Search results for: bonding capacity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4409

Search results for: bonding capacity

4289 Eccentric Loading of CFDST Columns

Authors: Trevor N. Haas, Alexander Koen

Abstract:

Columns have traditionally been constructed of reinforced concrete or structural steel. Much attention was allocated to estimate the axial capacity of the traditional column sections to the detriment of other forms of construction. Other forms of column construction such as Concrete Filled Double Skin Tubes received little research attention, and almost no attention when subjected to eccentric loading. This paper investigates the axial capacity of columns when subjected to eccentric loading. The experimental axial capacities are compared to other established theoretical formulae on concentric loading to determine a possible relationship. The study found a good correlation between the reduction in axial capacity for different column lengths and hollow section ratios.

Keywords: CSDST, CFST, axial capacity, hollow section ratios

Procedia PDF Downloads 317
4288 Reliability Analysis for the Functioning of Complete and Low Capacity MLDB Systems in Piston Plants

Authors: Ramanpreet Kaur, Upasana Sharma

Abstract:

The purpose of this paper is to address the challenges facing the water supply for the Machine Learning Database (MLDB) system at the piston foundry plant. In the MLDB system, one main unit, i.e., robotic, is connected by two sub-units. The functioning of the system depends on the robotic and water supply. Lack of water supply causes system failure. The system operates at full capacity with the help of two sub-units. If one sub-unit fails, the system runs at a low capacity. Reliability modeling is performed using semi-Markov processes and regenerative point techniques. Several system effects such as mean time to system failure, availability at full capacity, availability at reduced capacity, busy period for repair and expected number of visits have been achieved. Benefits have been analyzed. The graphical study is designed for a specific case using programming in C++ and MS Excel.

Keywords: MLDB system, robotic, semi-Markov process, regenerative point technique

Procedia PDF Downloads 79
4287 Adherence Induced Formwork Removal in Small-Scale Pull-Off Tensile Tests

Authors: Nicolas Spitz, Nicolas Coniglio, Mohamed El Mansori, Alex Montagne, Sabeur Mezghani

Abstract:

Nowadays buildings' construction is performed by pouring concrete into molds referred to as formworks that are usually prefabricated metallic modules. Defects such as stripping may possibly form during the removal of the formwork if the interfacial bonding between the concrete and the formwork is high. A new pull-off tensile test was developed in our laboratory to simulate small-scale formwork removals. The concrete-to-formwork adherence force was measured on bare and coated formworks with different surface signatures. The used concrete was a mixture largely used on building sites and contains CEM I Portland cement and calcareous filler. The concrete surface appearance and the type of failures at the concrete-formwork interface have been investigated. The originality of this near-to-surface test was to compare the laboratory-measured adherence forces to the on-site observations. Based upon the small-scale laboratory test results, functional formwork specifications with low adherence to concrete was proposed in terms of superficial signature characteristics.

Keywords: concrete-formwork adherence, interfacial bonding, skin formwork functionality, small-scale pull-off tensile test

Procedia PDF Downloads 222
4286 Numerical Analysis of Jet Grouting Strengthened Pile under Lateral Loading

Authors: Reza Ziaie Moayed, Naeem Gholampoor

Abstract:

Jet grouting strengthened pile (JPP) is one of composite piles used in soft ground improvement. It may improve the vertical and lateral bearing capacity effectively and it has been practically used in a considerable scale. In order to make a further research on load transfer mechanism of single JPP with and without cap under lateral loads, JPP is analyzed by means of FEM analysis. It is resulted that the JPP pile could improve lateral bearing capacity by compared with bored concrete pile which is higher for shorter pile and the biggest bending moment of JPP pile is located in the depth of around 48% of embedded length of the pile. Meanwhile, increase of JPP pile length causes to increase of peak mobilized bending moment. Also, by cap addition, JPP piles will have a much higher lateral bearing capacity and increasing in cohesion of soil layer resulted to increase of lateral bearing capacity of JPP pile. In addition, the numerical results basically coincide with the experimental results presented by other researchers.

Keywords: bending moment, FEM analysis, JPP pile, lateral bearing capacity

Procedia PDF Downloads 292
4285 Strengthening Reinforced Concrete Beams Using Carbon Fibre Reinforced Polymer Strips

Authors: Mina Iskander, Mina Melad, Mourad Yasser, Waleed Abdel Rahim, Amr Mosa, Mohamed El Lahamy, Ezzeldin Sayed-Ahmed, Mohamed Abou-Zeid

Abstract:

Strengthening of reinforced concrete beams in flexure using externally bonded composite laminate of high tensile strength is easy and of the minimum cost compared to traditional methods such as increasing the concrete section depth or reinforcement that requires formwork and curing which affect the structure usability. One of the main limitations of this technique is debonding of the externally bonded laminate, either by end delamination or by mid-span flexural crack-induced debonding. ACI 440.2-08 suggests that using side-bonded FRP laminate in the flexural strengthening of RC beams may serve to limit the extent and width of flexural cracks. Consequently, this technique may decrease the effect of flexural cracks on initiating the mid-span debonding; i.e. delays the flexural crack-induced debonding. Furthermore, bonding the FRP strips to the side of the beam may offer an attractive, practical solution when the soffit of this beam is not accessible. This paper presents an experimental programme designed to investigate the effect of using externally bonded CFRP laminate on the sides of reinforced concrete beams and compares the results to those of bonding the CFRP laminate to the soffit of the beams. In addition, the paper discusses the effect of using end anchorage by U-wrapping the CFRP strips at their end zones with CFRP sheets for beams strengthened with soffit-bonded and side-bonded CFRP strips. Thus, ten rectangular reinforced concrete beams were tested to failure in order to study the effect of changing the location of the externally bonded laminate on the flexural capacity and ductility of the strengthened beams. Pultruded CFRP strips were bonded to the soffit of the beams or their sides to check the possibility of limiting the flexural cracking in mid-span region, which is the main reason for mid-span debonding. Pre-peg CFRP sheets were used near the support as U-wrap for the beam to act as an end-anchorage for the externally bonded strips in order to delay/prevent the end delamination. Strength gains of 38% and 43% were recorded for the soffit-bonded and the side-bonded composite strips with end U-wrapped sheets, respectively. Furthermore, beams with end sheets applied as an end anchorage showed higher ductility than those without these sheets.

Keywords: flexural strengthening, externally bonded CFRP, side-bonded CFRP, CFRP laminates

Procedia PDF Downloads 332
4284 Triplet Shear Tests on Retrofitted Brickwork Masonry Walls

Authors: Berna Istegun, Erkan Celebi

Abstract:

The main objective of this experimental study is to assess the shear strength and the crack behavior of the triplets built of perforated brickwork masonry elements. In order to observe the influence of shear resistance and energy dissipating before and after retrofitting applications by using the reinforcing system, static-cyclic shear tests were employed in the structural mechanics laboratory of Sakarya University. The reinforcing system is composed of hybrid multiaxial seismic fabric consisting of alkali resistant glass and polypropylene fibers. The plaster as bonding material used in the specimen’s retrofitting consists of expanded glass granular. In order to acquire exact measuring data about the failure behavior of the two mortar joints under shear stressing, vertical load-controlled cylinder having force capacity of 50 kN and loading rate of 1.5 mm/min. with an internal inductive displacement transducers is carried out perpendicular to the triplet specimens. In this study, a total of six triplet specimens with textile reinforcement were prepared for these shear bond tests. The three of them were produced as single-sided reinforced triplets with seismic fabric, while the others were strengthened on both sides. In addition, three triplet specimens without retrofitting and plaster were also tested as reference samples. The obtained test results were given in the manner of force-displacement relationships, ductility coefficients and shear strength parameters comparatively. It is concluded that two-side seismic textile applications on masonry elements with relevant plaster have considerably increased the sheer force resistance and the ductility capacity.

Keywords: expanded glass granular, perforated brickwork, retrofitting, seismic fabric, triplet shear tests

Procedia PDF Downloads 179
4283 Updating Stochastic Hosting Capacity Algorithm for Voltage Optimization Programs and Interconnect Standards

Authors: Nicholas Burica, Nina Selak

Abstract:

The ADHCAT (Automated Distribution Hosting Capacity Assessment Tool) was designed to run Hosting Capacity Analysis on the ComEd system via a stochastic DER (Distributed Energy Resource) placement on multiple power flow simulations against a set of violation criteria. The violation criteria in the initial version of the tool captured a limited amount of issues that individual departments design against for DER interconnections. Enhancements were made to the tool to further align with individual department violation and operation criteria, as well as the addition of new modules for use for future load profile analysis. A reporting engine was created for future analytical use based on the simulations and observations in the tool.

Keywords: distributed energy resources, hosting capacity, interconnect, voltage optimization

Procedia PDF Downloads 143
4282 Infrastructure Sharing Synergies: Optimal Capacity Oversizing and Pricing

Authors: Robin Molinier

Abstract:

Industrial symbiosis (I.S) deals with both substitution synergies (exchange of waste materials, fatal energy and utilities as resources for production) and infrastructure/service sharing synergies. The latter is based on the intensification of use of an asset and thus requires to balance capital costs increments with snowball effects (network externalities) for its implementation. Initial investors must specify ex-ante arrangements (cost sharing and pricing schedule) to commit toward investments in capacities and transactions. Our model investigate the decision of 2 actors trying to choose cooperatively a level of infrastructure capacity oversizing to set a plug-and-play offer to a potential entrant whose capacity requirement is randomly distributed while satisficing their own requirements. Capacity cost exhibits sub-additive property so that there is room for profitable overcapacity setting in the first period. The entrant’s willingness-to-pay for the access to the infrastructure is dependent upon its standalone cost and the capacity gap that it must complete in case the available capacity is insufficient ex-post (the complement cost). Since initial capacity choices are driven by ex-ante (expected) yield extractible from the entrant we derive the expected complement cost function which helps us defining the investors’ objective function. We first show that this curve is decreasing and convex in the capacity increments and that it is shaped by the distribution function of the potential entrant’s requirements. We then derive the general form of solutions and solve the model for uniform and triangular distributions. Depending on requirements volumes and cost assumptions different equilibria occurs. We finally analyze the effect of a per-unit subsidy a public actor would apply to foster such sharing synergies.

Keywords: capacity, cooperation, industrial symbiosis, pricing

Procedia PDF Downloads 183
4281 The Relationship between Life Event Stress, Depressive Thoughts, and Working Memory Capacity

Authors: Eid Abo Hamza, Ahmed Helal

Abstract:

Purpose: The objective is to measure the capacity of the working memory, ie. the maximum number of elements that can be retrieved and processed, by measuring the basic functions of working memory (inhibition/transfer/update), and also to investigate its relationship to life stress and depressive thoughts. Methods: The study sample consisted of 50 students from Egypt. A cognitive task was designed to measure the working memory capacity based on the determinants found in previous research, which showed that cognitive tasks are the best measurements of the functions and capacity of working memory. Results: The results indicated that there were statistically significant differences in the level of life stress events (high/low) on the task of measuring the working memory capacity. The results also showed that there were no statistically significant differences between males and females or between academic major on the task of measuring the working memory capacity. Furthermore, the results reported that there was no statistically significant effect of the interaction of the level of life stress (high/low) and gender (male/female) on the task of measuring working memory capacity. Finally, the results showed that there were significant differences in the level of depressive thoughts (high/low) on the task of measuring working memory. Conclusions: The current research concludes that neither the interaction of stressful life events, gender, and academic major, nor the interaction of depressive thoughts, gender, and academic major, influence on working memory capacity.

Keywords: working memory, depression, stress, life event

Procedia PDF Downloads 124
4280 Gamma Irradiation Effect on Structural and Optical Properties of Bismuth-Boro-Tellurite Glasses

Authors: Azuraida Amat, Halimah Mohamed Kamari, Che Azurahanim Che Abdullah, Ishak Mansor

Abstract:

The changes of the optical and structural properties of Bismuth-Boro-Tellurite glasses pre and post gamma irradiation were studied. Six glass samples, with different compositions [(TeO2)0.7 (B2O3)0.3]1-x (Bi2O3)x prepared by melt quenching method were irradiated with 25kGy gamma radiation at room temperature. The Fourier Transform Infrared Spectroscopy (FTIR) was used to explore the structural bonding in the prepared glass samples due to exposure, while UV-VIS Spectrophotometer was used to evaluate the changes in the optical properties before and after irradiation. Gamma irradiation causes a profound changes in the peak intensity as shown by FTIR spectra which is due to the breaking of the network bonding. Before gamma irradiation, the optical band gap, Eg value decreased from 2.44 eV to 2.15 eV with the addition of Bismuth content. The value kept decreasing (from 2.18 eV to 2.00 eV) following exposure to gamma radiation due to the increase of non-bridging oxygen (NBO) and the increase of defects in the glass. In conclusion, the glass with high content of Bi2O3 (0.30Bi) give the smallest Eg and show less changes in FTIR spectra after gamma irradiation, which indicate that this glass is more resistant to gamma radiation compared to other glasses.

Keywords: boro-tellurite, bismuth, gamma radiation, optical properties

Procedia PDF Downloads 397
4279 Phenolic Compounds and Antioxidant Capacity of Tuckeroo (Cupaniopsis anacardioides) Fruits

Authors: Ngoc Minh Quynh Pham, Quan V. Vuong, Michael C. Bowyer, Christopher J. Scarlett

Abstract:

Tuckeroo (Cupaniopsis anacardioides) is an Australian native plant and is grown in the coastal regions in New South Wales, Queensland and Northern Australia. Its fruits have been eaten by birds; however there is no information on phytochemical and antioxidant capacity of these fruits. This study aimed to determine the phenolic compounds (TPC), flavonoids (TFC), proanthocyanidins (TPro) and antioxidant capacity in the whole or different parts of tuckeroo fruit including skin, flesh and seed. Whole and partly tuckeroo fruits were collected and immediately freeze dried to constant weight and then ground to small particle sizes (<1mm mesh). Samples were extracted in 50% methanol using an ultrasonic bath set at temperature 40 °C for 30 minutes. TPC, TFC, TPro and antioxidant capacity were measured by spectrophotometric analysis. The results showed that the whole fruits contained 106.23 mg GAE/g of TPC, 67.67 mg CAE/g of TFC and 56.74 mg CAE/g of TPro. These fruits also possessed high antioxidant capacity (DPPH: 263.78 mg TroE/g, ABTS: 346.98 mg TroE/g, CUPRAC: 370.12 mg TroE/g and FRAP: 176.30 mg TroE/g), revealing that these fruits are rich source of antioxidants. The results also showed that distribution of the antioxidants was varied in different parts of the fruits. Skin had the highest levels of TPC, TFC, and TPro as well as antioxidant properties, followed by the seed and flesh had the lowest levels of phenolic compounds and antioxidant capacity. Of note, levels of phenolic compounds and antioxidant capacity of the skin were significantly higher than those of the whole fruits. Therefore, the skin of tuckeroo fruits is recommended as a starting material for extraction and purification of phenolic compounds as potential antioxidants for further utilisation in the food and pharmaceutical industries.

Keywords: antioxidant capacity, Cupaniopsis anacardioides, phenolic compounds, tuckeroo fruit

Procedia PDF Downloads 374
4278 Performance of Modified Wedge Anchorage System for Pre-Stressed FRP Bars

Authors: Othman S. Alsheraida, Sherif El-Gamal

Abstract:

Fiber Reinforced Polymers (FRP) is a composite material with exceptional properties that are capable of replacing conventional steel reinforcement in reinforced and pre-stressed concrete structures. However, the main obstacle for their wide use in the pre-stressed concrete application is the anchorage system. Due to the weakness of FRP in the transverse direction, the pre-stressing capacity of FRP bars is limited. This paper investigates the modification of the conventional wedge anchorage system to be used for stressing of FRP bars in pre-stressed applications. Epoxy adhesive material with glass FRP (GFRP) bars and conventional steel wedge were used in this paper. The GFRP bars are encased with epoxy at the anchor zone and the wedge system was used in the pull-out test. The results showed a loading capacity of 47.6 kN which is 69% of the bar ultimate capacity. Additionally, nylon wedge was made with the same dimensions of the steel wedge and tested for GFRP bars without epoxy layer. The nylon wedge showed a loading capacity of 19.7 kN which is only 28.5% of the ultimate bar capacity.

Keywords: anchorage, concrete, epoxy, frp, pre-stressed

Procedia PDF Downloads 267
4277 Maximising the Therapeutic Value of the Mental Capacity Act of Singapore for People Who Lack Legal Capacity

Authors: Kenji Gwee

Abstract:

The Mental Capacity Act is a new legislation that allows for lasting powers of attorney and court-appointed deputies, in respect of people who lack legal capacity. While the UK Act, after which the Singapore Act is modeled, has been shown to be therapeutic to donors, the Singapore Act differs from its UK counterpart and it is unclear if the Singapore Act can be beneficial to donors as purported. The purpose of this study was to determine what the perceptions of three groups of stakeholders (patients, caregivers and psychiatrists) are about the aspects of the Mental Capacity Act that are therapeutic to donors. In addition, ways to increase the therapeutic value of the Act to donors are sought. A qualitative methodology was used and the research was guided by two theoretical frameworks: therapeutic jurisprudence and an interpretive constructive framework. Interviews with 12 psychiatrists, and focus groups with twenty three patients and seven caregivers showed agreement that, allowing donors to nominate more than one decision- maker, and whistle-blowing mechanisms for recourse for abuse, were therapeutic to donors. To further increase the therapeutic value of the Act, 2 suggestions were made: the Act should provide for (i) advanced healthcare directives- allowing donors to make advance decisions to refuse treatment, or cease existing treatment, and (ii) independent advocacy services- to have a case worker to represent people who have no family or friends and are thus unable to find suitable donees.

Keywords: Mental Capacity Act, therapeutic jurisprudence, qualitative methodology, the UK Act

Procedia PDF Downloads 380
4276 Capacity Building and Motivation as Determinants of Productivity among Library Personnel in Colleges of Education in Southwest, Nigeria

Authors: E. K. Soyele

Abstract:

This study is on capacity building and motivation as determinants of productivity among library personnel in colleges of education in South West, Nigeria. This study made use of a descriptive research design of survey type. A total enumeration sampling technique was used for the selected sample. The research sample consisted of 40 library personnel. The instrument used for the study was a structured questionnaire divided into four parts. Statistics data analysis used were descriptive statistics with frequencies, percentages, and regression statistics analysis. Findings from this study revealed that capacity building and motivation have positive impact on library personnel productivity with their percentages greater than 50% acceptance level. A test of null hypotheses at P < 0.05 significant level was tested to see the significance between capacity building and productivity, which was positive at P < 0.05 significant level. This implies that capacity building and motivation significantly determine productivity among library personnel in selected college libraries in Nigeria. The study concluded that there is need for institutions to equip their library personnel via training programmes, in-service, digital training, ICT training, seminars, and conferences, etc. Incentives should be provided to motivate personnel for high productivity. The study, therefore, recommends that government, institutions and library management should fund college libraries adequately so as to enhance capacity building, staff commitment and training for further education

Keywords: capacity building, library personnel, motivation, productivity

Procedia PDF Downloads 169
4275 Load Transfer of Steel Pipe Piles in Warming Permafrost

Authors: S. Amirhossein Tabatabaei, Abdulghader A. Aldaeef, Mohammad T. Rayhani

Abstract:

As the permafrost continues to melt in the northern regions due to global warming, a soil-water mixture is left behind with drastically lower strength; a phenomenon that directly impacts the resilience of existing structures and infrastructure systems. The frozen soil-structure interaction, which in ice-poor soils is controlled by both interface shear and ice-bonding, changes its nature into a sole frictional state. Adfreeze, the controlling mechanism in frozen soil-structure interaction, diminishes as the ground temperature approaches zero. The main purpose of this paper is to capture the altered behaviour of frozen interface with respect to rising temperature, especially near melting states. A series of pull-out tests are conducted on model piles inside a cold room to study how the strength parameters are influenced by the phase change in ice-poor soils. Steel model piles, embedded in artificially frozen cohesionless soil, are subjected to both sustained pull-out forces and constant rates of displacement to observe the creep behaviour and acquire load-deformation curves, respectively. Temperature, as the main variable of interest, is increased from a lower limit of -10°C up to the point of melting. During different stages of the temperature rise, both skin deformations and temperatures are recorded at various depths along the pile shaft. Significant reduction of pullout capacity and accelerated creep behaviour is found to be the primary consequences of rising temperature. By investigating the different pull-out capacities and deformations measured during step-wise temperature change, characteristics of the transition from frozen to unfrozen soil-structure interaction are studied.

Keywords: Adfreeze, frozen soil-structure interface, ice-poor soils, pull-out capacity, warming permafrost

Procedia PDF Downloads 80
4274 Discrete-Time Bulk Queue with Service Capacity Depending on Previous Service Time

Authors: Yutae Lee

Abstract:

This paper considers a discrete-time bulk-arrival bulkservice queueing system, where service capacity varies depending on the previous service time. By using the generating function technique and the supplementary variable method, we compute the distributions of the queue length at an arbitrary slot boundary and a departure time.

Keywords: discrete-time queue, bulk queue, variable service capacity, queue length distribution

Procedia PDF Downloads 450
4273 Algorithmic Generation of Carbon Nanochimneys

Authors: Sorin Muraru

Abstract:

Computational generation of carbon nanostructures is still a very demanding process. This work provides an alternative to manual molecular modeling through an algorithm meant to automate the design of such structures. Specifically, carbon nanochimneys are obtained through the bonding of a carbon nanotube with the smaller edge of an open carbon nanocone. The methods of connection rely on mathematical, geometrical and chemical properties. Non-hexagonal rings are used in order to perform the correct bonding of dangling bonds. Once obtained, they are useful for thermal transport, gas storage or other applications such as gas separation. The carbon nanochimneys are meant to produce a less steep connection between structures such as the carbon nanotube and graphene sheet, as in the pillared graphene, but can also provide functionality on its own. The method relies on connecting dangling bonds at the edges of the two carbon nanostructures, employing the use of two different types of auxiliary structures on a case-by-case basis. The code is implemented in Python 3.7 and generates an output file in the .pdb format containing all the system’s coordinates. Acknowledgment: This work was supported by a grant of the Executive Agency for Higher Education, Research, Development and innovation funding (UEFISCDI), project number PN-III-P1-1.1-TE-2016-24-2, contract TE 122/2018.

Keywords: carbon nanochimneys, computational, carbon nanotube, carbon nanocone, molecular modeling, carbon nanostructures

Procedia PDF Downloads 136
4272 Effect of Anisotropy and Heterogeneity on Bearing Capacity of Shallow Foundations

Authors: S. A. Naeini, A. Mahigir

Abstract:

Naturally occurring cohesive soil deposits are inherently anisotropic with respect to different properties amongst which is the shear strength. The anisotropy is primary due to the process of sedimentation followed by predominantly one-dimensional consolidation. However, most soils in their natural states exhibit some anisotropy with respect to shear strength and some non-homogeneity with respect to depth. In this paper the standard Mohr-Coulomb yield criterion was modified to consider the anisotropic shear strength properties. The term non-homogeneity used in this paper refers to only the cohesion intercept which is assumed to vary linearly with depth. The effect of both anisotropy and deterministic non-homogeneity on bearing capacity of shallow foundation was investigated using finite difference method. Result of numerical analysis indicates that the cohesion anisotropy has a significant effect on bearing capacity of shallow foundation. Furthermore, the linear and bilinear heterogeneity affects the bearing capacity in a similar way although the anisotropy issue emerges to be more important as far as shallow foundations are considered.

Keywords: anisotropic ratio, finite difference analysis, bearing capacity, heterogeneity

Procedia PDF Downloads 242
4271 Generalized Limit Equilibrium Solution for the Lateral Pile Capacity Problem

Authors: Tomer Gans-Or, Shmulik Pinkert

Abstract:

The determination of lateral pile capacity per unit length is a key aspect in geotechnical engineering. Traditional approaches for assessing piles lateral capacity in cohesive soils involve the application of upper-bound and lower-bound plasticity theorems. However, a comprehensive solution encompassing the entire spectrum of soil strength parameters, particularly in frictional soils with or without cohesion, is still lacking. This research introduces an innovative implementation of the slice method limit equilibrium solution for lateral capacity assessment. For any given numerical discretization of the soil's domain around the pile, the lateral capacity evaluation is based on mobilized strength concept. The critical failure geometry is then found by a unique optimization procedure which includes both factor of safety minimization and geometrical optimization. The robustness of this suggested methodology is that the solution is independent of any predefined assumptions. Validation of the solution is accomplished through a comparison with established plasticity solutions for cohesive soils. Furthermore, the study demonstrates the applicability of the limit equilibrium method to address unresolved cases related to frictional and cohesive-frictional soils. Beyond providing capacity values, the method enables the utilization of the mobilized strength concept to generate safety-factor distributions for scenarios representing pre-failure states.

Keywords: lateral pile capacity, slice method, limit equilibrium, mobilized strength

Procedia PDF Downloads 27
4270 Organizational Mortality of Insurance Organizations under the Conditions of Environmental Changes

Authors: Erdem Kirkbesoglu, A. Bugra Soylu, E. Deniz Kahraman

Abstract:

The aim of this study is to examine the effects of some variables on organizational mortality of the Turkish insurance industry and calculate the carrying capacities of Turkish insurance industry according to cities and regions. In the study, organizational mortality was tested with the level of reaching the population's carrying capacity. The findings of this study show that the insurance sales potentials can be calculated according to the provinces and regions of Turkey. It has also been proven that the organizations that feed on the same source will have a carrying capacity in the evolutionary process.

Keywords: insurance, carrying capacity, organizational mortality, organization

Procedia PDF Downloads 251
4269 Pressure Distribution, Load Capacity, and Thermal Effect with Generalized Maxwell Model in Journal Bearing Lubrication

Authors: M. Guemmadi, A. Ouibrahim

Abstract:

This numerical investigation aims to evaluate how a viscoelastic lubricant described by a generalized Maxwell model, affects the pressure distribution, the load capacity and thermal effect in a journal bearing lubrication. We use for the purpose the CFD package software completed by adapted user define functions (UDFs) to solve the coupled equations of momentum, of energy and of the viscoelastic model (generalized Maxwell model). Two parameters, viscosity and relaxation time are involved to show how viscoelasticity substantially affect the pressure distribution, the load capacity and the thermal transfer by comparison to Newtonian lubricant. These results were also compared with the available published results.

Keywords: journal bearing, lubrication, Maxwell model, viscoelastic fluids, computational modelling, load capacity

Procedia PDF Downloads 514
4268 Determination of the Bearing Capacity of Granular Pumice Soils by Laboratory Tests

Authors: Mustafa Yildiz, Ali Sinan Soganci

Abstract:

Pumice soils are countered in many projects such as transportation roads, channels and residential units throughout the World. The pumice deposits are characterized by the vesicular nature of their particles. When the pumice soils are evaluated considering the geotechnical viewpoint, they differ from silica sands in terms of physical and engineering characteristics. These differences are low grain strength, high friction angle, void ratio and compressibility. At stresses greater than a few hundred kPa, the stress-strain-strength behaviour of these soils is determined by particle crushing. Particle crushing leads to changes in the density and reduction in the components of shear stress due to expansion. In this study, the bearing capacity and behaviour of granular pumice soils compared to sand-gravels were investigated by laboratory model tests. Firstly the geotechnical properties of granular pumice soils were determined; then, the behaviour of pumice soils with an equivalent diameter of sand and gravel soils were investigated by model rectangular and circular foundation types and were compared with each other. For this purpose, basic types of model footing (15*15 cm, 20*20 cm, Φ=15 cm and Φ=20 cm) have been selected. When the experimental results of model bearing capacity are analyzed, the values of sand and gravel bearing capacity tests were found to be 1.0-1.5 times higher than the bearing capacity of pumice the same size. This fact has shown that sand and gravel have a higher bearing capacity than pumice of the similar particle sizes.

Keywords: pumice soils, laboratory model tests, bearing capacity, laboratory model tests, Nevşehir

Procedia PDF Downloads 189
4267 Assessment of Yield and Water Use Efficiency of Soybean under Deficit Irrigation

Authors: Meysam Abedinpour

Abstract:

Water limitation is the main challenge for crop production in a semi-arid environment. Deficit irrigation is a strategy that allows a crop to sustain some degree of water deficit in order to reduce costs and potentially increase income. For this goal, a field experimental carried out at Asrieh fields of Gorgan city in the north of Iran, during summer season 2011. The treatments imposed were different irrigation water regimes (i.e. W1:70, W2:80, W3:90, and W4:100) percent of field capacity (FC). The results showed that there was Significant difference between the yield and (WUE) under different levels of irrigation, excepting of soil moisture content at field capacity (W4) and 90% of field capacity (W3) on yield and water use efficiency (WUE). The seasonal irrigation water applied were (i.e. 375, 338, 300, and 263 mm ha-1) under different irrigation water treatments (100, 90, 80, 80 and 70%) of FC, respectively. Grain yield productions under treatments were 4180, 3955, 3640, and 3355 (kg ha-1) respectively. Furthermore, the results showed that water use efficiency (WUE) at different treatments were 7.67, 7.79, 7.74, and 7.75 Kg mm ha-1 for (100, 90, 80, and 70) per cent of field capacity, therefore the 90 % of FC treatment (W3) is recommended for Soybean irrigation for water saving. Furthermore, the result showed that the treatment of 90 % of filed capacity (W3) seemed to be better adapted to product a high crop yield with acceptable yield coupling with water use efficiency in Golestan province.

Keywords: deficit irrigation, water use efficiency, yield, soybean

Procedia PDF Downloads 440
4266 Conceptual Modeling of the Relationship between Project Management Practices and Knowledge Absorptive Capacity Using Interpretive Structural Modeling Method

Authors: Seyed Abdolreza Mosavi, Alireza Babakhan, Elham Sadat Hoseinifard

Abstract:

Knowledge-based firms need to design mechanisms for continuous absorptive and creation of knowledge in order to ensure their survival in the competitive arena and to follow the path of development. Considering the project-oriented nature of product development activities in knowledge-based firms on the one hand and the importance of analyzing the factors affecting knowledge absorptive capacity in these firms on the other, the purpose of this study is to identify and classify the factors affecting project management practices on absorptive knowledge capacity. For this purpose, we have studied and reviewed the theoretical literature in the field of project management and absorptive knowledge capacity so as to clarify its dimensions and indexes. Then, using the ISM method, the relationship between them has been studied. To collect data, 21 questionnaires were distributed in project-oriented knowledge-based companies. The results of the ISM method analysis provide a model for the relationship between project management activities and knowledge absorptive capacity, which includes knowledge acquisition capacity, scope management, time management, cost management, quality management, human resource management, communications management, procurement management, risk management, stakeholders management and integration management. Having conducted the MICMAC analysis, we divided the variables into three groups of independent, relational and dependent variables and came up with no variables to be included in the group of autonomous variables.

Keywords: knowledge absorptive capacity, project management practices, knowledge-based firms, interpretive structural modeling

Procedia PDF Downloads 172
4265 Numerical Analysis of Bearing Capacity of Caissons Subjected to Inclined Loads

Authors: Hooman Dabirmanesh, Mahmoud Ghazavi, Kazem Barkhordari

Abstract:

A finite element modeling for determination of the bearing capacity of caissons subjected to inclined loads is presented in this paper. The model investigates the uplift capacity of the caisson with varying cross sectional area. To this aim, the behavior of the soil is assumed to be elasto-plastic, and its failure is controlled by Modified Cam-Clay failure criterion. The simulation takes into account the couple analysis. The approach is verified using available data from other research work especially centrifuge data. Parametric studies are subsequently performed to investigate the effect of contributing parameters such as aspect ratio of the caisson, the loading rate, the loading direction angle, and points where the external load is applied. In addition, the influence of the caisson geometry is taken into account. The results show the bearing capacity of the caisson increases with increasing the taper angle. Hence, the pullout capacity will increase using the same material. In addition, the bearing capacity of caissons strongly depends on the suction that is generated at tip and in sealed surface on top of caisson. Other results concerning the influencing factors will be presented.

Keywords: aspect ratio, finite element method, inclined load, modified Cam clay, taper angle, undrained condition

Procedia PDF Downloads 232
4264 Effect of Pressure and Glue Spread on the Bonding Properties of CLT Panels Made from Low-Grade Hardwood

Authors: Sumanta Das, Miroslav Gašparík, Tomáš Kytka, Anil Kumar Sethy

Abstract:

In this modern century, Cross-laminated timber (CLT) evolved as an excellent material for building and high load-bearing structural applications worldwide. CLT is produced mainly from softwoods such as Norway spruce, White fir, Scots pine, European larch, Douglas fir, and Swiss stone pine. The use of hardwoods in CLT production is still at an early stage, and the utilization of hardwoods is expected to provide the opportunity for obtaining higher bending stiffness and shear resistance to CLT panels. In load-bearing structures like CLT, bonding is an important character that is needed to evaluate. One particular issue with using hardwood lumber in CLT panels is that it is often more challenging to achieve a strong, durable adhesive bond. Several researches in the past years have already evaluated the bonding properties of CLT panels from hardwood both from higher and lower densities. This research aims to identify the effect of pressure and glue spread and evaluate which poplar lumber characteristics affect adhesive bond quality. Three-layered CLT panels were prepared from poplar wood with one-component polyurethane (PUR) adhesive by applying pressure of 0.6 N/mm2 and 1 N/mm2 with a glue spread rate of 160 and 180 g/m2. The delamination and block shear tests were carried out as per EN 16351:2015, and the wood failure percentage was also evaluated. The results revealed that glue spread rate and applied pressure significantly influenced both the shear bond strength and wood failure percentage of the CLT. However, samples with lower pressure 0.6 N/mm2 and less glue spread rate showed delamination, and in samples with higher pressure 1 N/mm2 and higher glue spread rate, no delamination was observed. All the properties determined by this study met the minimum requirement mentioned in EN 16351:2015 standard.

Keywords: cross-laminated timber, delamination, glue spread rate, poplar, pressure, PUR, shear strength, wood failure percentage

Procedia PDF Downloads 131
4263 Modification of Polyurethane Adhesive for OSB/EPS Panel Production

Authors: Stepan Hysek, Premysl Sedivka, Petra Gajdacova

Abstract:

Currently, structural composite materials contain cellulose-based particles (wood chips, fibers) bonded with synthetic adhesives containing formaldehyde (urea-formaldehyde, melamine-formaldehyde adhesives and others). Formaldehyde is classified as a volatile substance with provable carcinogenic effects on live organisms, and an emphasis has been put on continual reduction of its content in products. One potential solution could be the development of an agglomerated material which does not contain adhesives releasing formaldehyde. A potential alternative to formaldehyde-based adhesives could be polyurethane adhesives containing no formaldehyde. Such adhesives have been increasingly used in applications where a few years ago formaldehyde-based adhesives were the only option. Advantages of polyurethane adhesive in comparison with others in the industry include the high elasticity of the joint, which is able to resist dynamic stress, and resistance to increased humidity and climatic effects. These properties predict polyurethane adhesives to be used in OSB/EPS panel production. The objective of this paper is to develop an adhesive for bonding of sandwich panels made of material based on wood and other materials, e.g. SIP) and optimization of input components in order to obtain an adhesive with required properties suitable for bonding of the given materials without involvement of formaldehyde. It was found that polyurethane recyclate as a filler is suitable modification of polyurethane adhesive and results have clearly revealed that modified adhesive can be used for OSB/EPS panel production.

Keywords: adhesive, polyurethane, recyclate, SIP

Procedia PDF Downloads 233
4262 Effect of Elastic Modulus Anisotropy on Foundation Behavior Reinforced with Geogrid in Sandy Soil

Authors: Reza Ziaie Moayed, Javad Shamsi Soosahab

Abstract:

The bearing capacity of shallow foundations is one of the interesting subjects in geotechnical engineering. Soil improvement by geosynthetic reinforcements is a modern method used in different projects to improve the bearing capacity of foundations. In this paper, numerical study is adopted to investigate the effect of geogrid soil reinforcement on shallow foundation behavior resting on anisotropic sand with using a finite element limit analysis software. The effect of the ratio of horizontal elastic modulus with respect to vertical elastic modulus (EH/EV) investigates on bearing capacity of foundations. The results illustrate that in sandy soils, the anisotropic ratio of elastic modulus (EH/EV) has notable effect on bearing capacity of shallow foundations. Also, based on the results of this study, it was concluded that geogrid could be used as soil reinforcement elements to improve the bearing of sandy soils and reduce its settlement possible remarkably.

Keywords: shallow foundations, bearing capacity, numerical study, soil anisotropy, geogrid

Procedia PDF Downloads 123
4261 Pricing, Production and Inventory Policies Manufacturing under Stochastic Demand and Continuous Prices

Authors: Masoud Rabbani, Majede Smizadeh, Hamed Farrokhi-Asl

Abstract:

We study jointly determining prices and production in a multiple period horizon under a general non-stationary stochastic demand with continuous prices. In some periods we need to increase capacity of production to satisfy demand. This paper presents a model to aid multi-period production capacity planning by quantifying the trade-off between product quality and production cost. The product quality is estimated as the statistical variation from the target performances obtained from the output tolerances of the production machines that manufacture the components. We consider different tolerance for different machines that use to increase capacity. The production cost is estimated as the total cost of owning and operating a production facility during the planning horizon.so capacity planning has cost that impact on price. Pricing products often turns out to be difficult to measure them because customers have a reservation price to pay that impact on price and demand. We decide to determine prices and production for periods after enhance capacity and consider reservation price to determine price. First we use an algorithm base on fuzzy set of the optimal objective function values to determine capacity planning by determine maximize interval from upper bound in minimum objectives and define weight for objectives. Then we try to determine inventory and pricing policies. We can use a lemma to solve a problem in MATLAB and find exact answer.

Keywords: price policy, inventory policy, capacity planning, product quality, epsilon -constraint

Procedia PDF Downloads 541
4260 Seismic Bearing Capacity Estimation of Shallow Foundations on Dense Sand Underlain by Loose Sand Strata by Using Finite Elements Limit Analysis

Authors: Pragyan Paramita Das, Vishwas N. Khatri

Abstract:

By using the lower- and upper- bound finite elements to limit analysis in conjunction with second-order conic programming (SOCP), the effect of seismic forces on the bearing capacity of surface strip footing resting on dense sand underlain by loose sand deposit is explored. The soil is assumed to obey the Mohr-Coulomb’s yield criterion and an associated flow rule. The angle of internal friction (ϕ) of the top and the bottom layer is varied from 42° to 44° and 32° to 34° respectively. The coefficient of seismic acceleration is varied from 0 to 0.3. The variation of bearing capacity with different thickness of top layer for various seismic acceleration coefficients is generated. A comparison will be made with the available solutions from literature wherever applicable.

Keywords: bearing capacity, conic programming, finite elements, seismic forces

Procedia PDF Downloads 142