight loss percentage, and textural properties of the AC samples during the adsorption-regeneration cycles were also assessed. Main results demonstrated a relatively low adsorption capacity for Cs, although the feasibility of ACs was strictly linked to their dielectric nature, which allows a very efficient thermal regeneration by MW irradiation. The weight loss percentage was found less than 2%, and an increase in RE after three cycles was also observed. Furthermore, MW regeneration preserved the pore structure of the regenerated ACs. For a deeper exploration of the full-scale applicability of MW regeneration, further investigations on more adsorption-regeneration cycles or using fixed-bed columns are required.

Keywords: adsorption mechanisms, cesium, granular activated carbons, microwave regeneration

Procedia PDF Downloads 119