Search results for: carbonate factory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 531

Search results for: carbonate factory

21 Environmental Impact of Pallets in the Supply Chain: Including Logistics and Material Durability in a Life Cycle Assessment Approach

Authors: Joana Almeida, Kendall Reid, Jonas Bengtsson

Abstract:

Pallets are devices that are used for moving and storing freight and are nearly omnipresent in supply chains. The market is dominated by timber pallets, with plastic being a common alternative. Either option underpins the use of important resources (oil, land, timber), the emission of greenhouse gases and additional waste generation in most supply chains. This study uses a dynamic approach to the life cycle assessment (LCA) of pallets. It demonstrates that what ultimately defines the environmental burden of pallets in the supply chain is how often the length of its lifespan, which depends on the durability of the material and on how pallets are utilized. This study proposes a life cycle assessment (LCA) of pallets in supply chains supported by an algorithm that estimates pallet durability in function of material resilience and of logistics. The LCA runs from cradle-to-grave, including raw material provision, manufacture, transport and end of life. The scope is representative of timber and plastic pallets in the Australian and South-East Asia markets. The materials included in this analysis are: -tropical mixed hardwood, unsustainably harvested in SE Asia; -certified softwood, sustainably harvested; -conventional plastic, a mix of virgin and scrap plastic; -recycled plastic pallets, 100% mixed plastic scrap, which are being pioneered by Re > Pal. The logistical model purports that more complex supply chains and rougher handling subject pallets to higher stress loads. More stress shortens the lifespan of pallets in function of their composition. Timber pallets can be repaired, extending their lifespan, while plastic pallets cannot. At the factory gate, softwood pallets have the lowest carbon footprint. Re > pal follows closely due to its burden-free feedstock. Tropical mixed hardwood and plastic pallets have the highest footprints. Harvesting tropical mixed hardwood in SE Asia often leads to deforestation, leading to emissions from land use change. The higher footprint of plastic pallets is due to the production of virgin plastic. Our findings show that manufacture alone does not determine the sustainability of pallets. Even though certified softwood pallets have lower carbon footprint and their lifespan can be extended by repair, the need for re-supply of materials and disposal of waste timber offsets this advantage. It also leads to most waste being generated among all pallets. In a supply chain context, Re > Pal pallets have the lowest footprint due to lower replacement and disposal needs. In addition, Re > Pal are nearly ‘waste neutral’, because the waste that is generated throughout their life cycle is almost totally offset by the scrap uptake for production. The absolute results of this study can be confirmed by progressing the logistics model, improving data quality, expanding the range of materials and utilization practices. Still, this LCA demonstrates that considering logistics, raw materials and material durability is central for sustainable decision-making on pallet purchasing, management and disposal.

Keywords: carbon footprint, life cycle assessment, recycled plastic, waste

Procedia PDF Downloads 192
20 A Study of the Carbon Footprint from a Liquid Silicone Rubber Compounding Facility in Malaysia

Authors: Q. R. Cheah, Y. F. Tan

Abstract:

In modern times, the push for a low carbon footprint entails achieving carbon neutrality as a goal for future generations. One possible step towards carbon footprint reduction is the use of more durable materials with longer lifespans, for example, silicone data cableswhich show at least double the lifespan of similar plastic products. By having greater durability and longer lifespans, silicone data cables can reduce the amount of trash produced as compared to plastics. Furthermore, silicone products don’t produce micro contamination harmful to the ocean. Every year the electronics industry produces an estimated 5 billion data cables for USB type C and lightning data cables for tablets and mobile phone devices. Material usage for outer jacketing is 6 to 12 grams per meter. Tests show that the product lifespan of a silicone data cable over plastic can be doubled due to greater durability. This can save at least 40,000 tonnes of material a year just on the outer jacketing of the data cable. The facility in this study specialises in compounding of liquid silicone rubber (LSR) material for the extrusion process in jacketing for the silicone data cable. This study analyses the carbon emissions from the facility, which is presently capable of producing more than 1,000 tonnes of LSR annually. This study uses guidelines from the World Business Council for Sustainable Development (WBCSD) and World Resources Institute (WRI) to define the boundaries of the scope. The scope of emissions is defined as 1. Emissions from operations owned or controlled by the reporting company, 2. Emissions from the generation of purchased or acquired energy such as electricity, steam, heating, or cooling consumed by the reporting company, and 3. All other indirect emissions occurring in the value chain of the reporting company, including both upstream and downstream emissions. As the study is limited to the compounding facility, the system boundaries definition according to GHG protocol is cradle-to-gate instead of cradle-to-grave exercises. Malaysia’s present electricity generation scenario was also used, where natural gas and coal constitute the bulk of emissions. Calculations show the LSR produced for the silicone data cable with high fire retardant capability has scope 1 emissions of 0.82kg CO2/kg, scope 2 emissions of 0.87kg CO2/kg, and scope 3 emissions of 2.76kg CO2/kg, with a total product carbon footprint of 4.45kg CO2/kg. This total product carbon footprint (Cradle-to-gate) is comparable to the industry and to plastic materials per tonne of material. Although per tonne emission is comparable to plastic material, due to greater durability and longer lifespan, there can be significantly reduced use of LSR material. Suggestions to reduce the calculated product carbon footprint in the scope of emissions involve 1. Incorporating the recycling of factory silicone waste into operations, 2. Using green renewable energy for external electricity sources and 3. Sourcing eco-friendly raw materials with low GHG emissions.

Keywords: carbon footprint, liquid silicone rubber, silicone data cable, Malaysia facility

Procedia PDF Downloads 70
19 Treatment with Triton-X 100: An Enhancement Approach for Cardboard Bioprocessing

Authors: Ahlam Said Al Azkawi, Nallusamy Sivakumar, Saif Nasser Al Bahri

Abstract:

Diverse approaches and pathways are under development with the determination to develop cellulosic biofuels and other bio-products eventually at commercial scale in “bio-refineries”; however, the key challenge is mainly the high level of complexity in processing the feedstock which is complicated and energy consuming. To overcome the complications in utilizing the naturally occurring lignocellulose biomass, using waste paper as a feedstock for bio-production may solve the problem. Besides being abundant and cheap, bioprocessing of waste paper has evolved in response to the public concern from rising landfill cost from shrinking landfill capacity. Cardboard (CB) is one of the major components of municipal solid waste and one of the most important items to recycle. Although 50-70% of cardboard constitute is known to be cellulose and hemicellulose, the presence of lignin around them cause hydrophobic cross-link which physically obstructs the hydrolysis by rendering it resistant to enzymatic cleavage. Therefore, pretreatment is required to disrupt this resistance and to enhance the exposure of the targeted carbohydrates to the hydrolytic enzymes. Several pretreatment approaches have been explored, and the best ones would be those can influence cellulose conversion rates and hydrolytic enzyme performance with minimal or less cost and downstream processes. One of the promising strategies in this field is the application of surfactants, especially non-ionic surfactants. In this study, triton-X 100 was used as surfactants to treat cardboard prior enzymatic hydrolysis and compare it with acid treatment using 0.1% H2SO4. The effect of the surfactant enhancement was evaluated through its effect on hydrolysis rate in respect to time in addition to evaluating the structural changes and modification by scanning electron microscope (SEM) and X-ray diffraction (XRD) and through compositional analysis. Further work was performed to produce ethanol from CB treated with triton-X 100 via separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF). The hydrolysis studies have demonstrated enhancement in saccharification by 35%. After 72 h of hydrolysis, a saccharification rate of 98% was achieved from CB enhanced with triton-X 100, while only 89 of saccharification achieved from acid pre-treated CB. At 120 h, the saccharification % exceeded 100 as reducing sugars continued to increase with time. This enhancement was not supported by any significant changes in the cardboard content as the cellulose, hemicellulose and lignin content remained same after treatment, but obvious structural changes were observed through SEM images. The cellulose fibers were clearly exposed with very less debris and deposits compared to cardboard without triton-X 100. The XRD pattern has also revealed the ability of the surfactant in removing calcium carbonate, a filler found in waste paper known to have negative effect on enzymatic hydrolysis. The cellulose crystallinity without surfactant was 73.18% and reduced to 66.68% rendering it more amorphous and susceptible to enzymatic attack. Triton-X 100 has proved to effectively enhance CB hydrolysis and eventually had positive effect on the ethanol yield via SSF. Treating cardboard with only triton-X 100 was a sufficient treatment to enhance the enzymatic hydrolysis and ethanol production.

Keywords: cardboard, enhancement, ethanol, hydrolysis, treatment, Triton-X 100

Procedia PDF Downloads 115
18 Kinematic of Thrusts and Tectonic Vergence in the Paleogene Orogen of Eastern Iran, Sechangi Area

Authors: Shahriyar Keshtgar, Mahmoud Reza Heyhat, Sasan Bagheri, Ebrahim Gholami, Seyed Naser Raiisosadat

Abstract:

The eastern Iranian range is a Z-shaped sigmoidal outcrop appearing with a NS-trending general strike on the satellite images, has already been known as the Sistan suture zone, recently identified as the product of an orogenic event introduced either by the Paleogene or Sistan orogen names. The flysch sedimentary basin of eastern Iran was filled by a huge volume of fine-grained Eocene turbiditic sediments, smaller amounts of pelagic deposits and Cretaceous ophiolitic slices, which are entirely remnants of older accretionary prisms appeared in a fold-thrust belt developed onto a subduction zone under the Lut/Afghan block, portions of the Cimmerian superterrane. In these ranges, there are Triassic sedimentary and carbonate sequences (equivalent to Nayband and Shotori Formations) along with scattered outcrops of Permian limestones (equivalent to Jamal limestone) and greenschist-facies metamorphic rocks, probably belonging to the basement of the Lut block, which have tectonic contacts with younger rocks. Moreover, the younger Eocene detrital-volcanic rocks were also thrusted onto the Cretaceous or younger turbiditic deposits. The first generation folds (parallel folds) and thrusts with slaty cleavage appeared parallel to the NE edge of the Lut block. Structural analysis shows that the most vergence of thrusts is toward the southeast so that the Permo-Triassic units in Lut have been thrusted on the younger rocks, including older (probably Jurassic) granites. Additional structural studies show that the regional transport direction in this deformation event is from northwest to the southeast where, from the outside to the inside of the orogen in the Sechengi area. Younger thrusts of the second deformation event were either directly formed as a result of the second deformation event, or they were older thrusts that reactivated and folded so that often, two sets or more slickenlines can be recognized on the thrust planes. The recent thrusts have been redistributed in directions nearly perpendicular to the edge of the Lut block and parallel to the axial surfaces of the northwest second generation large-scale folds (radial folds). Some of these younger thrusts follow the out-of-the-syncline thrust system. The both axial planes of these folds and associated penetrative shear cleavage extended towards northwest appeared with both northeast and southwest dips parallel to the younger thrusts. The large-scale buckling with the layer-parallel stress field has created this deformation event. Such consecutive deformation events perpendicular to each other cannot be basically explained by the simple linear orogen models presented for eastern Iran so far and are more consistent with the oroclinal buckling model.

Keywords: thrust, tectonic vergence, orocline buckling, sechangi, eastern iranian ranges

Procedia PDF Downloads 46
17 Engineering Economic Analysis of Implementing a Materials Recovery Facility in Jamaica: A Green Industry Approach towards a Sustainable Developing Economy

Authors: Damian Graham, Ashleigh H. Hall, Damani R. Sulph, Michael A. James, Shawn B. Vassell

Abstract:

This paper assesses the design and feasibility of a Materials Recovery Facility (MRF) in Jamaica as a possible green industry approach to the nation’s economic and solid waste management problems. Jamaica is a developing nation that is vulnerable to climate change that can affect its blue economy and tourism on which it is heavily reliant. Jamaica’s National Solid Waste Management Authority (NSWMA) collects only a fraction of all the solid waste produced annually which is then transported to dumpsites. The remainder is either burnt by the population or disposed of illegally. These practices negatively impact the environment, threaten the sustainability of economic growth from blue economy and tourism and its waste management system is predominantly a cost centre. The implementation of an MRF could boost the manufacturing sector, contribute to economic growth, and be a catalyst in creating a green industry with multiple downstream value chains with supply chain linkages. Globally, there is a trend to reuse and recycle that created an international market for recycled solid waste. MRFs enable the efficient sorting of solid waste into desired recoverable materials thus providing a gateway for entrance to the international trading of recycled waste. Research into the current state and effort to improve waste management in Jamaica in contrast with the similar and more advanced territories are outlined. The study explores the concept of green industrialization and its applicability to vulnerable small state economies like Jamaica. The study highlights the possible contributions and benefits derived from MRFs as a seeding factory that can anchor the reverse and forward logistics of other green industries as part of a logistic-cantered economy. Further, the study showcases an engineering economic analysis that assesses the viability of the implementation of an MRF in Jamaica. This research outlines the potential cost of constructing and operating an MRF and provides a realistic cash flow estimate to establish a baseline for profitability. The approach considers quantitative and qualitative data, assumptions, and modelling using industrial engineering tools and techniques that are outlined. Techniques of facility planning, system analysis and operations research with a focus on linear programming techniques are expressed. Approaches to overcome some implementation challenges including policy, technology and public education are detailed. The results of this study present a reasonable judgment of the prospects of incorporating an MRF to improve Jamaica’s solid waste management and contribute to socioeconomic and environmental benefits and an alternate pathway for economic sustainability.

Keywords: engineering-economic analysis, facility design, green industry, MRF, manufacturing, plant layout, solid-waste management, sustainability, waste disposal

Procedia PDF Downloads 189
16 Carbon Nanotubes Functionalization via Ullmann-Type Reactions Yielding C-C, C-O and C-N Bonds

Authors: Anna Kolanowska, Anna Kuziel, Sławomir Boncel

Abstract:

Carbon nanotubes (CNTs) represent a combination of lightness and nanoscopic size with high tensile strength, excellent thermal and electrical conductivity. By now, CNTs have been used as a support in heterogeneous catalysis (CuCl anchored to pre-functionalized CNTs) in the Ullmann-type coupling with aryl halides toward formation of C-N and C-O bonds. The results indicated that the stability of the catalyst was much improved and the elaborated catalytic system was efficient and recyclable. However, CNTs have not been considered as the substrate itself in the Ullmann-type reactions. But if successful, this functionalization would open new areas of CNT chemistry leading to enhanced in-solvent/matrix nanotube individualization. The copper-catalyzed Ullmann-type reaction is an attractive method for the formation of carbon-heteroatom and carbon-carbon bonds in organic synthesis. This condensation reaction is usually conducted at temperature as high as 200 oC, often in the presence of stoichiometric amounts of copper reagent and with activated aryl halides. However, a small amount of organic additive (e.g. diamines, amino acids, diols, 1,10-phenanthroline) can be applied in order to increase the solubility and stability of copper catalyst, and at the same time to allow performing the reaction under mild conditions. The copper (pre-)catalyst is prepared by in situ mixing of copper salt and the appropriate chelator. Our research is focused on the application of Ullmann-type reaction for the covalent functionalization of CNTs. Firstly, CNTs were chlorinated by using iodine trichloride (ICl3) in carbon tetrachloride (CCl4). This method involves formation of several chemical species (ICl, Cl2 and I2Cl6), but the most reactive is the dimer. The fact (that the dimer is the main individual in CCl4) is the reason for high reactivity and possibly high functionalization levels of CNTs. This method, indeed, yielded a notable amount of chlorine onto the MWCNT surface. The next step was the reaction of CNT-Cl with three substrates: aniline, iodobenzene and phenol for the formation C-N, C-C and C-O bonds, respectively, in the presence of 1,10-phenanthroline and cesium carbonate (Cs2CO3) as a base. As the CNT substrates, two multi-wall CNT (MWCNT) types were used: commercially available Nanocyl NC7000™ (9.6 nm diameter, 1.5 µm length, 90% purity) and thicker MWCNTs (in-house) synthesized in our laboratory using catalytic chemical vapour deposition (c-CVD). In-house CNTs had diameter ranging between 60-70 nm and length up to 300 µm. Since classical Ullmann reaction was found as suffering from poor yields, we have investigated the effect of various solvents (toluene, acetonitrile, dimethyl sulfoxide and N,N-dimethylformamide) on the coupling of substrates. Owing to the fact that the aryl halides show the reactivity order of I>Br>Cl>F, we have also investigated the effect of iodine presence on CNT surface on reaction yield. In this case, in first step we have used iodine monochloride instead of iodine trichloride. Finally, we have used the optimized reaction conditions with p-bromophenol and 1,2,4-trihydroxybenzene for the control of CNT dispersion.

Keywords: carbon nanotubes, coupling reaction, functionalization, Ullmann reaction

Procedia PDF Downloads 139
15 Enhancing the Structural and Electrochemical Performance of Li-Rich Layered Metal Oxides Cathodes for Li-Ion Battery by Coating with the Active Material

Authors: Cyril O. Ehi-Eromosele, Ajayi Kayode

Abstract:

The Li-rich layered metal oxides (LLO) are the most promising candidates for promising electrodes of high energy Li-ion battery (LIB). In literature, these electrode system has either been designed as a hetero-structure of the primary components (composite) or as a core-shell structure with improved electrochemistry reported for both configurations when compared with its primary components. With the on-going efforts to improve on the electrochemical performance of the LIB, it is important to investigate comparatively the structural and electrochemical characteristics of the core-shell like and ‘composite’ forms of these materials with the same compositions and synthesis conditions which could influence future engineering of these materials. Therefore, this study concerns the structural and electrochemical properties of the ‘composite’ and core-shell like LLO cathode materials with the same nominal composition of 0.5Li₂MnO₃-0.5LiNi₀.₅Mn₀.₃Co₀.₂O₂ (LiNi₀.₅Mn₀.₃Co₀.₂O₂ as core and Li₂MnO₃ as the shell). The results show that the core-shell sample (–CS) gave better electrochemical performance than the ‘composite’ sample (–C). Both samples gave the same initial charge capacity of ~300 mAh/g when cycled at 10 mA/g and comparable charge capacity (246 mAh/g for the –CS sample and 240 mAh/g for the –C sample) when cycled at 200 mA/g. However, the –CS sample gave a higher initial discharge capacity at both current densities. The discharge capacity of the –CS sample was 232 mAh/g and 164 mAh/g while the –C sample is 208 mAh/g and 143 mAh/g at the current densities of 10 mA/g and 200 mA/g, respectively. Electrochemical impedance spectroscopy (EIS) results show that the –CS sample generally exhibited a smaller resistance than the –C sample both for the uncycled and after 50th cycle. Detailed structural analysis is on-going, but preliminary results show that the –CS sample had bigger unit cell volume and a higher degree of cation mixing. The thermal stability of the –CS sample was higher than the –C sample. XPS investigation also showed that the pristine –C sample gave a more reactive surface (showing formation of carbonate species to a greater degree) which could result in the greater resistance seen in the EIS result. To reinforce the results obtained for the 0.5Li₂MnO₃-0.5LiNi₀.₅Mn₀.₃Co₀.₃O₂ composition, the same investigations were extended to another ‘composite’ and core-shell like LLO cathode materials also with the same nominal composition of 0.5Li₂MnO₃-0.5LiNi₀.₃Mn₀.₃Co₀.₃O₂. In this case, the aim was to determine the electrochemical performance of the material using a low Ni content (LiNi₀.₃Mn₀.₃Co₀.₃O₂) as the core to clarify the contributions of the core-shell configuration to the electrochemical performance of these materials. Ni-rich layered oxides show active catalytic surface leading to electrolyte oxidation resulting in poor thermal stability and cycle life. Here, the core-shell sample also gave better electrochemical performance than the ‘composite’ sample with 0.5Li₂MnO₃-0.5LiNi₀.₃Mn₀.₃Co₀.₃O₂ composition. Furthermore, superior electrochemical performance was also recorded for the core-shell like spinel modified LLO (0.5Li₂MnO₃-0.45LiNi₀.₅Mn₀.₃Co₀.₂O₂-0.05LiNi₀.₅Mn₁.₅O₄) when compared to the composite system. These results show that the core-shell configuration can generally be used to improve the structural and electrochemical properties of the LLO and spinel modified LLO materials.

Keywords: lithium-ion battery, lithium rich oxide cathode, core-shell structure, composite structure

Procedia PDF Downloads 93
14 Petrograpgy and Major Elements Chemistry of Granitic rocks of the Nagar Parkar Igneous Complex, Tharparkar, Sindh

Authors: Amanullah Lagharil, Majid Ali Laghari, M. Qasim, Jan. M., Asif Khan, M. Hassan Agheem

Abstract:

The Nagar Parkar area in southeastern Sindh is a part of the Thar Desert adjacent to the Runn of Kutchh, and covers 480 km2. It contains exposures of a variety of igneous rocks referred to as the Nagar Parkar Igneous Complex. The complex comprises rocks belonging to at least six phases of magmatism, from oldest to youngest: 1) amphibolitic basement rocks, 2) riebeckite-aegirine grey granite, 3) biotite-hornblende pink granite, 4) acid dykes, 5) rhyolite “plugs”, and basic dykes (Jan et al., 1997). The last three of these are not significant in volume. Radiometric dates are lacking but the grey and pink granites are petrographically comparable to the Siwana and Jalore plutons, respectively, emplaced in the Malani volcanic series. Based on these similarities and proximity, the phase 2 to 6 bodies in the Nagar Parkar may belong to the Late Proterozoic (720–745 Ma) Malani magmatism that covers large areas in western Rajasthan. Khan et al. (2007) have reported a 745 ±30 – 755 ±22 Ma U-Th-Pb age on monazite from the pink granite. The grey granite is essentially composed of perthitic feldspar (microperthite, mesoperthite), quartz, small amount of plagioclase and, characteristically, sodic minerals such as riebeckite and aegirine. A few samples lack aegirine. Fe-Ti oxide and minute, well-developed crystals of zircon occur in almost all the studied samples. Tourmaline, fluorite, apatite and rutile occur in only some samples and astrophyllite is rare. Allanite, sphene and leucoxene occur as minor accessories along with local epidote. The pink granite is mostly leucocratic, but locally rich in biotite (up to 7 %). It is essentially made up of microperthite and quartz, with local microcline, and minor plagioclase (albite-oligoclase). Some rocks contain sufficient oligoclase and can be called adamellite or quartz mozonite. Biotite and hornblende are main accessory minerals along with iron oxide, but in a few samples are without hornblende. Fayalitic olivine, zircon, sphene, apatite, tourmaline, fluorite, allanite and cassiterite occur as sporadic accessory minerals. Epidote, carbonate, sericite and muscovite are produced due to the alteration of feldspar. This work concerns the major element geochemistry and comparison of the principal granitic rocks of Nagar Parkar. According to the scheme of De La Roche et al. (1980), majority of the grey and pink granites classify as alkali granite, 20 % as granite and 10 % as granodiorite. When evaluated on the basis of Shand's indices (after Maniar and Piccoli, 1989), the grey and pink granites span all three fields (peralkaline, metaluminous and peraluminous). Of the analysed grey granites, 67 % classify as peralkaline, 20 % as peraluminous and 10 % as metaluminous, while 50 % of pink granites classify as peralkaline, 30 % metaluminous and 20 % peraluminous.

Keywords: petrography, nagar parker, granites, geological sciences

Procedia PDF Downloads 433
13 Temporal Variation of Surface Runoff and Interrill Erosion in Different Soil Textures of a Semi-arid Region, Iran

Authors: Ali Reza Vaezi, Naser Fakori Ivand, Fereshteh Azarifam

Abstract:

Interrill erosion is the detachment and transfer of soil particles between the rills due to the impact of raindrops and the shear stress of shallow surface runoff. This erosion can be affected by some soil properties such as texture, amount of organic matter and stability of soil aggregates. Information on the temporal variation of interrill erosion during a rainfall event and the effect soil properties have on it can help in understanding the process of runoff production and soil loss between the rills in hillslopes. The importance of this study is especially grate in semi-arid regions, where the soil is weakly aggregated and vegetation cover is mostly poor. Therefore, this research was conducted to investigate the temporal variation of surface flow and interrill erosion and the effect of soil properties on it in some semi-arid soils. A field experiment was done in eight different soil textures under simulated rainfalls with uniform intensity. A total of twenty four plots were installed for eight study soils with three replicates in the form of a random complete block design along the land. The plots were 1.2 m (length) × 1 m (width) in dimensions which designed with a distance of 3 m from each other across the slope. Then, soil samples were purred into the plots. The plots were surrounded by a galvanized sheet, and runoff and soil erosion equipment were placed at their outlets. Rainfall simulation experiments were done using a designed portable simulator with an intensity of 60 mm per hour for 60 minutes. A plastic cover was used around the rainfall simulator frame to prevent the impact of the wind on the free fall of water drops. Runoff production and soil loss were measured during 1 hour time with 5-min intervals. In order to study soil properties, such as particle size distribution, aggregate stability, bulk density, ESP and Ks were determined in the laboratory. Correlation and regression analysis was done to determine the effect of soil properties on runoff and interrill erosion. Results indicated that the study soils have lower booth organic matter content and aggregate stability. The soils, except for coarse textured textures, are calcareous and with relatively higher exchangeable sodium percentages (ESP). Runoff production and soil loss didn’t occur in sand, which was associated with higher infiltration and drainage rates. In other study soils, interrill erosion occurred simultaneously with the generation of runoff. A strong relationship was found between interrill erosion and surface runoff (R2 = 0.75, p< 0.01). The correlation analysis showed that surface runoff was significantly affected by some soil properties consisting of sand, silt, clay, bulk density, gravel, hydraulic conductivity (Ks), lime (calcium carbonate), and ESP. The soils with lower Ks such as fine-textured soils, produced higher surface runoff and more interrill erosion. In the soils, Surface runoff production temporally increased during rainfall and finally reached a peak after about 25-35 min. Time to peak was very short (30 min) in fine-textured soils, especially clay, which was related to their lower infiltration rate.

Keywords: erosion plot, rainfall simulator, soil properties, surface flow

Procedia PDF Downloads 35
12 Interdigitated Flexible Li-Ion Battery by Aerosol Jet Printing

Authors: Yohann R. J. Thomas, Sébastien Solan

Abstract:

Conventional battery technology includes the assembly of electrode/separator/electrode by standard techniques such as stacking or winding, depending on the format size. In that type of batteries, coating or pasting techniques are only used for the electrode process. The processes are suited for large scale production of batteries and perfectly adapted to plenty of application requirements. Nevertheless, as the demand for both easier and cost-efficient production modes, flexible, custom-shaped and efficient small sized batteries is rising. Thin-film, printable batteries are one of the key areas for printed electronics. In the frame of European BASMATI project, we are investigating the feasibility of a new design of lithium-ion battery: interdigitated planar core design. Polymer substrate is used to produce bendable and flexible rechargeable accumulators. Direct fully printed batteries lead to interconnect the accumulator with other electronic functions for example organic solar cells (harvesting function), printed sensors (autonomous sensors) or RFID (communication function) on a common substrate to produce fully integrated, thin and flexible new devices. To fulfill those specifications, a high resolution printing process have been selected: Aerosol jet printing. In order to fit with this process parameters, we worked on nanomaterials formulation for current collectors and electrodes. In addition, an advanced printed polymer-electrolyte is developed to be implemented directly in the printing process in order to avoid the liquid electrolyte filling step and to improve safety and flexibility. Results: Three different current collectors has been studied and printed successfully. An ink of commercial copper nanoparticles has been formulated and printed, then a flash sintering was applied to the interdigitated design. A gold ink was also printed, the resulting material was partially self-sintered and did not require any high temperature post treatment. Finally, carbon nanotubes were also printed with a high resolution and well defined patterns. Different electrode materials were formulated and printed according to the interdigitated design. For cathodes, NMC and LFP were efficaciously printed. For anodes, LTO and graphite have shown to be good candidates for the fully printed battery. The electrochemical performances of those materials have been evaluated in a standard coin cell with lithium-metal counter electrode and the results are similar with those of a traditional ink formulation and process. A jellified plastic crystal solid state electrolyte has been developed and showed comparable performances to classical liquid carbonate electrolytes with two different materials. In our future developments, focus will be put on several tasks. In a first place, we will synthesize and formulate new specific nano-materials based on metal-oxyde. Then a fully printed device will be produced and its electrochemical performance will be evaluated.

Keywords: high resolution digital printing, lithium-ion battery, nanomaterials, solid-state electrolytes

Procedia PDF Downloads 222
11 Production of Medicinal Bio-active Amino Acid Gamma-Aminobutyric Acid In Dairy Sludge Medium

Authors: Farideh Tabatabaee Yazdi, Fereshteh Falah, Alireza Vasiee

Abstract:

Introduction: Gamma-aminobutyric acid (GABA) is a non-protein amino acid that is widely present in organisms. GABA is a kind of pharmacological and biological component and its application is wide and useful. Several important physiological functions of GABA have been characterized, such as neurotransmission and induction of hypotension. GABA is also a strong secretagogue of insulin from the pancreas and effectively inhibits small airway-derived lung adenocarcinoma and tranquilizer. Many microorganisms can produce GABA, and lactic acid bacteria have been a focus of research in recent years because lactic acid bacteria possess special physiological activities and are generally regarded as safe. Among them, the Lb. Brevis produced the highest amount of GABA. The major factors affecting GABA production have been characterized, including carbon sources and glutamate concentration. The use of food industry waste to produce valuable products such as amino acids seems to be a good way to reduce production costs and prevent the waste of food resources. In a dairy factory, a high volume of sludge is produced from a separator that contains useful compounds such as growth factors, carbon, nitrogen, and organic matter that can be used by different microorganisms such as Lb.brevis as carbon and nitrogen sources. Therefore, it is a good source of GABA production. GABA is primarily formed by the irreversible α-decarboxylation reaction of L-glutamic acid or its salts, catalysed by the GAD enzyme. In the present study, this aim was achieved for the fast-growing of Lb.brevis and producing GABA, using the dairy industry sludge as a suitable growth medium. Lactobacillus Brevis strains obtained from Microbial Type Culture Collection (MTCC) were used as model strains. In order to prepare dairy sludge as a medium, sterilization should be done at 121 ° C for 15 minutes. Lb. Brevis was inoculated to the sludge media at pH=6 and incubated for 120 hours at 30 ° C. After fermentation, the supernatant solution is centrifuged and then, the GABA produced was analyzed by the Thin Layer chromatography (TLC) method qualitatively and by the high-performance liquid chromatography (HPLC) method quantitatively. By increasing the percentage of dairy sludge in the culture medium, the amount of GABA increased. Also, evaluated the growth of bacteria in this medium showed the positive effect of dairy sludge on the growth of Lb.brevis, which resulted in the production of more GABA. GABA-producing LAB offers the opportunity of developing naturally fermented health-oriented products. Although some GABA-producing LAB has been isolated to find strains suitable for different fermentations, further screening of various GABA-producing strains from LAB, especially high-yielding strains, is necessary. The production of lactic acid, bacterial gamma-aminobutyric acid, is safe and eco-friendly. The use of dairy industry waste causes enhanced environmental safety. Also provides the possibility of producing valuable compounds such as GABA. In general, dairy sludge is a suitable medium for the growth of Lactic Acid Bacteria and produce this amino acid that can reduce the final cost of it by providing carbon and nitrogen source.

Keywords: GABA, Lactobacillus, HPLC, dairy sludge

Procedia PDF Downloads 95
10 Social and Political Economy of Paid and Unpaid Work: Work of Women Home Based Workers in National Capital Region (NCR), India

Authors: Sudeshna Sengupta

Abstract:

Women’s work lives weave a complex fabric of myriad work relations and complex structures. Lives, when seen from the lens of work, is a saga of conjugated oppression by intertwined structures that are vertically and horizontally interwoven in a very complex manner. Women interact with multiple institutions through their work. The interactions and interplay of institutions shape their organization of work. They intersperse productive work with reproductive work, unpaid economic activities with unpaid care work, and all kinds of activities with leisure and self-care. The proposed paper intends to understand how women working as home-based workers in the National Capital Region (NCR) of India are organizing their everyday work, and how the organization of work is influenced by the interplay of structures. Situating itself in a multidisciplinary theoretical framework, this paper brings out how the gendering of work is playing out in the political, economic and social domain and shaping the work-life within the family, and in the paid workspace. The paper will use a primary data source, which is qualitative in nature. It will comprise 15 qualitative interviews of women home-based workers from the National Capital Region. The research uses a life history approach. The sampling was purposive using snowballing as a method. The dataset is part of the primary data (qualitative) collected for the ongoing Ph.D. work in Gender Studies at Ambedkar University Delhi. The home-based workers interviewed were in “non-factory” wage relations based on piece rates with flexible working hours. Their workplaces were their own homes with no spatial divide between living spaces and workspaces. Home-based workers were recognized as a group in the domain of labor economics in the 1980s. When menial work was cheaper than machine work, the capital owners preferred to outsource work as home-based work to women. These production spaces are fragmented and the identity of gender is created within labor processes to favor material accumulation. Both the employers and employees acknowledged the material gain of the capital owner when work was subcontracted to women at home. Simultaneously the market reinforced women’s reproductive role by conforming to patriarchal ideology. The contractors played an important role in implementing localized control on workers and also in finding workers for fragmented, gendered production processes. Their presence helped the employers in bringing together multiple forms of oppression that ranged from creating a structure to flout laws by creating shadow employers. It created an intertwined social and economic structure as well as a workspace where the line between productive and reproductive work gets blurred. The state invisibilized itself either by keeping the sector out of the domain of laws or by not implementing its own laws regulating working conditions or social security. It allowed the local hierarchy to function and define localized working conditions. The productive reproductive continuum reveals a labor control that influenced both the productive and reproductive work of women.

Keywords: informal sector, paid work, women workers, labor processes

Procedia PDF Downloads 140
9 Biotite from Contact-Metamorphosed Rocks of the Dizi Series of the Greater Caucasus

Authors: Irakli Javakhishvili, Tamara Tsutsunava, Giorgi Beridze

Abstract:

The Caucasus is a component of the Mediterranean collision belt. The Dizi series is situated within the Greater Caucasian region of the Caucasus and crops out in the core of the Svaneti anticlinorium. The series was formed in the continental slope conditions on the southern passive margin of the small ocean basin. The Dizi series crops out on about 560 square km with the thickness 2000-2200 m. The rocks are faunally dated from the Devonian to the Triassic inclusive. The series is composed of terrigenous phyllitic schists, sandstones, quartzite aleurolites and lenses and interlayers of marbleized limestones. During the early Cimmerian orogeny, they underwent regional metamorphism of chlorite-sericite subfacies of greenschist facies. Typical minerals of metapelites are chlorite, sericite, augite, quartz, and tourmaline, but of basic rocks - actinolite, fibrolite, prehnite, calcite, and chlorite are developed. Into the Dizi series, polyphase intrusions of gabbros, diorites, quartz-diorites, syenite-diorites, syenites, and granitoids are intruded. Their K-Ar age dating (176-165Ma) points out that their formation corresponds to the Bathonian orogeny. The Dizi series is well-studied geologically, but very complicated processes of its regional and contact metamorphisms are insufficiently investigated. The aim of the authors was a detailed study of contact metamorphism processes of the series rocks. Investigations were accomplished applying the following methodologies: finding of key sections, a collection of material, microscopic study of samples, microprobe and structural analysis of minerals and X-ray determination of elements. The Dizi series rocks formed under the influence of the Bathonian magmatites on metapelites and carbonate-enriched rocks. They are represented by quartz, biotite, sericite, graphite, andalusite, muscovite, plagioclase, corundum, cordierite, clinopyroxene, hornblende, cummingtonite, actinolite, and tremolite bearing hornfels, marbles, and skarns. The contact metamorphism aureole reaches 350 meters. Biotite is developed only in contact-metamorphosed rocks and is a rather informative index mineral. In metapelites, biotite is formed as a result of the reaction between phengite, chlorite, and leucoxene, but in basites, it replaces actinolite or actinolite-hornblende. To study the compositional regularities of biotites, they were investigated from both - metapelites and metabasites. In total, biotite from the basites is characterized by an increased of titanium in contrast to biotite from metapelites. Biotites from metapelites are distinguished by an increased amount of aluminum. In biotites an increased amount of titanium and aluminum is observed as they approximate the contact, while their magnesia content decreases. Metapelite biotites are characterized by an increased amount of alumina in aluminum octahedrals, in contrast to biotite of the basites. In biotites of metapelites, the amount of tetrahedric aluminum is 28–34%, octahedral - 15–26%, and in basites tetrahedral aluminum is 28–33%, and octahedral 7–21%. As a result of the study of minerals, including biotite, from the contact-metamorphosed rocks of the Dizi series three exocontact zones with corresponding mineral assemblages were identified. It was established that contact metamorphism in the aureole of the Dizi series intrusions is going on at a significantly higher temperature and lower pressure than the regional metamorphism preceding the contact metamorphism.

Keywords: biotite, contact metamorphism, Dizi series, the Greater Caucasus

Procedia PDF Downloads 111
8 Impact of Ocean Acidification on Gene Expression Dynamics during Development of the Sea Urchin Species Heliocidaris erythrogramma

Authors: Hannah R. Devens, Phillip L. Davidson, Dione Deaker, Kathryn E. Smith, Gregory A. Wray, Maria Byrne

Abstract:

Marine invertebrate species with calcifying larvae are especially vulnerable to ocean acidification (OA) caused by rising atmospheric CO₂ levels. Acidic conditions can delay development, suppress metabolism, and decrease the availability of carbonate ions in the ocean environment for skeletogenesis. These stresses often result in increased larval mortality, which may lead to significant ecological consequences including alterations to the larval settlement, population distribution, and genetic connectivity. Importantly, many of these physiological and developmental effects are caused by genetic and molecular level changes. Although many studies have examined the effect of near-future oceanic pH levels on gene expression in marine invertebrates, little is known about the impact of OA on gene expression in a developmental context. Here, we performed mRNA-sequencing to investigate the impact of environmental acidity on gene expression across three developmental stages in the sea urchin Heliocidaris erythrogramma. We collected RNA from gastrula, early larva, and 1-day post-metamorphic juvenile sea urchins cultured at present-day and predicted future oceanic pH levels (pH 8.1 and 7.7, respectively). We assembled an annotated reference transcriptome encompassing development from egg to ten days post-metamorphosis by combining these data with datasets from two previous developmental transcriptomic studies of H. erythrogramma. Differential gene expression and time course analyses between pH conditions revealed significant alterations to developmental transcription that are potentially associated with pH stress. Consistent with previous investigations, genes involved in biomineralization and ion transport were significantly upregulated under acidic conditions. Differences in gene expression between the two pH conditions became more pronounced post-metamorphosis, suggesting a development-dependent effect of OA on gene expression. Furthermore, many differences in gene expression later in development appeared to be a result of broad downregulation at pH 7.7: of 539 genes differentially expressed at the juvenile stage, 519 of these were lower in the acidic condition. Time course comparisons between pH 8.1 and 7.7 samples also demonstrated over 500 genes were more lowly expressed in pH 7.7 samples throughout development. Of the genes exhibiting stage-dependent expression level changes, over 15% of these diverged from the expected temporal pattern of expression in the acidic condition. Through these analyses, we identify novel candidate genes involved in development, metabolism, and transcriptional regulation that are possibly affected by pH stress. Our results demonstrate that pH stress significantly alters gene expression dynamics throughout development. A large number of genes differentially expressed between pH conditions in juveniles relative to earlier stages may be attributed to the effects of acidity on transcriptional regulation, as a greater proportion of mRNA at this later stage has been nascent transcribed rather than maternally loaded. Also, the overall downregulation of many genes in the acidic condition suggests that OA-induced developmental delay manifests as suppressed mRNA expression, possibly from lower transcription rates or increased mRNA degradation in the acidic environment. Further studies will be necessary to determine in greater detail the extent of OA effects on early developing marine invertebrates.

Keywords: development, gene expression, ocean acidification, RNA-sequencing, sea urchins

Procedia PDF Downloads 126
7 Living in the Edge: Crisis in Indian Tea Industry and Social Deprivation of Tea Garden Workers in Dooars Region of India

Authors: Saraswati Kerketta

Abstract:

Tea industry is one of the oldest organised sector of India. It employs roughly 1.5 million people directly. Since the last decade Indian tea industry, especially in the northern region is experiencing worst crisis in the post-independence period. Due to many reason the prices of tea show steady decline. The workers are paid one of the lowest wage in tea industry in the world (1.5$ a day) below the UN's $2 a day for extreme poverty. The workers rely on addition benefits from plantation which includes food, housing and medical facilities. These have been effective means of enslavement of generations of labourers by the owners. There is hardly any change in the tea estates where the owners determine the fate of workers. When the tea garden is abandoned or is closed all the facilities disappear immediately. The workers are the descendants of tribes from central India also known as 'tea tribes'. Alienated from their native place, the geographical and social isolation compounded their vulnerability of these people. The economy of the region being totally dependent on tea has resulted in absolute unemployment for the workers of these tea gardens. With no other livelihood and no land to grow food, thousands of workers faced hunger and starvation. The Plantation Labour Act which ensures the decent working and living condition is violated continuously. The labours are forced to migrate and are also exposed to the risk of human trafficking. Those who are left behind suffers from starvation, malnutrition and disease. The condition in the sick tea plantation is no better. Wage are not paid regularly, subsidised food, fuel are also not supplied properly. Health care facilities are in very bad shape. Objectives: • To study the socio-cultural and demographic characteristics of the tea garden labourers in the study area. • To examine the social situation of workers in sick estates in dooars region. • To assess the magnitude of deprivation the impact of economic crisis on abandoned and closed tea estates in the region. Data Base: The study is based on data collected from field survey. Methods: Quantative: Cross-Tabulation, Regression analysis. Qualitative: Household Survey, Focussed Group Discussion, In-depth interview of key informants. Findings: Purchasing power parity has declined since in last three decades. There has been many fold increase in migration. Males migrates long distance towards central and west and south India. Females and children migrates both long and short distance. No one has reported to migrate back to the place of origin of their ancestors. Migrant males work mostly as construction labourers and as factory workers whereas females and children work as domestic help and construction labourers. In about 37 cases either they haven't contacted their families in last six months or are not traceable. The families with single earning members are more likely to migrate. Burden of disease and the duration of sickness, abandonment and closure of plantation are closely related. Death tolls are likely to rise 1.5 times in sick tea gardens and three times in closed tea estates. Sixty percent of the people are malnourished in the sick tea gardens and more than eighty five per cent in abandoned and sick tea gardens.

Keywords: migration, trafficking, starvation death, tea garden workers

Procedia PDF Downloads 356
6 Spatial Transformation of Heritage Area as The Impact of Tourism Activity (Case Study: Kauman Village, Surakarta City, Central Java, Indonesia

Authors: Nafiah Solikhah Thoha

Abstract:

One area that has spatial character as Heritage area is Kauman Villages. Kauman village in The City of Surakarta, Central Java, Indonesia was formed in 1757 by Paku Buwono III as the King of Kasunanan kingdom (Mataram Kingdom) for Kasunanan kingdom courtiers and scholars of Madrasa. Spatial character of Kauman village influenced by Islamic planning and socio-cultural rules of Kasunanan Kingdom. As traditional settlements influenced by Islamic planning, the Grand Mosque is a binding part of the whole area. Circulation pattern forming network (labyrinth) with narrow streets that ended at the Grand Mosque. The outdoor space can be used for circulation. Social activity is dominated by step movement from one place to a different place. Stalemate (the fina/cul de sac) generally only passable on foot, bicycles, and motorcycles. While the pass (main and branch) can be traversed by motor, vehicles. Kauman village has an area that can not be used as a public road that penetrates and serves as a liaison between the outside world to the other. Hierarchy of hall in Kauman village shows that the existence of a space is getting into more important. Firstly, woman in Kauman make the handmade batik for themself. In 2005 many people improving batik tradisional into commercial, and developed program named "Batik Tourism village of Kauman". That program affects the spatial transformations. This study aimed to explore the influence of tourism program towards spatial transformations. The factors that studied are the organization of space, circulation patterns, hierarchical space, and orientation through the descriptive-evaluation approach methods. Based on the study, tourism activity engenders transformations on the spatial scale (macro), residential block (mezo), homes (micro). First, the Grand Mosque and madrasa (religious school) as a binding zoning; tangle of roads as forming the structure of the area developed as a liaison with outside Kauman; organization of space in the residential of batik entrepreneurs firstly just a residential, then develop into residential, factory of batik including showroom. Second, the circulation pattern forming network (labyrinth) and ends at the Grand Mosque. Third, the hierarchy in the form of public space (the shari), semi-public, and private (the fina/culdesac) is no longer to provide protection to women, only as hierarchy of circulation path. Fourth, cluster building orientation does not follow the kiblat direction or axis oriented to cosmos, but influence by the new function as the showroom. It was need the direction of the main road. Kauman grow as an appropriate area for the community. During its development, the settlement function changes according to community activities, especially economic activities. The new function areas as tourism area affect spatial pattern of Kauman village. Spatial existence and activity as a local wisdom that has been done for generations have meaning of holistic, encompassing socio-cultural sustainability, economics, and the heritage area. By reviewing the local wisdom and the way of life of that society, we can learn how to apply the culture as education for sustainable of heritage area.

Keywords: impact of tourism, Kauman village, spatial transformation, sustainable of heritage area

Procedia PDF Downloads 403
5 Geochemical Evaluation of Metal Content and Fluorescent Characterization of Dissolved Organic Matter in Lake Sediments

Authors: Fani Sakellariadou, Danae Antivachis

Abstract:

Purpose of this paper is to evaluate the environmental status of a coastal Mediterranean lake, named Koumoundourou, located in the northeastern coast of Elefsis Bay, in the western region of Attiki in Greece, 15 km far from Athens. It is preserved from ancient times having an important archaeological interest. Koumoundourou lake is also considered as a valuable wetland accommodating an abundant flora and fauna, with a variety of bird species including a few world’s threatened ones. Furthermore, it is a heavily modified lake, affected by various anthropogenic pollutant sources which provide industrial, urban and agricultural contaminants. The adjacent oil refineries and the military depot are the major pollution providers furnishing with crude oil spills and leaks. Moreover, the lake accepts a quantity of groundwater leachates from the major landfill of Athens. The environmental status of the lake results from the intensive land uses combined with the permeable lithology of the surrounding area and the existence of karstic springs which discharge calcareous mountains. Sediment samples were collected along the shoreline of the lake using a Van Veen grab stainless steel sampler. They were studied for the determination of the total metal content and the metal fractionation in geochemical phases as well as the characterization of the dissolved organic matter (DOM). These constituents have a significant role in the ecological consideration of the lake. Metals may be responsible for harmful environmental impacts. The metal partitioning offers comprehensive information for the origin, mode of occurrence, biological and physicochemical availability, mobilization and transport of metals. Moreover, DOM has a multifunctional importance interacting with inorganic and organic contaminants leading to biogeochemical and ecological effects. The samples were digested using microwave heating with a suitable laboratory microwave unit. For the total metal content, the samples were treated with a mixture of strong acids. Then, a sequential extraction procedure was applied for the removal of exchangeable, carbonate hosted, reducible, organic/sulphides and residual fractions. Metal content was determined by an ICP-MS (Perkin Elmer, ICP MASS Spectrophotometer NexION 350D). Furthermore, the DOM was removed via a gentle extraction procedure and then it was characterized by fluorescence spectroscopy using a Perkin-Elmer LS 55 luminescence spectrophotometer equipped with the WinLab 4.00.02 software for data processing (Agilent, Cary Eclipse Fluorescence). Mono dimensional emission, excitation, synchronous-scan excitation and total luminescence spectra were recorded for the classification of chromophoric units present in the aqueous extracts. Total metal concentrations were determined and compared with those of the Elefsis gulf sediments. Element partitioning showed the anthropogenic sources and the contaminant bioavailability. All fluorescence spectra, as well as humification indices, were evaluated in detail to find out the nature and origin of DOM. All the results were compared and interpreted to evaluate the environmental quality of Koumoundourou lake and the need for environmental management and protection.

Keywords: anthropogenic contaminant, dissolved organic matter, lake, metal, pollution

Procedia PDF Downloads 127
4 Facies, Diagenetic Analysis and Sequence Stratigraphy of Habib Rahi Formation Dwelling in the Vicinity of Jacobabad Khairpur High, Southern Indus Basin, Pakistan

Authors: Muhammad Haris, Syed Kamran Ali, Mubeen Islam, Tariq Mehmood, Faisal Shah

Abstract:

Jacobabad Khairpur High, part of a Sukkur rift zone, is the separating boundary between Central and Southern Indus Basin, formed as a result of Post-Jurassic uplift after the deposition of Middle Jurassic Chiltan Formation. Habib Rahi Formation of Middle to Late Eocene outcrops in the vicinity of Jacobabad Khairpur High, a section at Rohri near Sukkur is measured in detail for lithofacies, microfacies, diagenetic analysis and sequence stratigraphy. Habib Rahi Formation is richly fossiliferous and consists of mostly limestone with subordinate clays and marl. The total thickness of the formation in this section is 28.8m. The bottom of the formation is not exposed, while the upper contact with the Sirki Shale of the Middle Eocene age is unconformable in some places. A section is measured using Jacob’s Staff method, and traverses were made perpendicular to the strike. Four different lithofacies were identified based on outcrop geology which includes coarse-grained limestone facies (HR-1 to HR-5), massive bedded limestone facies (HR-6 HR-7), and micritic limestone facies (HR-8 to HR-13) and algal dolomitic limestone facie (HR-14). Total 14 rock samples were collected from outcrop for detailed petrographic studies, and thin sections of respective samples were prepared and analyzed under the microscope. On the basis of Dunham’s (1962) classification systems after studying textures, grain size, and fossil content and using Folk’s (1959) classification system after reviewing Allochems type, four microfacies were identified. These microfacies include HR-MF 1: Benthonic Foraminiferal Wackstone/Biomicrite Microfacies, HR-MF 2: Foramineral Nummulites Wackstone-Packstone/Biomicrite Microfacies HR-MF 3: Benthonic Foraminiferal Packstone/Biomicrite Microfacies, HR-MF 4: Bioclasts Carbonate Mudstone/Micrite Microfacies. The abundance of larger benthic Foraminifera’s (LBF), including Assilina sp., A. spiral abrade, A. granulosa, A. dandotica, A. laminosa, Nummulite sp., N. fabiani, N. stratus, N. globulus, Textularia, Bioclasts, and Red algae indicates shallow marine (Tidal Flat) environment of deposition. Based on variations in rock types, grain size, and marina fauna Habib Rahi Formation shows progradational stacking patterns, which indicates coarsening upward cycles. The second order of sea-level rise is identified (spanning from Y-Persian to Bartonian age) that represents the Transgressive System Tract (TST) and a third-order Regressive System Tract (RST) (spanning from Bartonian to Priabonian age). Diagenetic processes include fossils replacement by mud, dolomitization, pressure dissolution associated stylolites features and filling with dark organic matter. The presence of the microfossils includes Nummulite. striatus, N. fabiani, and Assilina. dandotica, signify Bartonian to Priabonian age of Habib Rahi Formation.

Keywords: Jacobabad Khairpur High, Habib Rahi Formation, lithofacies, microfacies, sequence stratigraphy, diagenetic history

Procedia PDF Downloads 429
3 Evolution of Plio/Pleistocene Sedimentary Processes in Patraikos Gulf, Offshore Western Greece

Authors: E. K. Tripsanas, D. Spanos, I. Oikonomopoulos, K. Stathopoulou, A. S. Abdelsamad, A. Pagoulatos

Abstract:

Patraikos Gulf is located offshore western Greece, and it is limited to the west by the Zante, Cephalonia, and Lefkas islands. The Plio/Pleistocene sequence is characterized by two depocenters, the east and west Patraikos basins separated from each other by a prominent sill. This study is based on the Plio/Pleistocene seismic stratigraphy analysis of a newly acquired 3D PSDM (Pre-Stack depth migration) seismic survey in the west Patraikos Basin and few 2D seismic profiles throughout the entire Patraikos Gulf. The eastern Patraikos Basin, although completely buried today with water depths less than 100 m, it was a deep basin during Pliocene ( > 2 km of Pliocene-Pleistocene sediments) and appears to have gathered most of Achelous River discharges. The west Patraikos Gulf was shallower ( < 1300 m of Pliocene-Pleistocene sediments) and characterized by a hummocky relief due to thrust-belt tectonics and Miocene to Pleistocene halokinetic processes. The transition from Pliocene to Miocene is expressed by a widespread erosional unconformity with evidence of fluvial drainage patterns. This indicates that west Patraikos Basin was aerially exposed during the Messinian Salinity Crisis. Continuous to semi-continuous, parallel reflections in the lower, early- to mid-Pliocene seismic packet provides evidence that the re-connection of the Mediterranean Sea with the Atlantic Ocean during Zanclean resulted in the flooding of the west Patraikos basin and the domination of hemipelagic sedimentation interrupted by occasional gravity flows. This is evident in amplitude and semblance horizon slices, which clearly show the presence of long-running, meandering submarine channels sourced from the southeast (northwest Peloponnese) and north. The long-running nature of the submarine channels suggests mobile efficient turbidity currents, probably due to the participation of a sufficient amount of clay minerals in their suspended load. The upper seismic section in the study area mainly consists of several successions of clinoforms, interpreted as progradational delta complexes of Achelous River. This sudden change from marine to shallow marine sedimentary processes is attributed to climatic changes and eustatic perturbations since late Pliocene onwards (~ 2.6 Ma) and/or a switch of Achelous River from the east Patraikos Basin to the west Patraikos Basin. The deltaic seismic unit consists of four delta complexes. The first two complexes result in the infill of topographic depressions and smoothing of an initial hummocky bathymetry. The distribution of the upper two delta complexes is controlled by compensational stacking. Amplitude and semblance horizon slices depict the development of several almost straight and short (a few km long) distributary submarine channels at the delta slopes and proximal prodeltaic plains with lobate sand-sheet deposits at their mouths. Such channels are interpreted to result from low-efficiency turbidity currents with low content in clay minerals. Such a differentiation in the nature of the gravity flows is attributed to the switch of the sediment supply from clay-rich sediments derived from the draining of flysch formations of the Ionian and Gavrovo zones, to the draining of poor in clay minerals carbonate formations of Gavrovo zone through the Achelous River.

Keywords: sequence stratigraphy, basin analysis, river deltas, submarine channels

Procedia PDF Downloads 294
2 The Development of the Geological Structure of the Bengkulu Fore Arc Basin, Western Edge of Sundaland, Sumatra, and Its Relationship to Hydrocarbon Trapping Mechanism

Authors: Lauti Dwita Santy, Hermes Panggabean, Syahrir Andi Mangga

Abstract:

The Bengkulu Basin is part of the Sunda Arc system, which is a classic convergent type margin that occur around the southern rim of the Eurasian continental (Sundaland) plate. The basin is located between deep sea trench (Mentawai Outer Arc high) and the volvanic/ magmatic Arc of the Barisan Mountains Range. To the northwest it is bounded by Padang High, to the northest by Barisan Mountains (Sumatra Fault Zone) to the southwest by Mentawai Fault Zone and to the southeast by Semangko High/ Sunda Strait. The stratigraphic succession and tectonic development can be broadly divided into four stage/ periods, i.e Late Jurassic- Early Cretaceous, Late Eocene-Early Oligocene, Late Oligocene-Early Miocene, Middle Miocene-Late Miocene and Pliocene-Plistocene, which are mainly controlled by the development of subduction activities. The Pre Tertiary Basement consist of sedimentary and shallow water limestone, calcareous mudstone, cherts and tholeiitic volcanic rocks, with Late Jurassic to Early Cretaceous in age. The sedimentation in this basin is depend on the relief of the Pre Tertiary Basement (Woyla Terrane) and occured into two stages, i.e. transgressive stage during the Latest Oligocene-Early Middle Miocene Seblat Formation, and the regressive stage during the Latest Middle Miocene-Pleistocene (Lemau, Simpangaur and Bintunan Formations). The Pre-Tertiary Faults were more intensive than the overlying cover, The Tertiary Rocks. There are two main fault trends can be distinguished, Northwest–Southwest Faults and Northeast-Southwest Faults. The NW-SE fault (Ketaun) are commonly laterally persistent, are interpreted to the part of Sumatran Fault Systems. They commonly form the boundaries to the Pre Tertiary basement highs and therefore are one of the faults elements controlling the geometry and development of the Tertiary sedimentary basins.The Northeast-Southwest faults was formed a conjugate set to the Northwest–Southeast Faults. In the earliest Tertiary and reactivated during the Plio-Pleistocene in a compressive mode with subsequent dextral displacement. The Block Faulting accross these two sets of faults related to approximate North–South compression in Paleogene time and produced a series of elongate basins separated by basement highs in the backarc and forearc region. The Bengkulu basin is interpreted having evolved from pull apart feature in the area southwest of the main Sumatra Fault System related to NW-SE trending in dextral shear.Based on Pyrolysis Yield (PY) vs Total Organic Carbon (TOC) diagram show that Seblat and Lemau Formation belongs to oil and Gas Prone with the quality of the source rocks includes into excellent and good (Lemau Formation), Fair and Poor (Seblat Formation). The fine-grained carbonaceous sediment of the Seblat dan Lemau Formations as source rocks, the coarse grained and carbonate sediments of the Seblat and Lemau Formations as reservoir rocks, claystone bed in Seblat and Lemau Formation as caprock. The source rocks maturation are late immature to early mature, with kerogen type II and III (Seblat Formation), and late immature to post mature with kerogen type I and III (Lemau Formation). The burial history show to 2500 m in depthh with paleo temperature reached 80oC. Trapping mechanism occur during Oligo–Miocene and Middle Miocene, mainly in block faulting system.

Keywords: fore arc, bengkulu, sumatra, sundaland, hydrocarbon, trapping mechanism

Procedia PDF Downloads 534
1 From Core to Hydrocarbon: Reservoir Sedimentology, Facies Analysis and Depositional Model of Early Oligocene Mahuva Formation in Tapti Daman Block, Western Offshore Basin, India

Authors: Almas Rajguru

Abstract:

The Oligocene succession of the Tapti- Daman area is one of the established petroleum plays in Tapti-Daman block of the Mumbai Offshore Basin. Despite good control and production history, the sand geometry and continuity of reservoir character of these sediments are less understood as most reservoirs are thin and fall below seismic resolution. The present work focuses on a detailed analysis of the Early Oligocene Mahuva Formation at the reservoir scale through laboratory studies (sedimentology and biostratigraphy) of core and sidewall cores in integration with electro logs for firming up facies’ distribution, micro-depositional environment and sequence stratigraphy, diagenesis and reservoir characterization from seventeen wells from North Tapti-C-37 area in Tapti Daman Block, WOB. The thick shale/claystone with thin interbeds of sandstone and siltstones of deeper marine in the lower part of Mahuva Fm represents deposition in a transgressive regime. The overlying interbedded sandstone, glauconitic-siltstone/fine-grained sandstone, and thin beds of packstone/grainstone within highly fissile shale were deposited in a prograding tide-dominated delta during late-rise normal regression. Nine litho facies (F1-F9) representing deposition in various microenvironments of the tide-dominated delta are identified based on their characteristic sediment texture, structure and microfacies. Massive, gritty sandstone (F1) with poorly sorted sands lithic fragments with calcareous and Fe-rich matrix represents channel fill sediments. High-angle cross-stratified sandstone (F2) deposited in rapidly shifting/migrating bars under strong tidal currents. F3 records the laterally accreted tidal-channel point bars. F3 (low-angle cross-stratified to parallel bedded sandstone) and F4 (Clean sandstone) are often associated with F2 in a tidal bar complex. F5 (interbedded thin sand and mud) and F6 (bioturbated sandstone) represent tidal flat deposits. High energy open marine carbonate shoals (F8) and fossiliferous sandstone in offshore bars (F7) represent deepening up facies. Shallow marine standstill conditions facilitated the deposition of thick shale (F9) beds. The reservoir facies (F1-F6) are commonly poorly to moderately sorted; bimodal, immature sandstone represented by quartz-wacke. The framework grains are sub-angular to sub-rounded, medium to coarse-grained (occasionally gritty) embedded within argillaceous (kaolinite/chlorite/chamosite) to highly Fe-rich matrix (sideritic). The facies F7 and F8, representing the sandy packstone and grainstone facies, respectively, exhibit poor reservoir characteristics due to sanitization, diagenetic compaction and matrix-filled intergranular spaces. The various diagenetic features such as the presence of authigenic clays (kaolinite/dickite/smectite); ferruginous minerals like siderite, pyrite, hematite and other iron oxides; bioturbations; glauconite; calcite and quartz cementation, precipitation of gypsum, pressure solution and other compaction effects are identified. These diagenetic features, wherever present, have reduced porosity and permeability thereby adversely affecting reservoir quality. Tidal bar sandstones possess good reservoir characteristics such as moderate to good sorting, fair to good porosity and geometry that facilitates efficient lateral extension and vertical thickness of reservoir. The sand bodies of F2, F3 and F4 facies of Well L, M and Q deposited in a tidal bar complex exhibit good reservoir quality represented by relatively cleaner, poorly burrowed, loose, friable sandstone with good porosity. Sandstone facies around these wells could prove a potential hydrocarbon reservoir and could be considered for further exploration.

Keywords: reservoir sedimentology, facies analysis, HST, tide dominated delta, tidal bars

Procedia PDF Downloads 49