Search results for: carbon trading volume
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5569

Search results for: carbon trading volume

799 Study of Some Biometric Parameters of the Incubated Eggs and Unhatched Eggs Depending on the Age of Breeding in Domestic Japanese Quail Coturnix japonica (Aves, Phasianidae)

Authors: Amina Smaï, Habiba Idouhar-Saadi, Safia Zenia, Fairouz Haddadj, Salaheddine Doumandji

Abstract:

The poultry industry (chicken and egg consumption) has become important in Algeria, but that does not prevent other farms from beginning to position themselves on the ground like the turkey, guinea fowl, partridge and quail Japanese. The breeding importance of this last, reside, also in game meat, egg quality and their therapeutic role without forgetting its growth performance. To the same effect, a study was held at the center of Zeralda hunting on various parameters such as the weight and number of eggs laid and this in order to know better the potential of production and reproduction of domestic quail. Egg laying has started from the 8th week of reproductive age, their harvest and their counts are performed daily up to 32 weeks of age and more. We have given the biometrics of incubated eggs and unhatched eggs. The parameters studied were the weight, large and small diameter, density, volume, shell index and the shape index. The work revealed that the maximum weight in males is reached in the 11th week, against the female, he reached the 13th week of age. Indeed, there is a good correlation (R = 0.79) between the weight of females and egg production. The rate of unhatched eggs varies between 11 and 43%, these values are recorded respectively in breeding under the age of 25 and 43 weeks. Furthermore, the biometric parameters of hatched and unhatched eggs have differences that are marked, especially during the beginning and end of lay. Further results will be subsequently exploited. Indeed, rearing Japanese quail is easy in technical terms and does not require big investment but its practical application vigilance and daily presence of the breeder within the farm who oversees the hygiene and well-being of its poultry.

Keywords: Japanese quail, biometrics, eggs, unhatching eggs, reproduction

Procedia PDF Downloads 164
798 Geophysical Approach in the Geological Characterization of a Dam Site: Case of the Chebabta-Dam, Meskiana, Oum El-Bouaghi

Authors: Benhammadi Hocine, Djamel Boubaya, Chaffai Hicham

Abstract:

Meskiana Area is characterized by a semi-arid climate where the water supply for irrigation and industry is not sufficient as the priority goes for domestic use. To meet the increasing population growth and development, the authorities have considered building a new water retaining structure on some major temporary water streams. For this purpose Chebabta site on Oued Meskiana was chosen as the future dam site. It is large enough to store the desired volume of water. This study comes to investigate the conditions of the site and the adequacy of the ground as a foundation for the projected dam. The conditions of the site include the geological structure and mainly the presence of discontinuities in the formation on which the dam will be built, the nature of the lithologies under the foundation and the future lake, and the presence of any hazard. This site characterization is usually carried out using different methods in order to highlight any underground buried problematic structure. In this context, the different geophysical technics remain the most used ones. Three geophysical methods were used in the case of the Chebabta dam site, namely, electric survey, seismic refraction, and tomography. The choice of the technics and the location of the scan line was made on the basis of the available geological data. In this sense, profiles have been established on both banks of Oued Meskiana. The obtained results have allowed a better characterization of the geological structure, defining the limit between the surface cover and the bedrock, which is, in other words, the limit between the weathered zone and the bedrock. Their respective thicknesses were also determined by seismic refraction and electrical resistivity sounding. However, the tomography imaging technic has succeeded in positioning a fault structure passing through the right bank of the wadi.

Keywords: dam site, fault, geophysic, investigation, Meskiana

Procedia PDF Downloads 56
797 Impact of Unusual Dust Event on Regional Climate in India

Authors: Kanika Taneja, V. K. Soni, Kafeel Ahmad, Shamshad Ahmad

Abstract:

A severe dust storm generated from a western disturbance over north Pakistan and adjoining Afghanistan affected the north-west region of India between May 28 and 31, 2014, resulting in significant reductions in air quality and visibility. The air quality of the affected region degraded drastically. PM10 concentration peaked at a very high value of around 1018 μgm-3 during dust storm hours of May 30, 2014 at New Delhi. The present study depicts aerosol optical properties monitored during the dust days using ground based multi-wavelength Sky radiometer over the National Capital Region of India. High Aerosol Optical Depth (AOD) at 500 nm was observed as 1.356 ± 0.19 at New Delhi while Angstrom exponent (Alpha) dropped to 0.287 on May 30, 2014. The variation in the Single Scattering Albedo (SSA) and real n(λ) and imaginary k(λ) parts of the refractive index indicated that the dust event influences the optical state to be more absorbing. The single scattering albedo, refractive index, volume size distribution and asymmetry parameter (ASY) values suggested that dust aerosols were predominant over the anthropogenic aerosols in the urban environment of New Delhi. The large reduction in the radiative flux at the surface level caused significant cooling at the surface. Direct Aerosol Radiative Forcing (DARF) was calculated using a radiative transfer model during the dust period. A consistent increase in surface cooling was evident, ranging from -31 Wm-2 to -82 Wm-2 and an increase in heating of the atmosphere from 15 Wm-2 to 92 Wm-2 and -2 Wm-2 to 10 Wm-2 at top of the atmosphere.

Keywords: aerosol optical properties, dust storm, radiative transfer model, sky radiometer

Procedia PDF Downloads 351
796 Investigating Effect of Geometrical Proportions in Islamic Architecture and Music

Authors: Amir Hossein Allahdadi

Abstract:

The mystical and intuitive look of Islamic artists inspired by the Koranic and mystical principles and also based on the geometry and mathematics has left unique works whose range extends across the borders of Islam. The relationship between Islamic art and music in the traditional art is of one of the concepts that can be traced back to the other arts by detection of its components. One of the links is the art of painting whose subtleties that can be applicable to both architecture and music. So, architecture and music links can be traced in other arts with a traditional foundation in order to evaluate the equivalents of traditional arts. What is the relationship between physical space of architecture and nonphysical space of music? What is musical architecture? What is the music that tends to architecture? These questions are very small samples of the questions that arise in this category, and these questions and concerns remain as long as the music is played and the architecture is made. Efforts have been made in this area, references compiled and plans drawn. As an example, we can refer to views of ‘Mansour Falamaki’ in the book of architecture and music, as well as the book transition from mud to heart by ‘Hesamodin Seraj’. The method is such that a certain melody is given to an architect and it is tried to design a specified architecture using a certain theme. This study is not to follow the architecture of a particular type of music and the formation of a volume based on a sound. In this opportunity, it is tried to briefly review the relationship between music and architecture in the Iranian original and traditional arts, using the basic definitions of arts. The musician plays, the architect designs, the actor forms his desired space and painter displays his multi-dimensional world in the form of two-dimensions. The expression language is different, but all of them can be gathered in a form, a form which has no clear boundaries. In fact, in any original art, the artist applies his art as a tool to express his insights which are nothing but achieving the world beyond this place and time.

Keywords: architecture, music, geometric proportions, mathematical proportions

Procedia PDF Downloads 221
795 Mercury Contamination of Wetland Caused by Wastewater from Chlor-Alkali Industry

Authors: Mitsuo Yoshida

Abstract:

A significant mercury contamination of soil/sediment was unveiled by an environmental monitoring program in a wetland along La Plata River, west to Montevideo City, Uruguay. The mercury contamination was caused by industrial wastewater discharged from a chlor-alkali plant using a mercury-cell process. The contamination level is above 60 mg/kg in soil/sediment. Most of mercury (Hg) in the environment is inorganic, but some fractions are converted by bacteria to methylmercury (MeHg), a toxic organic compound. MeHg biologically accumulates through a food-chain and become serious public health risk. In order to clarify the contaminated part for countermeasure operation, an intervention value of mercury contamination of sediment/soil was defined as 15 mg/kg (total Hg) by the authority. According to the intervention value, mercury contaminated area in the La Plata site is approximately 48,280 m² and estimated total volume of contaminated sediments/soils was around 18,750 m³. The countermeasures to contaminated zone were proposed in two stages; (i) mitigation of risks for public health and (ii) site remediation. The first stage is an installation of fens and net around the contamination zone, for mitigating risks of exposure, inhalation, and intake. The food chain among wetland-river ecosystem was also interrupted by the installation of net and fens. The state of mercury contamination in La Plata site and plan of countermeasure was disclosed to local people and the public, and consensus on setting off-limit area was successfully achieved. Mass media also contribute to share the information on the contamination site. The cost for countermeasures was borne by the industry under the polluter-pay-principle.

Keywords: chlor-alkali plant, mercury contamination, polluter pay principle, Uruguay, wetland

Procedia PDF Downloads 107
794 Novel Liposomal Nanocarriers For Long-term Tumor Imaging

Authors: Mohamad Ahrari, Kayvan Sadri, Mahmoud Reza Jafari

Abstract:

PEGylated liposomes have a smaller volume of distribution and decreased clearance, consequently, due to their more prolonged presence in bloodstream and maintaining their stability during this period, these liposomes can be applied for imaging tumoral sites. The purpose of this study is to develop an appropriate radiopharmaceutical agent in long-term imaging for improved diagnosis and evaluation of tumors. In this study, liposomal formulations encapsulating albumin is synthesized by solvent evaporation method along with homogenization, and their characteristics were assessed. Then these liposomes labeled by Philips method and the rate of stability of labeled liposomes in serum, and ultimately the rate of biodistribution and gamma scintigraphy in C26-colon carcinoma tumor-bearing mice, were studied. The result of the study of liposomal characteristics displayed that capable of accumulating in tumor sites based of EPR phenomenon. these liposomes also have high stability for maintaining encapsulated albumin in a long time. In the study of biodistribution of these liposomes in mice, they accumulated more in the kidney, liver, spleen, and tumor sites, which, even after clearing formulations in the bloodstream, they existed in high levels in these organs up to 96 hours. In gamma scintigraphy also, organs with high activity accumulation from early hours up to 96 hours were visible in the form of hot spots. concluded that PEGylated liposomal formulation encapsulating albumin can be labeled with In-Oxine, and obtained stabilized formulation for long-term imaging, that have more favorable conditions for the evaluation of tumors and it will cause early diagnosis of tumors.

Keywords: nano liposome, 111In-oxine, imaging, biodistribution, tumor

Procedia PDF Downloads 72
793 Stock Market Integration of Emerging Markets around the Global Financial Crisis: Trends and Explanatory Factors

Authors: Najlae Bendou, Jean-Jacques Lilti, Khalid Elbadraoui

Abstract:

In this paper, we examine stock market integration of emerging markets around the global financial turmoil of 2007-2008. Following Pukthuanthong and Roll (2009), we measure the integration of 46 emerging countries using the adjusted R-square from the regression of each country's daily index returns on global factors extracted from the covariance matrix computed using dollar-denominated daily index returns of 17 developed countries. Our sample surrounds the global financial crisis and ranges between 2000 and 2018. We analyze results using four cohorts of emerging countries: East Asia & Pacific and South Asia, Europe & Central Asia, Latin America & Caribbean, Middle East & Africa. We find that the level of integration of emerging countries increases at the commencement of the crisis and during the booming phase of the business cycles. It reaches a maximum point in the middle of the crisis and then tends to revert to its pre-crisis level. This pattern tends to be common among the four geographic zones investigated in this study. Finally, we investigate the determinants of stock market integration of emerging countries in our sample using panel regressions. Our results suggest that the degree of stock market integration of these countries should be put into perspective by some macro-economic factors, such as the size of the equity market, school enrollment rate, international liquidity level, stocks traded volume, tax revenue level, imports and exports volumes.

Keywords: correlations, determinants of integration, diversification, emerging markets, financial crisis, integration, markets co-movement, panel regressions, r-square, stock markets

Procedia PDF Downloads 152
792 Uruguayan vs. British Press Coverage of a Political Kidnapping

Authors: Luisa Peirano

Abstract:

What began as a middle-class insurgent political movement whose slogan was 'Words divide us. Action unites us!' ultimately mutated into an underground terrorist group that staged a series of armed robberies, kidnappings and even executions in the 1960s and early 1970s. One of the most memorable was the kidnapping of the British ambassador, Sir Geoffrey Jackson, in January 1971, who was held captive for eight months. The episode, which triggered a massive government response and resulted in the capture of the Tupamaros leaders, continued to have political repercussions decades later when Tupamaros leaders emerged from prison to re-enter mainstream Uruguayan politics. The kidnapping and its aftermath attracted intense media coverage in Uruguay and Britain, coverage that affected public opinion profoundly. The treatment by the Uruguayan and British medias’ diverged, however. Uruguayan newspapers focused on political issues, mirrored the positions of various political parties, and showed the larger context of social, cultural and political forces that rocked Latin America in the 1960s and early 1970s. By contrast, the British press limited its attention mainly to the human drama. On the 30th anniversary of Sir Geoffrey Jackson's death, this study compares over one hundred major newspaper articles and suggests some reasons for the differences between Uruguayan and British media treatment in terms of the volume, content, and perspective as well in the effect on readers. The differences have persisted and continue to matter in present day coverage of terrorism and its victims.

Keywords: British Ambassador, Churchill Archives Centre, Sir Geoffrey Jackson, political kidnapping, Latin America in the 1960's, Tupamaro guerrillas, Uruguay

Procedia PDF Downloads 175
791 A Dual Spark Ignition Timing Influence for the High Power Aircraft Radial Engine Using a CFD Transient Modeling

Authors: Tytus Tulwin, Ksenia Siadkowska, Rafał Sochaczewski

Abstract:

A high power radial reciprocating engine is characterized by a large displacement volume of a combustion chamber. Choosing the right moment for ignition is important for a high performance or high reliability and ignition certainty. This work shows methods of simulating ignition process and its impact on engine parameters. For given conditions a flame speed is limited when a deflagration combustion takes place. Therefore, a larger length scale of the combustion chamber compared to a standard size automotive engine makes combustion take longer time to propagate. In order to speed up the mixture burn-up time the second spark is introduced. The transient Computational Fluid Dynamics model capable of simulating multicycle engine processes was developed. The CFD model consists of ECFM-3Z combustion and species transport models. A relative ignition timing difference for the both spark sources is constant. The temperature distribution on engine walls was calculated in the separate conjugate heat transfer simulation. The in-cylinder pressure validation was performed for take-off power flight conditions. The influence of ignition timing on parameters like in-cylinder temperature or rate of heat release was analyzed. The most advantageous spark timing for the highest power output was chosen. The conditions around the spark plug locations for the pre-ignition period were analyzed. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: CFD, combustion, ignition, simulation, timing

Procedia PDF Downloads 271
790 Effect of Shape and Size of Concrete Specimen and Strength of Concrete Mixture in the Absence and Presence of Fiber

Authors: Sultan Husein Bayqra, Ali Mardani Aghabaglou, Zia Ahmad Faqiri, Hassane Amidou Ouedraogo

Abstract:

In this study, the effect of shape and size of the concrete specimen on the compressive and splitting tensile strength of the concrete mixtures in the absence and presence of steel fiber was investigated. For this aim, ten different concrete mixtures having w/c ratio of 0.3, 0.4, 0.5, 0.6 and 0.7 with and without fiber were prepared. In the mixtures containing steel fibers having aspect ratio (L/D) of 64 were used by 1% of the total mixture volume. In all concrete mixtures, CEM I 42,5R type Portland cement and crushed Lime-stone aggregates having different aggregate size fractions were used. The combined aggregate was obtained by mixing %40 0-5 mm, %30 5-12 mm and %30 12-22 mm aggregate size fraction. The slump values of concrete mixtures were kept constant as 17 ± 2 cm. To provide the desired slump value, a polycarboxylate ether-based high range water reducing admixture was used. In order to investigate the effect of size and shape of concrete specimen on strength properties 10 cm, 15 cm cubic specimens and 10×20 cm, 15×30 cm cylindrical specimens were prepared for each mixture. The specimens were cured under standard conditions until testing days. The 7- and 28-day compressive and splitting tensile strengths of mixtures were determined. The results obtained from the experimental study showed that the strength ratio between the cylinder and the cube specimens increased with the increase of the strength of the concrete. Regardless of the fiber utilization and specimen shape, strength values of concrete mixtures were increased by decreasing specimen size. However, the mentioned behaviour was not observed for the case that the mixtures having high W/C ratio and containing fiber. The compressive strength of cube specimens containing fiber was less affected by the size of the specimen compared to that of cube specimens containing no fibers.

Keywords: compressive strength, splitting tensile strength, fiber reinforced concrete, size effect, shape effect

Procedia PDF Downloads 153
789 Rule-Of-Mixtures: Predicting the Bending Modulus of Unidirectional Fiber Reinforced Dental Composites

Authors: Niloofar Bahramian, Mohammad Atai, Mohammad Reza Naimi-Jamal

Abstract:

Rule of mixtures is the simple analytical model is used to predict various properties of composites before design. The aim of this study was to demonstrate the benefits and limitations of the Rule-of-Mixtures (ROM) for predicting bending modulus of a continuous and unidirectional fiber reinforced composites using in dental applications. The Composites were fabricated from light curing resin (with and without silica nanoparticles) and modified and non-modified fibers. Composite samples were divided into eight groups with ten specimens for each group. The bending modulus (flexural modulus) of samples was determined from the slope of the initial linear region of stress-strain curve on 2mm×2mm×25mm specimens with different designs: fibers corona treatment time (0s, 5s, 7s), fibers silane treatment (0%wt, 2%wt), fibers volume fraction (41%, 33%, 25%) and nanoparticles incorporation in resin (0%wt, 10%wt, 15%wt). To study the fiber and matrix interface after fracture, single edge notch beam (SENB) method and scanning electron microscope (SEM) were used. SEM also was used to show the nanoparticles dispersion in resin. Experimental results of bending modulus for composites made of both physical (corona) and chemical (silane) treated fibers were in reasonable agreement with linear ROM estimates, but untreated fibers or non-optimized treated fibers and poor nanoparticles dispersion did not correlate as well with ROM results. This study shows that the ROM is useful to predict the mechanical behavior of unidirectional dental composites but fiber-resin interface and quality of nanoparticles dispersion play important role in ROM accurate predictions.

Keywords: bending modulus, fiber reinforced composite, fiber treatment, rule-of-mixtures

Procedia PDF Downloads 231
788 Using Game Engines in Lightning Shielding: The Application of the Rolling Spheres Method on Virtual As-Built Power Substations

Authors: Yuri A. Gruber, Matheus Rosendo, Ulisses G. A. Casemiro, Klaus de Geus, Rafael T. Bee

Abstract:

Lightning strikes can cause severe negative impacts to the electrical sector causing direct damage to equipment as well as shutdowns, especially when occurring in power substations. In order to mitigate this problem, a meticulous planning of the power substation protection system is of vital importance. A critical part of this is the distribution of shielding wires through the substation, which creates a 3D imaginary protection mesh similar to a circus tarpaulin. Equipment enclosed in the volume defined by that 3D mesh is considered protected against lightning strikes. The use of traditional methods of longitudinal cutting analysis based on 2D CAD tools makes the process laborious and the results obtained may not guarantee satisfactory protection of electrical equipment. This work describes the application of a Game Engine to the problem of lightning protection of power substations providing the visualization of the 3D protection mesh, the amount of protected components and the highlight of equipment which remain unprotected. In addition, aspects regarding the implementation and the advantages of approaching the problem using Unreal® Engine 4 are described. In order to validate results, a comparison with traditional 2D methods is applied to the same case study to which the proposed technique has been applied. Finally, a comparative study involving different levels of protection using the technique developed in this work is presented, showing that modern game engines can be a powerful accessory for simulations in several areas of engineering.

Keywords: game engine, rolling spheres method, substation protection, UE4, Unreal Engine 4

Procedia PDF Downloads 503
787 Time-dependent Association between Recreational Cannabinoid Use and Memory Performance in Healthy Adults: A Neuroimaging Study of Human Connectome Project

Authors: Kamyar Moradi

Abstract:

Background: There is mixed evidence regarding the association between recreational cannabinoid use and memory performance. One of the major reasons for the present controversy is different cannabinoid use-related covariates that influence the cognitive status of an individual. Adjustment of these confounding variables provides accurate insight into the real effects of cannabinoid use on memory status. In this study, we sought to investigate the association between recent recreational cannabinoid use and memory performance while correcting the model for other possible covariates such as demographic characteristics and duration, and amount of cannabinoid use. Methods: Cannabinoid users were assigned to two groups based on the results of THC urine drug screen test (THC+ group: n = 110, THC- group: n = 410). THC urine drug screen test has a high sensitivity and specificity in detecting cannabinoid use in the last 3-4 weeks. The memory domain of NIH Toolbox battery and brain MRI volumetric measures were compared between the groups while adjusting for confounding variables. Results: After Benjamini-Hochberg p-value correction, the performance in all of the measured memory outcomes, including vocabulary comprehension, episodic memory, executive function/cognitive flexibility, processing speed, reading skill, working memory, and fluid cognition, were significantly weaker in THC+ group (p values less than 0.05). Also, volume of gray matter, left supramarginal, right precuneus, right inferior/middle temporal, right hippocampus, left entorhinal, and right pars orbitalis regions were significantly smaller in THC+ group. Conclusions: this study provides evidence regarding the acute effect of recreational cannabis use on memory performance. Further studies are warranted to confirm the results.

Keywords: brain MRI, cannabis, memory, recreational use, THC urine test

Procedia PDF Downloads 160
786 Finite Element Model to Evaluate Gas Conning Phenomenon in Naturally Fractured Oil Reservoirs

Authors: Reda Abdel Azim

Abstract:

Gas conning phenomenon considered one of the prevalent matter in oil field applications as it significantly affects the amount of produced oil, increase cost of production operation and it has a direct effect on oil reservoirs recovery efficiency as well. Therefore, evaluation of such phenomenon and study the reservoir mechanisms that may strongly affect invading gas to the producing formation is crucial. Gas conning is a result of an imbalance between two major forces controlling the oil production: gravitational and viscous forces especially in naturally fractured reservoirs where the capillary pressure forces are negligible. Once the gas invading the producing formation near the wellbore due to large producing oil rate, the oil gas contact will change and such reservoirs are prone to gas conning. Moreover, the oil volume expected to be produced requires the use of long horizontal perforated well. This work presents a numerical simulation study to predict and propose solutions to gas coning in naturally fractured oil reservoirs. The simulation work is based on discrete fractures and permeability tensors approaches. The governing equations are discretized using finite element approach and Galerkin’s least square technique (GLS) is employed to stabilize the equation solutions. The developed simulator is validated against Eclipse-100 using horizontal fractures. The matrix and fracture properties are modelled. Critical rate, breakthrough time and GOR are determined to be used in investigation of the effect of matrix and fracture properties on gas coning. Results show that fracture distribution in terms of diverse dip and azimuth has a great effect on conning occurring. In addition, fracture porosity, anisotropy ratio, and fracture aperture.

Keywords: gas conning, finite element, fractured reservoirs, multiphase

Procedia PDF Downloads 172
785 Prediction of Super-Response to Cardiac Resynchronisation Therapy

Authors: Vadim A. Kuznetsov, Anna M. Soldatova, Tatyana N. Enina, Elena A. Gorbatenko, Dmitrii V. Krinochkin

Abstract:

The aim of the study was to evaluate potential parameters related with super-response to CRT. Methods: 60 CRT patients (mean age 54.3 ± 9.8 years; 80% men) with congestive heart failure (CHF) II-IV NYHA functional class, left ventricular ejection fraction < 35% were enrolled. At baseline, 1 month, 3 months and each 6 months after implantation clinical, electrocardiographic and echocardiographic parameters, NT-proBNP level were evaluated. According to the best decrease of left ventricular end-systolic volume (LVESV) (mean follow-up period 33.7 ± 15.1 months) patients were classified as super-responders (SR) (n=28; reduction in LVESV ≥ 30%) and non-SR (n=32; reduction in LVESV < 30%). Results: At baseline groups differed in age (58.1 ± 5.8 years in SR vs 50.8 ± 11.4 years in non-SR; p=0.003), gender (female gender 32.1% vs 9.4% respectively; p=0.028), width of QRS complex (157.6 ± 40.6 ms in SR vs 137.6 ± 33.9 ms in non-SR; p=0.044). Percentage of LBBB was equal between groups (75% in SR vs 59.4% in non-SR; p=0.274). All parameters of mechanical dyssynchrony were higher in SR, but only difference in left ventricular pre-ejection period (LVPEP) was statistically significant (153.0 ± 35.9 ms vs. 129.3 ± 28.7 ms p=0.032). NT-proBNP level was lower in SR (1581 ± 1369 pg/ml vs 3024 ± 2431 pg/ml; p=0.006). The survival rates were 100% in SR and 90.6% in non-SR (log-rank test P=0.002). Multiple logistic regression analysis showed that LVPEP (HR 1.024; 95% CI 1.004–1.044; P = 0.017), baseline NT-proBNP level (HR 0.628; 95% CI 0.414–0.953; P=0.029) and age at baseline (HR 1.094; 95% CI 1.009-1.168; P=0.30) were independent predictors for CRT super-response. ROC curve analysis demonstrated sensitivity 71.9% and specificity 82.1% (AUC=0.827; p < 0.001) of this model in prediction of super-response to CRT. Conclusion: Super-response to CRT is associated with better survival in long-term period. Presence of LBBB was not associated with super-response. LVPEP, NT-proBNP level, and age at baseline can be used as independent predictors of CRT super-response.

Keywords: cardiac resynchronisation therapy, superresponse, congestive heart failure, left bundle branch block

Procedia PDF Downloads 366
784 Injection of Bradykinin in Femoral Artery Elicits Cardiorespiratory Reflexes Involving Perivascular Afferents in Rat Models

Authors: Sanjeev K. Singh, Maloy B. Mandal, Revand R.

Abstract:

The physiology of baroreceptors and chemoreceptors present in large blood vessels of the heart is well known in regulation of cardiorespiratory functions. Since large blood vessels and peripheral blood vessels are of same mesodermal origin, therefore, involvement of the latter in regulation of cardiorespiratory system is expected. Role of perivascular nerves in mediating cardiorespiratory alterations produced after intra-arterial injection of a nociceptive agent (bradykinin) was examined in urethane anesthetized male rats. Respiratory frequency, blood pressure, and heart rate were recorded for 30 min after the retrograde injection of bradykinin/saline in the femoral artery. In addition, paw edema was determined and water content was expressed as percentage of wet weight. Injection of bradykinin produced immediate tachypnoeic, hypotensive and bradycardiac responses of shorter latency (5-8 s) favoring the neural mechanisms involved in it. Injection of equi-volume of saline did not produce any responses and served as time matched control. Paw edema was observed in the ipsilateral hind limb. Pretreatment with diclofenac sodium significantly attenuated the bradykinin-induced responses and also blocked the paw edema. Ipsilateral femoral and sciatic nerve sectioning attenuated bradykinin-induced responses significantly indicating the origin of responses from the local vascular bed. Administration of bradykinin in the segment of an artery produced reflex cardiorespiratory changes by stimulating the perivascular nociceptors involving prostaglandins. This is a novel study exhibiting the role of peripheral blood vessels in regulation of cardiorespiratory system.

Keywords: vasosensory reflex, cardiorespiratory changes, nociceptive agent, bradykinin, VR1 receptors

Procedia PDF Downloads 114
783 Structure and Magnetic Properties of Low-Temperature Synthesized M-W Hexaferrite Composites

Authors: Young-Min Kang

Abstract:

M-type Sr-hexaferrites (SrFe12O19) is one of the most utilized materials in permanent magnets due to their low price, outstanding chemical stability, and appropriate hard magnetic properties. For a M-type Sr-hexaferrite with a saturation magnetization (MS) of ~74.0 emu/g the practical limits of remanent flux density (Br) and maximum energy product (BH) max are ~4.6 kG and ~5.3 MGOe. Meanwhile, W-type hexaferrite (SrFe18O27) with higher MS ~81emu/g can be a good candidate for the development of enhanced ferrite magnet. However the W-type hexaferrite is stable at the temperature over 1350 ºC in air, and thus it is hard to control grain size and the coercivity. We report here high-MS M-W composite hexaferrites synthesized at 1250 ºC in air by doping Ca, Co, Mn, and Zn into the hexaferrite structures. The hexaferrites samples of stoichiometric SrFe12O19 (SrM) and Ca-Co-Mn-Zn doped hexaferrite (Sr0.7Ca0.3Fen-0.6Co0.2Mn0.2Zn0.2Oa) were prepared by conventional solid state reaction process with varying Fe content (10 ≤ n ≤ 17). Analysis by x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) were performed for phase identification and microstructural observation respectively. Magnetic hysteresis curves were measured using vibrating sample magnetometer (VSM) at room temperature (300 K). Single M-type phase could be obtained in the non-doped SrM sample after calcinations at the range of 1200 ºC ~ 1300 ºC, showing MS in the range of 72 ~ 72.6 emu/g. The Ca-Co-Mn-Zn doped SrM with Fe content, 10 ≤ n ≤ 13, showed both M and W-phases peaks in the XRD after respective calcinations at 1250 ºC. The sample with n=13 showed the MS of 70.7, 75.3, 78.0 emu/g, respectively, after calcination at 1200, 1250, 1300 ºC. The high MS over that of non-doped SrM (~72 emu/g) is attributed to the volume portion of W-phase. It is also revealed that the high MS W-phase could not formed if only one of the Ca, Co, Zn is missed in the substitution. These elements are critical to form the W-phase at the calcinations temperature of 1250 ºC, which is 100 ºC lower than the calcinations temperature for non-doped Sr-hexaferrites.

Keywords: M-type hexaferrite, W-type hexaferrite, saturation magnetization, low-temperature synthesis

Procedia PDF Downloads 143
782 Fabrication of Hybrid Scaffolds Consisting of Cell-laden Electrospun Micro/Nanofibers and PCL Micro-structures for Tissue Regeneration

Authors: MyungGu Yeo, JongHan Ha, Gi-Hoon Yang, JaeYoon Lee, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

Tissue engineering is a rapidly growing interdisciplinary research area that may provide options for treating damaged tissues and organs. As a promising technique for regenerating various tissues, this technology requires biomedical scaffolds, which serve as an artificial extracellular matrix (ECM) to support neotissue growth. Electrospun micro/nanofibers have been used widely in tissue engineering because of their high surface-area-to-volume ratio and structural similarity to extracellular matrix. However, low mechanical sustainability, low 3D shape-ability, and low cell infiltration have been major limitations to their use. In this work, we propose new hybrid scaffolds interlayered with cell-laden electrospun micro/nano fibers and poly(caprolactone) microstructures. Also, we applied various concentrations of alginate and electric field strengths to determine optimal conditions for the cell-electrospinning process. The combination of cell-laden bioink (2 ⅹ 10^5 osteoblast-like MG63 cells/mL, 2 wt% alginate, 2 wt% poly(ethylene oxide), and 0.7 wt% lecithin) and a 0.16 kV/mm electric field showed the highest cell viability and fiber formation in this process. Using these conditions and PCL microstructures, we achieved mechanically stable hybrid scaffolds. In addition, the cells embedded in the fibrous structure were viable and proliferated. We suggest that the cell-embedded hybrid scaffolds fabricated using the cell-electrospinning process may be useful for various soft- and hard-tissue regeneration applications.

Keywords: bioink, cell-laden scaffold, micro/nanofibers, poly(caprolactone)

Procedia PDF Downloads 348
781 Development of a CFD Model for PCM Based Energy Storage in a Vertical Triplex Tube Heat Exchanger

Authors: Pratibha Biswal, Suyash Morchhale, Anshuman Singh Yadav, Shubham Sanjay Chobe

Abstract:

Energy demands are increasing whereas energy sources, especially non-renewable sources are limited. Due to the intermittent nature of renewable energy sources, it has become the need of the hour to find new ways to store energy. Out of various energy storage methods, latent heat thermal storage devices are becoming popular due to their high energy density per unit mass and volume at nearly constant temperature. This work presents a computational fluid dynamics (CFD) model using ANSYS FLUENT 19.0 for energy storage characteristics of a phase change material (PCM) filled in a vertical triplex tube thermal energy storage system. A vertical triplex tube heat exchanger, just like its name consists of three concentric tubes (pipe sections) for parting the device into three fluid domains. The PCM is filled in the middle domain with heat transfer fluids flowing in the outer and innermost domains. To enhance the heat transfer inside the PCM, eight fins have been incorporated between the internal and external tubes. These fins run radially outwards from the outer-wall of innermost tube to the inner-wall of the middle tube dividing the middle domain (between innermost and middle tube) into eight sections. These eight sections are then filled with a PCM. The validation is carried with earlier work and a grid independence test is also presented. Further studies on freezing and melting process were carried out. The results are presented in terms of pictorial representation of isotherms and liquid fraction

Keywords: heat exchanger, thermal energy storage, phase change material, CFD, latent heat

Procedia PDF Downloads 126
780 Efficiency of a Molecularly Imprinted Polymer for Selective Removal of Chlorpyrifos from Water Samples

Authors: Oya A. Urucu, Aslı B. Çiğil, Hatice Birtane, Ece K. Yetimoğlu, Memet Vezir Kahraman

Abstract:

Chlorpyrifos is an organophosphorus pesticide which can be found in environmental water samples. The efficiency and reuse of a molecularly imprinted polymer (chlorpyrifos - MIP) were investigated for the selective removal of chlorpyrifos residues. MIP was prepared with UV curing thiol-ene polymerization technology by using multifunctional thiol and ene monomers. The thiol-ene curing reaction is a radical induced process, however unlike other photoinitiated polymerization processes, this polymerization process is a free-radical reaction that proceeds by a step-growth mechanism, involving two main steps; a free-radical addition followed by a chain transfer reaction. It assures a very rapidly formation of a uniform crosslinked network with low shrinkage, reduced oxygen inhibition during curing and excellent adhesion. In this study, thiol-ene based UV-curable polymeric materials were prepared by mixing pentaerythritol tetrakis(3-mercaptopropionate), glyoxal bis diallyl acetal, polyethylene glycol diacrylate (PEGDA) and photoinitiator. Chlorpyrifos was added at a definite ratio to the prepared formulation. Chemical structure and thermal properties were characterized by FTIR and thermogravimetric analysis (TGA), respectively. The pesticide analysis was performed by gas chromatography-mass spectrometry (GC-MS). The influences of some analytical parameters such as pH, sample volume, amounts of analyte concentration were studied for the quantitative recoveries of the analyte. The proposed MIP method was applied to the determination of chlorpyrifos in river and tap water samples. The use of the MIP provided a selective and easy solution for removing chlorpyrifos from the water.

Keywords: molecularly imprinted polymers, selective removal, thilol-ene, uv-curable polymer

Procedia PDF Downloads 276
779 Bias-Corrected Estimation Methods for Receiver Operating Characteristic Surface

Authors: Khanh To Duc, Monica Chiogna, Gianfranco Adimari

Abstract:

With three diagnostic categories, assessment of the performance of diagnostic tests is achieved by the analysis of the receiver operating characteristic (ROC) surface, which generalizes the ROC curve for binary diagnostic outcomes. The volume under the ROC surface (VUS) is a summary index usually employed for measuring the overall diagnostic accuracy. When the true disease status can be exactly assessed by means of a gold standard (GS) test, unbiased nonparametric estimators of the ROC surface and VUS are easily obtained. In practice, unfortunately, disease status verification via the GS test could be unavailable for all study subjects, due to the expensiveness or invasiveness of the GS test. Thus, often only a subset of patients undergoes disease verification. Statistical evaluations of diagnostic accuracy based only on data from subjects with verified disease status are typically biased. This bias is known as verification bias. Here, we consider the problem of correcting for verification bias when continuous diagnostic tests for three-class disease status are considered. We assume that selection for disease verification does not depend on disease status, given test results and other observed covariates, i.e., we assume that the true disease status, when missing, is missing at random. Under this assumption, we discuss several solutions for ROC surface analysis based on imputation and re-weighting methods. In particular, verification bias-corrected estimators of the ROC surface and of VUS are proposed, namely, full imputation, mean score imputation, inverse probability weighting and semiparametric efficient estimators. Consistency and asymptotic normality of the proposed estimators are established, and their finite sample behavior is investigated by means of Monte Carlo simulation studies. Two illustrations using real datasets are also given.

Keywords: imputation, missing at random, inverse probability weighting, ROC surface analysis

Procedia PDF Downloads 384
778 Gender, Language and Body: Literary Representations in Popular Culture Narratives

Authors: Eirini Arvanitaki

Abstract:

Romance has incrementally grown in popularity over the last century. The first Mills & Boon romance novel was published in 1909 and since then romance has not only survived but it has become a long standing genre. There are several reasons behind its durability and success. First, its ability to please and appeal to a mass audience. Romance novels are products of commercial success situated in large scale production, especially if one takes into account the high volume of romance novels published, translated and distributed all around the world every month. Second, what has also contributed to keeping the romance genre alive is the content of the books and their effect on the reader. These are stories of two heterosexual individuals who meet, fall in love, face obstacles and successfully overcome them. Through the love plots, the books address anxieties, concerns and everyday troubles that the average reader can identify with. Additionally, the romance novel is a means of escapism from everyday life and responsibilities as well as a short-lived opportunity to enjoy personal time/space and focus on one’s self. Third, the genre’s ability to adapt to the periods and societies in which it is published has also assisted in prolonging its longevity. This paper discusses the ways in which popular romance authors write and engage with the body. Despite the claim that popular romance narratives adjust their contents in accordance with different time periods and social phenomena, the paper highlights the dissimilarities between writing the female and male body and suggests that women romance writers are yet to break free from phallogocentric law. The examination of the projections of the body and the language used to describe it indicates that these narratives are flexible enough to adjust to twenty-first century but only within the limits of their own conventionality.

Keywords: body, gender, language, literary representations, popular romance narratives, taboo

Procedia PDF Downloads 81
777 Acoustical Comfort in Major Highway in Birnin Kebbi, Kebbi State-Nigeria

Authors: Muhammad Naziru Yahaya, Mustapha Bashir Ayinde

Abstract:

Noise has been recognized as a major source of pollution in many urban and semi-urban settlements. Noise pollution causes by vehicular movement in urban cities has reaches an alarming proportion due to continuous increases in vehicles and industrialization. This research aim to determine the geo-physical characteristics of the study area and to determine the level of noise generation and volume intensity in areas where noise levels are high within the metropolis and compare with NESREA and WHO standards. This study identified the various sources of noise, compared noise levels in various parts of the study area with recommended standards and determined the geo-physical characteristic of noise generated. A sound level meter Gm 1352, was used for the noise measurements. The study showed that the noise pollution levels measured in minimum noise level of 63.75 dBA and average maximum of 95.175 dBA, at some locations in Birnin Kebbi metropolis the noise level have exceeded the standard limits set by the World Health Organization (WHO), Federal Environment Protection Agency (FEPA). Results revealed that there was a considerable increase in noise pollution in First Bank roundabout and Haliru Abdu roundabout, attribute to high numbers of vehicular movement and road congestion within Birnin Kebbi. The study therefore concluded that there should be an enforcement and adherence to the regulation regarding noise pollution limit. The minimum average day noise level recorded was 67.225 dBA, and average maximum of 96.6 dBA is an indication that the noise level of Birnin Kebbi metropolis was highly unsatisfactory. Based on this, it is suggested that taking adequate measures and following the laid-down recommendations will reduce traffic noise to the barest minimum.

Keywords: decibel, noise level, pollution, sound level, traffic, highway

Procedia PDF Downloads 39
776 Experimental and Numerical Studies of Droplet Formation

Authors: Khaled Al-Badani, James Ren, Lisa Li, David Allanson

Abstract:

Droplet formation is an important process in many engineering systems and manufacturing procedures, which includes welding, biotechnologies, 3D printing, biochemical, biomedical fields and many more. The volume and the characteristics of droplet formation are generally depended on various material properties, microfluidics and fluid mechanics considerations. Hence, a detailed investigation of this process, with the aid of numerical computational tools, are essential for future design optimization and process controls of many engineering systems. This will also improve the understanding of changes in the properties and the structures of materials, during the formation of the droplet, which is important for new material developments to achieve different functions, pending the requirements of the application. For example, the shape of the formed droplet is critical for the function of some final products, such as the welding nugget during Capacitor Discharge Welding process, or PLA 3D printing, etc. Although, most academic journals on droplet formation, focused on issued with material transfer rate, surface tension and residual stresses, the general emphasis on the characteristics of droplet shape has been overlooked. The proposed work for this project will examine theoretical methodologies, experimental techniques, and numerical modelling, using ANSYS FLUENT, to critically analyse and highlight optimization methods regarding the formation of pendant droplet. The project will also compare results from published data with experimental and numerical work, concerning the effects of key material parameters on the droplet shape. These effects include changes in heating/cooling rates, solidification/melting progression and separation/break-up times. From these tests, a set of objectives is prepared, with an intention of improving quality, stability and productivity in modelling metal welding and 3D printing.

Keywords: computer modelling, droplet formation, material distortion, materials forming, welding

Procedia PDF Downloads 262
775 Alterations of Molecular Characteristics of Polyethylene under the Influence of External Effects

Authors: Vigen Barkhudaryan

Abstract:

The influence of external effects (γ-, UV–radiations, high temperature) in presence of air oxygen on structural transformations of low-density polyethylene (LDPE) have been investigated dependent on the polymers’ thickness, the intensity and the dose of external actions. The methods of viscosimetry, light scattering, turbidimetry and gelation measuring were used for this purpose. The comparison of influence of external effects on LDPE shows, that the destruction and cross-linking processes of macromolecules proceed simultaneously with all kinds of external effects. A remarkable growth of average molecular mass of LDPE along with the irradiation doses and heat treatment exposure growth was established. It was linear for the mass average molecular mass and at the initial doses is mainly the result of the increase of the macromolecular branching. As a result, the macromolecular hydrodynamic volumes have been changed, and therefore the dependence of viscosity average molecular mass on the doses was going through the minimum at initial doses. A significant change of molecular mass, sizes and shape of macromolecules of LDPE occurs under the influence of external effects. The influence is limited only by diffusion of oxygen during -irradiation and heat treatment. At UV–irradiation the influence is limited both by diffusion of oxygen and penetration of radiation. Consequently, the molecular transformations are deeper and evident in case of -irradiation, as soon as the polymer is transformed in a whole volume. It was also established, that the mechanism of molecular transformations in polymers from the surface layer distinctly differs from those of the sample deeper layer. A comparison of the results of these investigations allows us to conclude, that the mechanisms of influence of investigated external effects on polyethylene are similar.

Keywords: cross-linking, destruction, high temperature, LDPE, γ-radiations, UV-radiations

Procedia PDF Downloads 284
774 Rethinking the Use of Online Dispute Resolution in Resolving Cross-Border Small E-Disputes in EU

Authors: Sajedeh Salehi, Marco Giacalone

Abstract:

This paper examines the role of existing online dispute resolution (ODR) mechanisms and their effects on ameliorating access to justice – as a protected right by Art. 47 of the EU Charter of Fundamental Rights – for consumers in EU. The major focus of this study will be on evaluating ODR as the means of dispute resolution for Business-to-Consumer (B2C) cross-border small claims raised in e-commerce transactions. The authors will elaborate the consequences of implementing ODR methods in the context of recent developments in EU regulatory safeguards on promoting consumer protection. In this analysis, both non-judiciary and judiciary ODR redress mechanisms are considered, however, the significant consideration is given to – obligatory and non-obligatory – judiciary ODR methods. For that purpose, this paper will particularly investigate the impact of the EU ODR platform as well as the European Small Claims Procedure (ESCP) Regulation 861/2007 and their role on accelerating the access to justice for consumers in B2C e-disputes. Although, considerable volume of research has been carried out on ODR for consumer claims, rather less (or no-) attention has been paid to provide a combined doctrinal and empirical evaluation of ODR’s potential in resolving cross-border small e-disputes, in EU. Hence, the methodological approach taken in this study is a mixed methodology based on qualitative (interviews) and quantitative (surveys) research methods which will be mainly based on the data acquired through the findings of the Small Claims Analysis Net (SCAN) project. This project contributes towards examining the ESCP Regulation implementation and efficiency in providing consumers with a legal watershed through using the ODR for their transnational small claims. The outcomes of this research may benefit both academia and policymakers at national and international level.

Keywords: access to justice, consumers, e-commerce, small e-Disputes

Procedia PDF Downloads 106
773 Left Ventricular Adaptations of Elite Volleyball Players Based on the Playing Position

Authors: Shihab Aldin Al Riyami, Khosrow Ebrahim, Sajad Ahmadizad

Abstract:

Hemodynamic changes and ventricular loading during exercise lead to left ventricular (LV) hypertrophy. In athletes, volume load induces enlargement of the LV internal diameter and a proportional increase of wall thickness; while, pressure load would induce thickening of the ventricular wall. These adaptations are not similar in all athletes and are related to the types of sport. Volleyball players have different types of activity and roles based on their playing. Therefore, their physiological adaptations and requirements are different. The aim of the current study was to investigate the LV adaptationsinelite volleyball players based on their playing position. Sixty male elite volleyball players (age, 30.55±3.64 years)from Brazil, Serbia, Poland, Iran, Colombia, Cameroon, Japan, Egypt, Qatar, and Tunisia were investigated (from all five volleyball play positions). All participants had the experience of at least 3 years of participation at a professional level and international tournaments. LV characteristics were evaluated and measured using the echocardiography technique. Statistical analyses revealed significant differences (P<0.05)among the five groups of players forLV internal dimension (LVID), posterior wall thickness (PWT), and intact ventricular septum (IVS). Post-hoc analysis showed that opposite position players had significant higher value of LVID, PWT, and IVS when compared with other players, including outside hitter, middle blocker, setter, and libero (p<0.05). Additionally, in libero players, PWT was significantly lower when compared with other players (p<0.05). Based on the findings of the present study, it is concluded that LV adaptations in volleyball players are related to their playing position and that the opposite players had the highest LV adaptations when compared to other positions.

Keywords: athletes, cardiac adaptations, echocardio graphy, heart, sport

Procedia PDF Downloads 221
772 3-D Numerical Simulation of Scraped Surface Heat Exchanger with Helical Screw

Authors: Rabeb Triki, Hassene Djemel, Mounir Baccar

Abstract:

Surface scraping is a passive heat transfer enhancement technique that is directly used in scraped surface heat exchanger (SSHE). The scraping action prevents the accumulation of the product on the inner wall, which intensifies the heat transfer and avoids the formation of dead zones. SSHEs are widely used in industry for several applications such as crystallization, sterilization, freezing, gelatinization, and many other continuous processes. They are designed to deal with products that are viscous, sticky or that contain particulate matter. This research work presents a three-dimensional numerical simulation of the coupled thermal and hydrodynamic behavior within a SSHE which includes Archimedes’ screw instead of scraper blades. The finite volume Fluent 15.0 was used to solve continuity, momentum and energy equations using multiple reference frame formulation. The process fluid investigated under this study is the pure glycerin. Different geometrical parameters were studied in the case of steady, non-isothermal, laminar flow. In particular, attention is focused on the effect of the conicity of the rotor and the pitch of Archimedes’ screw on temperature and velocity distribution and heat transfer rate. Numerical investigations show that the increase of the number of turns in the screw from five to seven turns leads to amelioration of heat transfer coefficient, and the increase of the conicity of the rotor from 0.1 to 0.15 leads to an increase in the rate of heat transfer. Further studies should investigate the effect of different operating parameters (axial and rotational Reynolds number) on the hydrodynamic and thermal behavior of the SSHE.

Keywords: ANSYS-Fluent, hydrodynamic behavior, scraped surface heat exchange, thermal behavior

Procedia PDF Downloads 138
771 Research of Seepage Field and Slope Stability Considering Heterogeneous Characteristics of Waste Piles: A Less Costly Way to Reduce High Leachate Levels and Avoid Accidents

Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong, Gan Lei, Xu Liqun

Abstract:

Due to the characteristics of high-heap and large-volume, the complex layers of waste and the high-water level of leachate, environmental pollution, and slope instability are easily produced. It is therefore of great significance to research the heterogeneous seepage field and stability of landfills. This paper focuses on the heterogeneous characteristics of the landfill piles and analyzes the seepage field and slope stability of the landfill using statistical and numerical analysis methods. The calculated results are compared with the field measurement and literature research data to verify the reliability of the model, which may provide the basis for the design, safe, and eco-friendly operation of the landfill. The main innovations are as follows: (1) The saturated-unsaturated seepage equation of heterogeneous soil is derived theoretically. The heterogeneous landfill is regarded as composed of infinite layers of homogeneous waste, and a method for establishing the heterogeneous seepage model is proposed. Then the formation law of the stagnant water level of heterogeneous landfills is studied. It is found that the maximum stagnant water level of landfills is higher when considering the heterogeneous seepage characteristics, which harms the stability of landfills. (2) Considering the heterogeneity weight and strength characteristics of waste, a method of establishing a heterogeneous stability model is proposed, and it is extended to the three-dimensional stability study. It is found that the distribution of heterogeneous characteristics has a great influence on the stability of landfill slope. During the operation and management of the landfill, the reservoir bank should also be considered while considering the capacity of the landfill.

Keywords: heterogeneous characteristics, leachate levels, saturated-unsaturated seepage, seepage field, slope stability

Procedia PDF Downloads 219
770 Role of Cellulose Fibers in Tuning the Microstructure and Crystallographic Phase of α-Fe₂O₃ and α-FeOOH Nanoparticles

Authors: Indu Chauhan, Bhupendra S. Butola, Paritosh Mohanty

Abstract:

It is very well known that properties of material changes as their size approach to nanoscale level due to the high surface area to volume ratio. However, in last few decades, a tenet ‘structure dictates function’ is quickly being adopted by researchers working with nanomaterials. The design and exploitation of nanoparticles with tailored shape and size has become one of the primary goals of materials science researchers to expose the properties of nanostructures. To date, various methods, including soft/hard template/surfactant assisted route hydrothermal reaction, seed mediated growth method, capping molecule-assisted synthesis, polyol process, etc. have been adopted to synthesize the nanostructures with controlled size and shape and monodispersity. However controlling the shape and size of nanoparticles is an ultimate challenge of modern material research. In particular, many efforts have been devoted to rational and skillful control of hierarchical and complex nanostructures. Thus in our research work, role of cellulose in manipulating the nanostructures has been discussed. Nanoparticles of α-Fe₂O₃ (diameter ca. 15 to 130 nm) were immobilized on the cellulose fiber surface by a single step in situ hydrothermal method. However, nanoflakes of α-FeOOH having thickness ca. ~25 nm and length ca. ~250 nm were obtained by the same method in absence of cellulose fibers. A possible nucleation and growth mechanism of the formation of nanostructures on cellulose fibers have been proposed. The covalent bond formation between the cellulose fibers and nanostructures has been discussed with supporting evidence from the spectroscopic and other analytical studies such as Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The role of cellulose in manipulating the nanostructures has been discussed.

Keywords: cellulose fibers, α-Fe₂O₃, α-FeOOH, hydrothermal, nanoflakes, nanoparticles

Procedia PDF Downloads 121