Search results for: sound level
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12951

Search results for: sound level

12951 Sound Noise Control of a Steam Ejector in a Typical Power Plant: Design, Manufacturing, and Testing a Silencer-Muffler

Authors: Ali Siami, Masoud Asayesh, Asghar Najafi, Amirhosein Hamedanian

Abstract:

There are so many noise sources in power generation units that these sources can produce high-level sound noise. Therefore, sound noise reduction methods can assist these industries, especially in these days that laws related to environmental issues become more strict. In a typical power plant, so many machines and devices with high-level sound noise are arranged beside of each others. Therefore, the sound source identification and reducing the noise level can be very vital. In this paper, the procedure for designing, manufacturing and testing of a silencer-muffler used for a power plant steam vent is mentioned. This unit is placed near the residential area and so it is very important to reduce the noise emission. For this purpose, in the first step, measurements have done to identify the sound source and the frequency content of noise. The overall level of noise was so high and it was more than 120dB. Then, the appropriate noise control device is designed according to the measurement results and operational conditions. In the next step, the designed silencer-muffler has been manufactured and installed on the steam discharge of the ejector. For validation of the silencer-muffler effect, the acoustic test was done again in operating mode. Finally, the measurement results before and after the installation are compared. The results have confirmed a considerable reduction in noise level resultant of using silencer-muffler in the designed frequency range.

Keywords: silencer-muffler, sound noise control, sound measurement, steam ejector

Procedia PDF Downloads 337
12950 The Effect of Floor Impact Sound Insulation Performance Using Scrambled Thermoplastic Poly Urethane and Ethylene Vinyl Acetate

Authors: Bonsoo Koo, Seong Shin Hong, Byung Kwon Lee

Abstract:

Most of apartments in Korea have wall type structure that present poor performance regarding floor impact sound insulation. In order to minimize the transmission of floor impact sound, flooring structures are used in which an insulating material, 30 mm thickness pad of EPS or EVA, is sandwiched between a concrete slab and the finished mortar. Generally, a single-material pad used for insulation has a heavyweight impact sound level of 44~47 dB with 210 mm thickness slab. This study provides an analysis of the floor impact sound insulation performance using thermoplastic poly urethane (TPU), ethylene vinyl acetate (EVA), and expanded polystyrene (EPS) materials with buffering performance. Following mock-up tests the effect of lightweight impact sound turned out to be similar but heavyweight impact sound was decreased by 3 dB compared to conventional single material insulation pad.

Keywords: floor impact sound, thermoplastic poly urethane, ethylene vinyl acetate, heavyweight impact sound

Procedia PDF Downloads 373
12949 Acoustic Performance and Application of Three Personalized Sound-Absorbing Materials

Authors: Fangying Wang, Zhang Sanming, Ni Qian

Abstract:

In recent years, more and more personalized sound absorbing materials have entered the Chinese room acoustical decoration market. The acoustic performance of three kinds of personalized sound-absorbing materials: Flame-retardant Flax Fiber Sound-absorbing Cotton, Eco-Friendly Sand Acoustic Panel and Transparent Micro-perforated Panel (Film) are tested by Reverberation Room Method. The sound absorption characteristic curves show that their performance match for or even exceed the traditional sound absorbing material. Through the application in the actual projects, these personalized sound-absorbing materials also proved their sound absorption ability and unique decorative effect.

Keywords: acoustic performance, application prospect personalized sound-absorbing materials

Procedia PDF Downloads 152
12948 Measurement and Prediction of Speed of Sound in Petroleum Fluids

Authors: S. Ghafoori, A. Al-Harbi, B. Al-Ajmi, A. Al-Shaalan, A. Al-Ajmi, M. Ali Juma

Abstract:

Seismic methods play an important role in the exploration for hydrocarbon reservoirs. However, the success of the method depends strongly on the reliability of the measured or predicted information regarding the velocity of sound in the media. Speed of sound has been used to study the thermodynamic properties of fluids. In this study, experimental data are reported and analyzed on the speed of sound in toluene and octane binary mixture. Three-factor three-level Box-Benhkam design is used to determine the significance of each factor, the synergetic effects of the factors, and the most significant factors on speed of sound. The developed mathematical model and statistical analysis provided a critical analysis of the simultaneous interactive effects of the independent variables indicating that the developed quadratic models were highly accurate and predictive.

Keywords: experimental design, octane, speed of sound, toluene

Procedia PDF Downloads 247
12947 Comparing the Effect of Virtual Reality and Sound on Landscape Perception

Authors: Mark Lindquist

Abstract:

This paper presents preliminary results of exploratory empirical research investigating the effect of viewing 3D landscape visualizations in virtual reality compared to a computer monitor, and how sound impacts perception. Five landscape types were paired with three sound conditions (no sound, generic sound, realistic sound). Perceived realism, preference, recreational value, and biodiversity were evaluated in a controlled laboratory environment. Results indicate that sound has a larger perceptual impact than display mode regardless of sound source across all perceptual measures. The results are considered to assess how sound can impact landscape preference and spatiotemporal understanding. The paper concludes with a discussion of the impact on designers, planners, and the public and targets future research endeavors in this area.

Keywords: landscape experience, perception, soundscape, virtual reality

Procedia PDF Downloads 134
12946 Altered States of Consciousness in Narrative Cinema: Subjective Film Sound

Authors: Mladen Milicevic

Abstract:

In this paper, subjective film sound will be addressed as it gets represented in narrative cinema. First, 'meta-diegetic' sound will be briefly explained followed by transition to “oneiric” sound. The representation of oneiric sound refers to a situation where film characters are experiencing some sort of an altered state of consciousness. Looking at an antlered state of consciousness in terms of human brain processes will point out to the cinematic ways of expression, which 'mimic' those processes. Using several examples for different films will illustrate these points.

Keywords: oneiric, ASC, film, sound

Procedia PDF Downloads 343
12945 Assessment of Noise Pollution in the City of Biskra, Algeria

Authors: Tallal Abdel Karim Bouzir, Nourdinne Zemmouri, Djihed Berkouk

Abstract:

In this research, a quantitative assessment of the urban sound environment of the city of Biskra, Algeria, was conducted. To determine the quality of the soundscape based on in-situ measurement, using a Landtek SL5868P sound level meter in 47 points, which have been identified to represent the whole city. The result shows that the urban noise level varies from 55.3 dB to 75.8 dB during the weekdays and from 51.7 dB to 74.3 dB during the weekend. On the other hand, we can also note that 70.20% of the results of the weekday measurements and 55.30% of the results of the weekend measurements have levels of sound intensity that exceed the levels allowed by Algerian law and the recommendations of the World Health Organization. These very high urban noise levels affect the quality of life, the acoustic comfort and may even pose multiple risks to people's health.

Keywords: road traffic, noise pollution, sound intensity, public health

Procedia PDF Downloads 230
12944 A Statistical Energy Analysis Model of an Automobile for the Prediction of the Internal Sound Pressure Level

Authors: El Korchi Ayoub, Cherif Raef

Abstract:

Interior noise in vehicles is an essential factor affecting occupant comfort. Over recent decades, much work has been done to develop simulation tools for vehicle NVH. At the medium high-frequency range, the statistical energy analysis method (SEA) shows significant effectiveness in predicting noise and vibration responses of mechanical systems. In this paper, the evaluation of the sound pressure level (SPL) inside an automobile cabin has been performed numerically using the statistical energy analysis (SEA) method. A test car cabin was performed using a monopole source as a sound source. The decay rate method was employed to obtain the damping loss factor (DLF) of each subsystem of the developed SEA model. These parameters were then used to predict the sound pressure level in the interior cabin. The results show satisfactory agreement with the directly measured SPL. The developed SEA vehicle model can be used in early design phases and allows the engineer to identify sources contributing to the total noise and transmission paths.

Keywords: SEA, SPL, DLF, NVH

Procedia PDF Downloads 54
12943 Analysis of Sound Absorption Coefficient

Authors: Zakiul Fuady, Ismail AB, Fauzi, Zulfian

Abstract:

This research was conducted to analyze the absorption coefficients of sound at several types of materials as well as its combinations. The aim of this research was to find the value of sound absorption coefficients on the materials and its combinations. The materials used in this research were gypsum panel, gypsum-fibre palm, fibre palm-gypsum, and foamed concrete-fibre palm. The test was conducted by using a method of reverberation chamber based on the ISO 354-1985 with the types of the sound source: white noise and pink noise at the frequency of 125 Hz - 8000 Hz. Based on the test results of white noise, it was found that the panel of gypsum-fibre palm has α = 0.93 at low frequency; the panel of fibre palm has α = 0.97 at a medium frequency; and the panel of foamed concrete-fibre palm has α = 0.89 at high frequency. Further, for the sound source of pink noise, it was found that the panel of gypsum-fibre palm has α = 0.99 at low level; the panel of fibre palm-gypsum has α = 0.86 at medium level; and the panel of fibre palm-gypsum has α = 0.64 at high level. The fibre palm panel could absorb the sounds well since this material has bigger airspace (pore) than the foamed concrete and gypsum. Consequently, when the sounds wave enters to this material it will be trapped in the space. The panel of fibre palm affected an increasing of sound absorption coefficient value at the combination materials when the panel of fibre palm was placed under another panel. However, the absorption coefficient values of both fibre palm and fibre palm-gypsum panels are about the same.

Keywords: coefficient of sound absorption, pink noise, white noise, palm

Procedia PDF Downloads 219
12942 Development and Characterization of Synthetic Non-Woven for Sound Absorption

Authors: P. Sam Vimal Rajkumar, K. Priyanga

Abstract:

Acoustics is the scientific study of sound which includes the effect of reflection, refraction, absorption, diffraction and interference. Sound can be considered as a wave phenomenon. A sound wave is a longitudinal wave where particles of the medium are temporarily displaced in a direction parallel to energy transport and then return to their original position. The vibration in a medium produces alternating waves of relatively dense and sparse particles –compression and rarefaction respectively. The resultant variation to normal ambient pressure is translated by the ear and perceived as sound. Today much importance is given to the acoustical environment. The noise sources are increased day by day and annoying level is strongly violated in different locations by traffic, sound systems, and industries. There is simple evidence showing that the high noise levels cause sleep disturbance, hearing loss, decrease in productivity, learning disability, lower scholastic performance and increase in stress related hormones and blood pressure. Therefore, achieving a pleasing and noise free environment is one of the endeavours of many a research groups. This can be obtained by using various techniques. One such technique is by using suitable materials with good sound absorbing properties. The conventionally used materials that possess sound absorbing properties are rock wool or glass wool. In this work, an attempt is made to use synthetic material in both fibrous and sheet form and use it for manufacturing of non-woven for sound absorption.

Keywords: acoustics, fibre, non-woven, noise, sound absorption properties, sound absorption coefficient

Procedia PDF Downloads 267
12941 Research on the Two-Way Sound Absorption Performance of Multilayer Material

Authors: Yang Song, Xiaojun Qiu

Abstract:

Multilayer materials are applied to much acoustics area. Multilayer porous materials are dominant in room absorber. Multilayer viscoelastic materials are the basic parts in underwater absorption coating. In most cases, the one-way sound absorption performance of multilayer material is concentrated according to the sound source site. But the two-way sound absorption performance is also necessary to be known in some special cases which sound is produced in both sides of the material and the both sides especially might contact with different media. In this article, this kind of case was research. The multilayer material was composed of viscoelastic layer and steel plate and the porous layer. The two sides of multilayer material contact with water and air, respectively. A theory model was given to describe the sound propagation and impedance in multilayer absorption material. The two-way sound absorption properties of several multilayer materials were calculated whose two sides all contacted with different media. The calculated results showed that the difference of two-way sound absorption coefficients is obvious. The frequency, the relation of layers thickness and parameters of multilayer materials all have an influence on the two-way sound absorption coefficients. But the degrees of influence are varied. All these simulation results were analyzed in the article. It was obtained that two-way sound absorption at different frequencies can be promoted by optimizing the configuration parameters. This work will improve the performance of underwater sound absorption coating which can absorb incident sound from the water and reduce the noise radiation from inside space.

Keywords: different media, multilayer material, sound absorption coating, two-way sound absorption

Procedia PDF Downloads 500
12940 Experimental Study on Aerodynamic Noise of Radiator Cooling Fan with Different Diameter in Hemi-Anechoic Chamber

Authors: Malinda Sabrina, F. Andree Yohanes, Khoerul Anwar

Abstract:

There are many sources that cause noise in a car, one of them is noise from radiator cooling fan. This part is used to control engine temperature by ensuring adequate airflow through radiator. Radiator cooling fan noise is a very important matter especially for vehicle manufacturers. This can affect brand image of the car and their customer satisfaction. Therefore, some experiments to measure noise level of the fan are required. Sound pressure level measurements for two axial fans with different diameter have been investigated in a hemi-anechoic chamber based on standard JIS-B8346, focusing on aerodynamic noise. Both fans have the same profile and shape with diameter respectively 43 cm and 49 cm. The measurement was performed in hemi-anechoic chamber in order to obtain a background noise at measuring point as low as possible. Noise characterizations of these radiator cooling fans were measured in five different rotating speed and the results were compared. The measurement result shows that the sound pressure level increases with increasing rotational speed of the fan. In comparison with a smaller diameter, it is shown that fan with larger diameter produces higher noise level at the same rotational speed.

Keywords: aerodynamics noise, hemi-anechoic chamber, radiator cooling fan, sound pressure level

Procedia PDF Downloads 298
12939 Development of Prediction Tool for Sound Absorption and Sound Insulation for Sound Proof Properties

Authors: Yoshio Kurosawa, Takao Yamaguchi

Abstract:

High frequency automotive interior noise above 500 Hz considerably affects automotive passenger comfort. To reduce this noise, sound insulation material is often laminated on body panels or interior trim panels. For a more effective noise reduction, the sound reduction properties of this laminated structure need to be estimated. We have developed a new calculate tool that can roughly calculate the sound absorption and insulation properties of laminate structure and handy for designers. In this report, the outline of this tool and an analysis example applied to floor mat are introduced.

Keywords: automobile, acoustics, porous material, transfer matrix method

Procedia PDF Downloads 474
12938 A Review on Predictive Sound Recognition System

Authors: Ajay Kadam, Ramesh Kagalkar

Abstract:

The proposed research objective is to add to a framework for programmed recognition of sound. In this framework the real errand is to distinguish any information sound stream investigate it & anticipate the likelihood of diverse sounds show up in it. To create and industrially conveyed an adaptable sound web crawler a flexible sound search engine. The calculation is clamor and contortion safe, computationally productive, and hugely adaptable, equipped for rapidly recognizing a short portion of sound stream caught through a phone microphone in the presence of frontal area voices and other predominant commotion, and through voice codec pressure, out of a database of over accessible tracks. The algorithm utilizes a combinatorial hashed time-recurrence group of stars examination of the sound, yielding ordinary properties, for example, transparency, in which numerous tracks combined may each be distinguished.

Keywords: fingerprinting, pure tone, white noise, hash function

Procedia PDF Downloads 294
12937 Finding the Free Stream Velocity Using Flow Generated Sound

Authors: Saeed Hosseini, Ali Reza Tahavvor

Abstract:

Sound processing is one the subjects that newly attracts a lot of researchers. It is efficient and usually less expensive than other methods. In this paper the flow generated sound is used to estimate the flow speed of free flows. Many sound samples are gathered. After analyzing the data, a parameter named wave power is chosen. For all samples, the wave power is calculated and averaged for each flow speed. A curve is fitted to the averaged data and a correlation between the wave power and flow speed is founded. Test data are used to validate the method and errors for all test data were under 10 percent. The speed of the flow can be estimated by calculating the wave power of the flow generated sound and using the proposed correlation.

Keywords: the flow generated sound, free stream, sound processing, speed, wave power

Procedia PDF Downloads 359
12936 Sound Instance: Art, Perception and Composition through Soundscapes

Authors: Ricardo Mestre

Abstract:

The soundscape stands out as an agglomeration of sounds available in the world, associated with different contexts and origins, being a theme studied by various areas of knowledge, seeking to guide their benefits and their consequences, contributing to the welfare of society and other ecosystems. Murray Schafer, the author who originally developed this concept, highlights the need for a greater recognition of sound reality, through the selection and differentiation of sounds, contributing to a tuning of the world and to the balance and well-being of humanity. According to some authors sound environment, produced and created in various ways, provides various sources of information, contributing to the orientation of the human being, alerting and manipulating him during his daily journey, like small notifications received on a cell phone or other device with these features. In this way, it becomes possible to give sound its due importance in relation to the processes of individual representation, in manners of social, professional and emotional life. Ensuring an individual representation means providing the human being with new tools for the long process of reflection by recognizing his environment, the sounds that represent him, and his perspective on his respective function in it. In order to provide more information about the importance of the sound environment inherent to the individual reality, one introduces the term sound instance, in order to refer to the whole sound field existing in the individual's life, which is divided into four distinct subfields, but essential to the process of individual representation, called sound matrix, sound cycles, sound traces and sound interference.

Keywords: sound instance, soundscape, sound art, perception, composition

Procedia PDF Downloads 111
12935 Analysis of Sound Loss from the Highway Traffic through Lightweight Insulating Concrete Walls and Artificial Neural Network Modeling of Sound Transmission

Authors: Mustafa Tosun, Kevser Dincer

Abstract:

In this study, analysis on whether the lightweight concrete walled structures used in four climatic regions of Turkey are also capable of insulating sound was conducted. As a new approach, first the wall’s thermal insulation sufficiency’s were calculated and then, artificial neural network (ANN) modeling was used on their cross sections to check if they are sound transmitters too. The ANN was trained and tested by using MATLAB toolbox on a personal computer. ANN input parameters that used were thickness of lightweight concrete wall, frequency and density of lightweight concrete wall, while the transmitted sound was the output parameter. When the results of the TS analysis and those of ANN modeling are evaluated together, it is found from this study, that sound transmit loss increases at higher frequencies, higher wall densities and with larger wall cross sections.

Keywords: artificial neuron network, lightweight concrete, sound insulation, sound transmit loss

Procedia PDF Downloads 220
12934 The Optimization Design of Sound Absorbing for Automotive Interior Material

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park

Abstract:

Nonwoven fabric such as an automobile interior material becomes consists of several material layers required for the sound-absorbing function. Because several material layers, many experimental tuning is required to achieve the target of sound absorption. Therefore, a lot of time and money is spent in the development of the car interior materials. In this study, we present the method to predict the sound-absorbing performance of the various layers with physical properties of each material. and we will verify it with the measured value of a prototype. If the sound absorption can be estimated, it can be optimized without a number of tuning tests of the interiors. So, it can reduce the development cost and time during development

Keywords: automotive interior material, sound absorbing, optimization design, nonwoven fabric

Procedia PDF Downloads 799
12933 Ear Protectors and Their Action in Protecting Hearing System of Workers against Occupational Noise

Authors: F. Forouharmajd, S. Pourabdian, N. Ziayi Ghahnavieh

Abstract:

For many years, the ear protectors have been used to preventing the audio and non-audio effects of received noise from occupation environments. Despite performing hearing protection programs, there are many people which still suffer from noise-induced hearing loss. This study was conducted with the aim of determination of human hearing system response to received noise and the effectiveness of ear protectors on preventing of noise-induced hearing loss. Sound pressure microphones were placed in a simulated ear canal. The severity of noise measured inside and outside of ear canal. The noise reduction values due to installing ear protectors were calculated in the octave band frequencies and LabVIEW programmer. The results of noise measurement inside and outside of ear canal showed a different in received sound levels by ear canal. The effectiveness of ear protectors has been considerably reduced for the low frequency limits. A change in resonance frequency also was observed after using ear protectors. The study indicated the ear canal structure may affect the received noise and it may lead a difference between the received sound from the measured sound by a sound level meter, and hearing system. It means the human hearing system may probably respond different from a sound level meter. Hearing protectors’ efficiency declines by increasing the noise levels, and thus, they are not suitable to protect workers against industrial noise particularly low frequency noise. Hearing protectors may be solely a reason to damaging of hearing system in a special frequency via changing of human hearing system acoustical structure. We need developing the subjective method of hearing protectors testing, because their evaluation is not designed based on industrial noise or in the field.

Keywords: ear protector, hearing system, occupational noise, workers

Procedia PDF Downloads 142
12932 Comparative Study of Sound Intensity in Individuals Diagnosed with Antisocial Personality Disorder and Normal People

Authors: Nadia Warmilee

Abstract:

This study is s descriptive-analytical research and it aims at studying sound intensity in individuals with antisocial personality disorder and ordinary persons. Data were collected from experimental and control groups by interviews and a field research. Population was all male Iranian with antisocial personality disorder that three of them (a murderer and two individuals with antisocial personality disorder (APD) who have not committed any crimes yet) were selected purposefully. They were compared to three non-affected people. PRAAT software has been used to analyze the data. Results of this study show that there is a significant relationship between dysthymia and sound intensity values. Antisocial personality disorder also affects sound intensity fluctuations. The values of sound intensity are higher in non-affected people than affected one whilst these values are more monotonous. T-test was used to study significance or in significance of sound intensity difference in producing vowels.

Keywords: Acoustics, Sound Intensity, Antisocial Personality Disorder, Psycholinguistics

Procedia PDF Downloads 85
12931 The Effect of Exposure to High Noise Level on the Performance and Rate of Error in Manual Activities

Authors: Zahra Zamanian, Alireza Zamanian, Jafar Hasanzadeh

Abstract:

Background: Unwanted sound, as one of the most important physical factors in the majority of production units, imposes a great number of problems on the industrial workers. Sound is one of the environmental factors which can cause physical as well as psychological damages and also affects the individuals’ performance and productivity. Therefore, the present study aimed to determine the effect of noise exposure on human performance. Methods: The present study assessed the effect of noise on the performance of 50 students of Shiraz University of Medical Sciences (25 males and 25 females) at the sound pressures of 70, 90, and 110 dB by using two factors of physical features and the creation of different conditions of sound pressure source as well as applying Two-Arm coordination Test. Results: The results of the present study revealed no significant difference between male and female subjects as well as different conditions of creating sound pressure regarding the length of performance (p> 0.05). In addition, as the sound pressure increased, the length of performance increased, as well. According to the results, no significant difference was found between the performance at 70 and 90 dB. On the other hand, the performance at 110 dB was significantly different from the performance at 70 and 90 dB (p<0.05 and p<0.001). Conclusion: In general, as the sound pressure increases, the performance decreases which results in a considerable increase in the individuals’ rate of error.

Keywords: physical factors, two-arm coordination test, Shiraz University of Medical Sciences, noise

Procedia PDF Downloads 267
12930 Acoustic Behavior of Polymer Foam Composite of Shorea leprosula after UV-Irradiation Exposure

Authors: Anika Zafiah M. Rus, S. Shafizah

Abstract:

This study was developed to compare the behavior and the ability of polymer foam composites towards sound absorption test of Shorea leprosula wood (SL) of acid hydrolysis treatment with particle size < 355µm. Three different weight ratio of polyol to wood particle has been selected which are 10wt%, 15wt%, and 20wt%. The acid hydrolysis treatment is to optimize the surface interaction of a wood particle with polymer foam matrix. In addition, the acoustic characteristic of sound absorption coefficient (Į) was determined. Further treatment is to expose the polymer composite in UV irradiation by using UV-Weatherometer. Polymer foam composite of untreated shorea leprosula particle (SL-B) with respective percentage loading shows uniform pore structure as compared with treated wood particle (SL-A). As the filler percentage loading in polymer foam increases, the Į value approaching 1 for both samples. Furthermore, SL-A shows better Į value at 3500-4500 frequency absorption level(Hz), meanwhile Į value for SL-B is maximum at 4000-5000 Hz. The frequencies absorption level for both SL-B and SL-A after UV exposure was increased with the increasing of exposure time from 0-1000 hours. It is, therefore, concluded that the Į for each sound absorbing material, with or without acid hydrolysis treatment of wood particles and it’s percentages loading in polymer matrix effect the sound absorption behavior.

Keywords: polymer foam composite, sound absorption coefficient, UV-irradiation, wood

Procedia PDF Downloads 432
12929 Research and Design on a Portable Intravehicular Ultrasonic Leak Detector for Manned Spacecraft

Authors: Yan Rongxin, Sun Wei, Li Weidan

Abstract:

Based on the acoustics cascade sound theory, the mechanism of air leak sound producing, transmitting and signal detecting has been analyzed. A formula of the sound power, leak size and air pressure in the spacecraft has been built, and the relationship between leak sound pressure and receiving direction and distance has been studied. The center frequency in millimeter diameter leak is more than 20 kHz. The situation of air leaking from spacecraft to space has been simulated and an experiment of different leak size and testing distance and direction has been done. The sound pressure is in direct proportion to the cosine of the angle of leak to sensor. The portable ultrasonic leak detector has been developed, whose minimal leak rate is 10-1 Pa·m3/s, the testing radius is longer than 20 mm, the mass is less than 1.0 kg, and the electric power is less than 2.2 W.

Keywords: leak testing, manned spacecraft, sound transmitting, ultrasonic

Procedia PDF Downloads 299
12928 The Design Optimization for Sound Absorption Material of Multi-Layer Structure

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Kyu Park

Abstract:

Sound absorbing material is used as automotive interior material. Sound absorption coefficient should be predicted to design it. But it is difficult to predict sound absorbing coefficient because it is comprised of several material layers. So, its targets are achieved through many experimental tunings. It causes a lot of cost and time. In this paper, we propose the process to estimate the sound absorption coefficient with multi-layer structure. In order to estimate the coefficient, physical properties of each material are used. These properties also use predicted values by Foam-X software using the sound absorption coefficient data measured by impedance tube. Since there are many physical properties and the measurement equipment is expensive, the values predicted by software are used. Through the measurement of the sound absorption coefficient of each material, its physical properties are calculated inversely. The properties of each material are used to calculate the sound absorption coefficient of the multi-layer material. Since the absorption coefficient of multi-layer can be calculated, optimization design is possible through simulation. Then, we will compare and analyze the calculated sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If this method is used when developing automotive interior materials with multi-layer structure, the development effort can be reduced because it can be optimized by simulation. So, cost and time can be saved.

Keywords: sound absorption material, sound impedance tube, sound absorption coefficient, optimization design

Procedia PDF Downloads 255
12927 Acoustic Finite Element Analysis of a Slit Model with Consideration of Air Viscosity

Authors: M. Sasajima, M. Watanabe, T. Yamaguchi Y. Kurosawa, Y. Koike

Abstract:

In very narrow pathways, the speed of sound propagation and the phase of sound waves change due to the air viscosity. We have developed a new Finite Element Method (FEM) that includes the effects of air viscosity for modeling a narrow sound pathway. This method is developed as an extension of the existing FEM for porous sound-absorbing materials. The numerical calculation results for several three-dimensional slit models using the proposed FEM are validated against existing calculation methods.

Keywords: simulation, FEM, air viscosity, slit

Procedia PDF Downloads 338
12926 Numerical Simulation of Supersonic Gas Jet Flows and Acoustics Fields

Authors: Lei Zhang, Wen-jun Ruan, Hao Wang, Peng-Xin Wang

Abstract:

The source of the jet noise is generated by rocket exhaust plume during rocket engine testing. A domain decomposition approach is applied to the jet noise prediction in this paper. The aerodynamic noise coupling is based on the splitting into acoustic sources generation and sound propagation in separate physical domains. Large Eddy Simulation (LES) is used to simulate the supersonic jet flow. Based on the simulation results of the flow-fields, the jet noise distribution of the sound pressure level is obtained by applying the Ffowcs Williams-Hawkings (FW-H) acoustics equation and Fourier transform. The calculation results show that the complex structures of expansion waves, compression waves and the turbulent boundary layer could occur due to the strong interaction between the gas jet and the ambient air. In addition, the jet core region, the shock cell and the sound pressure level of the gas jet increase with the nozzle size increasing. Importantly, the numerical simulation results of the far-field sound are in good agreement with the experimental measurements in directivity.

Keywords: supersonic gas jet, Large Eddy Simulation(LES), acoustic noise, Ffowcs Williams-Hawkings(FW-H) equations, nozzle size

Procedia PDF Downloads 378
12925 Implementation of Real-Time Multiple Sound Source Localization and Separation

Authors: Jeng-Shin Sheu, Qi-Xun Zheng

Abstract:

This paper mainly discusses a method of separating speech when using a microphone array without knowing the number and direction of sound sources. In recent years, there have been many studies on the method of separating signals by using masking, but most of the separation methods must be operated under the condition of a known number of sound sources. Such methods cannot be used for real-time applications. In our method, this paper uses Circular-Integrated-Cross-Spectrum to estimate the statistical histogram distribution of the direction of arrival (DOA) to obtain the number of sound sources and sound in the mixed-signal Source direction. In calculating the relevant parameters of the ring integrated cross-spectrum, the phase (Phase of the Cross-Power Spectrum) and phase rotation factors (Phase Rotation Factors) calculated by the cross power spectrum of each microphone pair are used. In the part of separating speech, it uses the DOA weighting and shielding separation method to calculate the sound source direction (DOA) according to each T-F unit (time-frequency point). The weight corresponding to each T-F unit can be used to strengthen the intensity of each sound source from the T-F unit and reduce the influence of the remaining sound sources, thereby achieving voice separation.

Keywords: real-time, spectrum analysis, sound source localization, sound source separation

Procedia PDF Downloads 120
12924 The Prediction of Sound Absorbing Coefficient for Multi-Layer Non-Woven

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park

Abstract:

Automotive interior material consisting of several material layers has the sound-absorbing function. It is difficult to predict sound absorbing coefficient because of several material layers. So, many experimental tunings are required to achieve the target of sound absorption. Therefore, while the car interior materials are developed, so much time and money is spent. In this study, we present a method to predict the sound absorbing performance of the material with multi-layer using physical properties of each material. The properties are predicted by Foam-X software using the sound absorption coefficient data measured by impedance tube. Then, we will compare and analyze the predicted sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If the method is used instead of experimental tuning in the development of car interior material, the time and money can be saved, and then, the development effort can be reduced because it can be optimized by simulation.

Keywords: multi-layer nonwoven, sound absorption coefficient, scaled reverberation chamber, impedance tubes

Procedia PDF Downloads 343
12923 Prediction of Physical Properties and Sound Absorption Performance of Automotive Interior Materials

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Seong-Jin Cho, Tae-Hyeon Oh, Dae-Kyu Park

Abstract:

Sound absorption coefficient is considered important when designing because noise affects emotion quality of car. It is designed with lots of experiment tunings in the field because it is unreliable to predict it for multi-layer material. In this paper, we present the design of sound absorption for automotive interior material with multiple layers using estimation software of sound absorption coefficient for reverberation chamber. Additionally, we introduce the method for estimation of physical properties required to predict sound absorption coefficient of car interior materials with multiple layers too. It is calculated by inverse algorithm. It is very economical to get information about physical properties without expensive equipment. Correlation test is carried out to ensure reliability for accuracy. The data to be used for the correlation is sound absorption coefficient measured in the reverberation chamber. In this way, it is considered economical and efficient to design automotive interior materials. And design optimization for sound absorption coefficient is also easy to implement when it is designed.

Keywords: sound absorption coefficient, optimization design, inverse algorithm, automotive interior material, multiple layers nonwoven, scaled reverberation chamber, sound impedance tubes

Procedia PDF Downloads 274
12922 Laboratory Evaluation of the Airborne Sound Insulation of Plasterboard Sandwich Panels Filled with Recycled Textile Material

Authors: Svetlana Trifonova Djambova, Natalia Bobeva Ivanova, Roumiana Asenova Zaharieva

Abstract:

Small size acoustic chamber test method has been applied to experimentally evaluate and compare the airborne sound insulation provided by plasterboard sandwich panels filled with mineral wool and with its alternative from recycled textile material (produced by two different technologies). A sound source room is used as an original small-size acoustic chamber, specially built in a real-size room, utilized as a sound receiving room. The experimental results of one of the recycled textile material specimens have demonstrated sound insulation properties similar to those of the mineral wool specimen and even superior in the 1600-3150 Hz frequency range. This study contributes to the improvement of recycled textile material production, as well as to the synergy of heat insulation and sound insulation performances of building materials.

Keywords: airborne sound insulation, heat insulation products, mineral wool, recycled textile material

Procedia PDF Downloads 148