Search results for: augmented/mixed/virtual reality
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4927

Search results for: augmented/mixed/virtual reality

4837 Virtual Reality and Avatars in Education

Authors: Michael Brazley

Abstract:

Virtual Reality (VR) and 3D videos are the most current generation of learning technology today. Virtual Reality and 3D videos are being used in professional offices and Schools now for marketing and education. Technology in the field of design has progress from two dimensional drawings to 3D models, using computers and sophisticated software. Virtual Reality is being used as collaborative means to allow designers and others to meet and communicate inside models or VR platforms using avatars. This research proposes to teach students from different backgrounds how to take a digital model into a 3D video, then into VR, and finally VR with multiple avatars communicating with each other in real time. The next step would be to develop the model where people from three or more different locations can meet as avatars in real time, in the same model and talk to each other. This research is longitudinal, studying the use of 3D videos in graduate design and Virtual Reality in XR (Extended Reality) courses. The research methodology is a combination of quantitative and qualitative methods. The qualitative methods begin with the literature review and case studies. The quantitative methods come by way of student’s 3D videos, survey, and Extended Reality (XR) course work. The end product is to develop a VR platform with multiple avatars being able to communicate in real time. This research is important because it will allow multiple users to remotely enter your model or VR platform from any location in the world and effectively communicate in real time. This research will lead to improved learning and training using Virtual Reality and Avatars; and is generalizable because most Colleges, Universities, and many citizens own VR equipment and computer labs. This research did produce a VR platform with multiple avatars having the ability to move and speak to each other in real time. Major implications of the research include but not limited to improved: learning, teaching, communication, marketing, designing, planning, etc. Both hardware and software played a major role in project success.

Keywords: virtual reality, avatars, education, XR

Procedia PDF Downloads 63
4836 Improvement of Realization Quality of Aerospace Products Using Augmented Reality Technology

Authors: Nuran Bahar, Mehmet A. Akcayol

Abstract:

In the aviation industry, many faults may occur frequently during the maintenance processes and assembly operations of complex structured aircrafts because of their high dependencies of components. These faults affect the quality of aircraft parts or developed modules adversely. Technical employee requires long time and high labor force while checking the correctness of each component. In addition, the person must be trained regularly because of the ever-growing and changing technology. Generally, the cost of this training is very high. Augmented Reality (AR) technology reduces the cost of training radically and improves the effectiveness of the training. In this study, the usage of AR technology in the aviation industry has been investigated and the effectiveness of AR with heads-up display glasses has been examined. An application has been developed for comparison of production process with AR and manual one.

Keywords: aerospace, assembly quality, augmented reality, heads-up display

Procedia PDF Downloads 323
4835 Virtual Reality Tilt Brush for Creativity: An Experimental Study among Architecture Students

Authors: Christena Stephen, Biju Kunnumpurath

Abstract:

This study intends to comprehend the effect of the Tilt Brush (TB) Virtual Reality 3D Painting application on creativity among final year architecture students. The research was done over the course of 30 hours and evaluated the performance of a group of 20 university students. Using a Structured Observation Form (SOF), the researcher assessed the research's progress. Four recently graduated artists, educators, and researchers used a Rubric to assess student designs. During the training, the study group was instructed in the fundamentals of virtual Reality, design principles, and TB. The design process, which began with the construction of a 3D design, progressed with the addition of texture, color, and script to items and culminated in the creation of a finished project. The group in the design process is rated as "Good" by the researcher based on feedback from SOF. The creativity evaluation rubric used by the experts rates their work as "Accomplished." According to the researcher's assessment, the group received a "Good" rating. Based on these findings, it can be said that including virtual reality 3D painting in the curriculum for art and design classes will help students improve their imagination and creativity as well as their 21st-century skills in education.

Keywords: creativity, virtual reality, 3D painting, tilt brush, education

Procedia PDF Downloads 49
4834 Reimagine and Redesign: Augmented Reality Digital Technologies and 21st Century Education

Authors: Jasmin Cowin

Abstract:

Augmented reality digital technologies, big data, and the need for a teacher workforce able to meet the demands of a knowledge-based society are poised to lead to major changes in the field of education. This paper explores applications and educational use cases of augmented reality digital technologies for educational organizations during the Fourth Industrial Revolution. The Fourth Industrial Revolution requires vision, flexibility, and innovative educational conduits by governments and educational institutions to remain competitive in a global economy. Educational organizations will need to focus on teaching in and for a digital age to continue offering academic knowledge relevant to 21st-century markets and changing labor force needs. Implementation of contemporary disciplines will need to be embodied through learners’ active knowledge-making experiences while embracing ubiquitous accessibility. The power of distributed ledger technology promises major streamlining for educational record-keeping, degree conferrals, and authenticity guarantees. Augmented reality digital technologies hold the potential to restructure educational philosophies and their underpinning pedagogies thereby transforming modes of delivery. Structural changes in education and governmental planning are already increasing through intelligent systems and big data. Reimagining and redesigning education on a broad scale is required to plan and implement governmental and institutional changes to harness innovative technologies while moving away from the big schooling machine.

Keywords: fourth industrial revolution, artificial intelligence, big data, education, augmented reality digital technologies, distributed ledger technology

Procedia PDF Downloads 245
4833 Virtual Science Laboratory (ViSLab): The Effects of Visual Signalling Principles towards Students with Different Spatial Ability

Authors: Ai Chin Wong, Wan Ahmad Jaafar Wan Yahaya, Balakrishnan Muniandy

Abstract:

This study aims to explore the impact of Virtual Reality (VR) using visual signaling principles in learning about the science laboratory safety guide; this study involves students with different spatial ability. There are two types of science laboratory safety lessons, which are Virtual Reality with Signaling (VRS) and Virtual Reality Non Signaling (VRNS). This research has adopted a 2 x 2 quasi-experimental factorial design. There are two types of variables involved in this research. The two modes of courseware form the independent variables with the spatial ability as the moderator variable. The dependent variable is the students’ performance. This study sample consisted of 141 students. Descriptive and inferential statistics were conducted to analyze the collected data. The major effects and the interaction effects of the independent variables on the independent variable were explored using the Analyses of Covariance (ANCOVA). Based on the findings of this research, the results exhibited low spatial ability students in VRS outperformed their counterparts in VRNS. However, there was no significant difference in students with high spatial ability using VRS and VRNS. Effective learning in students with different spatial ability can be boosted by implementing the Virtual Reality with Signaling (VRS) in the design as well as the development of Virtual Science Laboratory (ViSLab).

Keywords: spatial ability, science laboratory safety, visual signaling principles, virtual reality

Procedia PDF Downloads 226
4832 Virtual Reality Technology for Employee Training in High-Risk Industries: Benefits and Advancements

Authors: Yeganeh Jabbari, Sepideh Khalatabad

Abstract:

This study explores the development of virtual reality (VR) technology for training applications, specifically its the potential benefits of VR technology for employee training and its ability to simulate real-world scenarios in a safe and controlled environment are highlighted, along with the associated cost and time savings. The adoption of VR technology in high-risk industrial organizations such as the oil and gas industry is discussed, with a focus on its ability to improve worker performance. Additionally, the use of VR technology in activities such as simulation and data visualization in the oil and gas industry is explored, leading to enhanced safety measures and collaboration between teams. The integration of advanced technologies such as robotics is mentioned as a way to further promote efficiency and sustainability. Also, the study mentions that the digital transformation of the oil and gas industry is revolutionizing operations and promoting safety, efficiency, and sustainability through the use of VR technology.

Keywords: virtual reality training, virtual reality benefits, high-risk industries, digital transformation

Procedia PDF Downloads 58
4831 Augmented and Virtual Reality Experiences in Plant and Agriculture Science Education

Authors: Sandra Arango-Caro, Kristine Callis-Duehl

Abstract:

The Education Research and Outreach Lab at the Donald Danforth Plant Science Center established the Plant and Agriculture Augmented and Virtual Reality Learning Laboratory (PAVRLL) to promote science education through professional development, school programs, internships, and outreach events. Professional development is offered to high school and college science and agriculture educators on the use and applications of zSpace and Oculus platforms. Educators learn to use, edit, or create lesson plans in the zSpace platform that are aligned with the Next Generation Science Standards. They also learn to use virtual reality experiences created by the PAVRLL available in Oculus (e.g. The Soybean Saga). Using a cost-free loan rotation system, educators can bring the AVR units to the classroom and offer AVR activities to their students. Each activity has user guides and activity protocols for both teachers and students. The PAVRLL also offers activities for 3D plant modeling. High school students work in teams of art-, science-, and technology-oriented students to design and create 3D models of plant species that are under research at the Danforth Center and present their projects at scientific events. Those 3D models are open access through the zSpace platform and are used by PAVRLL for professional development and the creation of VR activities. Both teachers and students acquire knowledge of plant and agriculture content and real-world problems, gain skills in AVR technology, 3D modeling, and science communication, and become more aware and interested in plant science. Students that participate in the PAVRLL activities complete pre- and post-surveys and reflection questions that evaluate interests in STEM and STEM careers, students’ perceptions of three design features of biology lab courses (collaboration, discovery/relevance, and iteration/productive failure), plant awareness, and engagement and learning in AVR environments. The PAVRLL was established in the fall of 2019, and since then, it has trained 15 educators, three of which will implement the AVR programs in the fall of 2021. Seven students have worked in the 3D plant modeling activity through a virtual internship. Due to the COVID-19 pandemic, the number of teachers trained, and classroom implementations have been very limited. It is expected that in the fall of 2021, students will come back to the schools in person, and by the spring of 2022, the PAVRLL activities will be fully implemented. This will allow the collection of enough data on student assessments that will provide insights on benefits and best practices for the use of AVR technologies in the classrooms. The PAVRLL uses cutting-edge educational technologies to promote science education and assess their benefits and will continue its expansion. Currently, the PAVRLL is applying for grants to create its own virtual labs where students can experience authentic research experiences using real Danforth research data based on programs the Education Lab already used in classrooms.

Keywords: assessment, augmented reality, education, plant science, virtual reality

Procedia PDF Downloads 146
4830 Augmented Reality Using Cuboid Tracking as a Support for Early Stages of Architectural Design

Authors: Larissa Negris de Souza, Ana Regina Mizrahy Cuperschmid, Daniel de Carvalho Moreira

Abstract:

Augmented Reality (AR) alters the elaboration of the architectural project, which relates to project cognition: representation, visualization, and perception of information. Understanding these features from the earliest stages of the design can facilitate the study of relationships, zoning, and overall dimensions of the forms. This paper’s goal was to explore a new approach for information visualization during the early stages of architectural design using Augmented Reality (AR). A three-dimensional marker inspired by the Rubik’s Cube was developed, and its performance, evaluated. This investigation interwovens the acquired knowledge of traditional briefing methods and contemporary technology. We considered the concept of patterns (Alexander et al. 1977) to outline geometric forms and associations using visual programming. The Design Science Research was applied to develop the study. An SDK was used in a game engine to generate the AR app. The tool's functionality was assessed by verifying the readability and precision of the reconfigurable 3D marker. The results indicated an inconsistent response. To use AR in the early stages of architectural design the system must provide consistent information and appropriate feedback. Nevertheless, we conclude that our framework sets the ground for looking deep into AR tools for briefing design.

Keywords: augmented reality, cuboid marker, early design stages, graphic representation, patterns

Procedia PDF Downloads 68
4829 Evaluation of the Digitalization in Graphic Design in Turkey

Authors: Veysel Seker

Abstract:

Graphic designing and virtual reality have been affected by digital development and technological development for the last decades. This study aims to compare and evaluate digitalization and virtual reality evaluation in traditional and classical methods of the graphic designing sector in Turkey. The qualitative and quantitative studies and research were discussed and identified according to the evaluated results of the literature surveys. Moreover, the study showed that the competency gap between graphic design schools and the field should be determined and well-studied. The competencies of traditional graphic designers will have a big challenge for the purpose of the transition into the developed and evaluated digital graphic design world.

Keywords: digitalization, evaluation, graphic designing, virtual reality

Procedia PDF Downloads 112
4828 The Democratization of 3D Capturing: An Application Investigating Google Tango Potentials

Authors: Carlo Bianchini, Lorenzo Catena

Abstract:

The appearance of 3D scanners and then, more recently, of image-based systems that generate point clouds directly from common digital images have deeply affected the survey process in terms of both capturing and 2D/3D modelling. In this context, low cost and mobile systems are increasingly playing a key role and actually paving the way to the democratization of what in the past was the realm of few specialized technicians and expensive equipment. The application of Google Tango on the ancient church of Santa Maria delle Vigne in Pratica di Mare – Rome presented in this paper is one of these examples.

Keywords: the architectural survey, augmented/mixed/virtual reality, Google Tango project, image-based 3D capturing

Procedia PDF Downloads 123
4827 Exploring The Effects of Immersive Virtual Reality on Increasing Willingness to Communicate, Oral Performance, and Reducing Speaking Anxiety for EFL Elementary Students from Taiwan

Authors: Yi-ju Ariel Wu

Abstract:

Exploring The Effects of Immersive Virtual Reality on Increasing Willingness to Communicate, Oral Performance, and Reducing Speaking Anxiety for EFL Elementary Students from Taiwan

Keywords: Immersive Virtual Reality, EFL speaking, situated learning, pragmatics

Procedia PDF Downloads 39
4826 Virtual Reality Application for Neurorehabilitation

Authors: Daniel Vargas-Herrera, Ivette Caldelas, Fernando Brambila-Paz, Rodrigo Montufar-Chaveznava

Abstract:

In this paper, we present a virtual reality application for neurorehabilitation. This application was developed using the Unity SDK integrating the Oculus Rift and Leap Motion devices. Essentially, it consists of three stages according to the kind of rehabilitation to carry on: ocular rehabilitation, head/neck rehabilitation, and eye-hand coordination. We build three scenes for each task; for ocular and head/neck rehabilitation, there are different objects moving in the field of view and extended field of view of the user according to some patterns relative to the therapy. In the third stage the user must try to touch with the hand some objects guided by its view. We report the primer results of the use of the application with healthy people.

Keywords: virtual reality, interactive technologies, video games, neurorehabilitation

Procedia PDF Downloads 380
4825 Proposal of a Virtual Reality Dynamism Augmentation Method for Sports Spectating

Authors: Hertzog Clara, Sakurai Sho, Hirota Koichi, Nojima Takuya

Abstract:

It is common to see graphics appearing on television while watching a sports game to provide information, but it is less common to see graphics specifically aiming to boost spectators’ dynamism perception. It is even less common to see such graphics designed especially for virtual reality (VR). However, it appears that even with simple dynamic graphics, it would be possible to improve VR sports spectators’ experience. So, in this research, we explain how graphics can be used in VR to improve the dynamism of a broadcasted sports game and we provide a simple example. This example consists in a white halo displayed around the video and blinking according to the game speed. We hope to increase people’s awareness about VR sports spectating and the possibilities this display offers through dynamic graphics.

Keywords: broadcasting, graphics, sports spectating, virtual reality

Procedia PDF Downloads 59
4824 Protocol for Dynamic Load Distributed Low Latency Web-Based Augmented Reality and Virtual Reality

Authors: Rohit T. P., Sahil Athrij, Sasi Gopalan

Abstract:

Currently, the content entertainment industry is dominated by mobile devices. As the trends slowly shift towards Augmented/Virtual Reality applications the computational demands on these devices are increasing exponentially and we are already reaching the limits of hardware optimizations. This paper proposes a software solution to this problem. By leveraging the capabilities of cloud computing we can offload the work from mobile devices to dedicated rendering servers that are way more powerful. But this introduces the problem of latency. This paper introduces a protocol that can achieve high-performance low latency Augmented/Virtual Reality experience. There are two parts to the protocol, 1) In-flight compression The main cause of latency in the system is the time required to transmit the camera frame from client to server. The round trip time is directly proportional to the amount of data transmitted. This can therefore be reduced by compressing the frames before sending. Using some standard compression algorithms like JPEG can result in minor size reduction only. Since the images to be compressed are consecutive camera frames there won't be a lot of changes between two consecutive images. So inter-frame compression is preferred. Inter-frame compression can be implemented efficiently using WebGL but the implementation of WebGL limits the precision of floating point numbers to 16bit in most devices. This can introduce noise to the image due to rounding errors, which will add up eventually. This can be solved using an improved interframe compression algorithm. The algorithm detects changes between frames and reuses unchanged pixels from the previous frame. This eliminates the need for floating point subtraction thereby cutting down on noise. The change detection is also improved drastically by taking the weighted average difference of pixels instead of the absolute difference. The kernel weights for this comparison can be fine-tuned to match the type of image to be compressed. 2) Dynamic Load distribution Conventional cloud computing architectures work by offloading as much work as possible to the servers, but this approach can cause a hit on bandwidth and server costs. The most optimal solution is obtained when the device utilizes 100% of its resources and the rest is done by the server. The protocol balances the load between the server and the client by doing a fraction of the computing on the device depending on the power of the device and network conditions. The protocol will be responsible for dynamically partitioning the tasks. Special flags will be used to communicate the workload fraction between the client and the server and will be updated in a constant interval of time ( or frames ). The whole of the protocol is designed so that it can be client agnostic. Flags are available to the client for resetting the frame, indicating latency, switching mode, etc. The server can react to client-side changes on the fly and adapt accordingly by switching to different pipelines. The server is designed to effectively spread the load and thereby scale horizontally. This is achieved by isolating client connections into different processes.

Keywords: 2D kernelling, augmented reality, cloud computing, dynamic load distribution, immersive experience, mobile computing, motion tracking, protocols, real-time systems, web-based augmented reality application

Procedia PDF Downloads 49
4823 Use of Virtual Reality to Manage Anxiety in Patients on Neuro-Rehabilitation Unit

Authors: Anthony Cogrove, Shagun Saikia, Pradeep Deshpande

Abstract:

Introduction: Management of anxiety in rehabilitation setting often is a challenge and is usually done by using medication. The role of psychology and the creation of a quite environment in order to reduce stimulation helps in the process. We have a hypothesis that feedback from a calm visual imagery with soothing music help in reducing anxiety in these setting Aim-To explore the possibility of using virtual reality in the management of anxiety in a setting of neuro-rehabilitation unit. Method: Six patients in an inpatient rehabilitation unit with acquired brain injury subjected to a low stimulation calming visual motion picture with calm music. Six sessions were conducted over 6 weeks. All sessions were performed in a separate purpose built room in the unit. . A cohort of 6 people with various neurological conditions were involved in 6 sessions of 30 minutes during their inpatient rehabilitation. They reported benefit from using the virtual reality environment in reducing their anxiety. Results: All reported improvement in their anxiety levels. They felt there was a calming effect of the session. There was a sense of feeling of self empowerment on direct questioning. Conclusion: Virtual reality environment can aid the traditional rehabilitation techniques used to manage the levels of anxiety experienced by people with acquired brain injury undergoing inpatient rehabilitation.

Keywords: neurological rehabilitation, virtual reality, anxiety, calming environment

Procedia PDF Downloads 80
4822 VR/AR Applications in Personalized Learning

Authors: Andy Wang

Abstract:

Personalized learning refers to an educational approach that tailors instruction to meet the unique needs, interests, and abilities of each learner. This method of learning aims at providing students with a customized learning experience that is more engaging, interactive, and relevant to their personal lives. With generative AI technology, the author has developed a Personal Tutoring Bot (PTB) that supports personalized learning. The author is currently testing PTB in his EE 499 – Microelectronics Metrology course. Virtual Reality (VR) and Augmented Reality (AR) provide interactive and immersive learning environments that can engage student in online learning. This paper presents the rationale of integrating VR/AR tools in PTB and discusses challenges and solutions of incorporating VA/AR into the Personal Tutoring Bot (PTB).

Keywords: personalized learning, online education, hands-on practice, VR/AR tools

Procedia PDF Downloads 36
4821 Augmenting History: Case Study Measuring Motivation of Students Using Augmented Reality Apps in History Classes

Authors: Kevin. S. Badni

Abstract:

Due to the rapid advances in the use of information technology and students’ familiarity with technology, learning styles in higher education are being reshaped. One of the technology developments that has gained considerable attention in recent years is Augmented Reality (AR), where technology is used to combine overlays of digital data on physical real-world settings. While AR is being heavily promoted for entertainment by mobile phone manufacturers, it has had little adoption in higher education due to the required upfront investment that an instructor needs to undertake in creating relevant AR applications. This paper discusses a case study that uses a low upfront development approach and examines the impact on generation-Z students’ motivation whilst studying design history over a four-semester period. Even though the upfront investment in creating the AR support was minimal, the results showed a noticeable increase in student motivation. The approach used in this paper can be easily transferred to other disciplines and other areas of design education.

Keywords: augmented reality, history, motivation, technology

Procedia PDF Downloads 139
4820 Building Information Modelling-Based Diminished Reality Visualisation to Facilitate Building Renovation Projects

Authors: Roghieh Eskandari, Ali Motamedi

Abstract:

There is a significant demand for renovation as-built assets are aging. To plan for a desirable and comfortable indoor environment, stakeholders use simulation technics to assess potential renovation scenarios with the innovative designs. Diminished Reality (DR), which is a technique of visually removing unwanted objects from the real-world scene in real-time, can contribute to the renovation design visualization for stakeholders by removing existing structures and assets from the scene. Using DR, the objects to be demolished or changed will be visually removed from the scene for a better understanding of the intended design scenarios for stakeholders. This research proposes an integrated system for renovation plan visualization using Building Information Modelling (BIM) data and mixed reality (MR) technologies. It presents a BIM-based DR method that utilizes a textured BIM model of the environment to accurately register the virtual model of the occluded background to the physical world in real-time. This system can facilitate the simulation of the renovation plan by visually diminishing building elements in an indoor environment.

Keywords: diminished reality, building information modelling, mixed reality, stock renovation

Procedia PDF Downloads 85
4819 Comparing the Effect of Virtual Reality and Sound on Landscape Perception

Authors: Mark Lindquist

Abstract:

This paper presents preliminary results of exploratory empirical research investigating the effect of viewing 3D landscape visualizations in virtual reality compared to a computer monitor, and how sound impacts perception. Five landscape types were paired with three sound conditions (no sound, generic sound, realistic sound). Perceived realism, preference, recreational value, and biodiversity were evaluated in a controlled laboratory environment. Results indicate that sound has a larger perceptual impact than display mode regardless of sound source across all perceptual measures. The results are considered to assess how sound can impact landscape preference and spatiotemporal understanding. The paper concludes with a discussion of the impact on designers, planners, and the public and targets future research endeavors in this area.

Keywords: landscape experience, perception, soundscape, virtual reality

Procedia PDF Downloads 135
4818 How to Improve Immersiveness in Virtual Reality Through Advanced Sense of Presence: A Literature Review

Authors: Bochen Jia, Francesco Zhu

Abstract:

People are constantly surprised at how real and immersive virtual reality (VR) is, even though the technology is still rudimentary, and we are only scratching the surface of its possibilities. Therefore, this literature review built a body of knowledge of existing technology that can be used to improve immersiveness in VR. For this paper, "Sense of Presence (SoP)" was chosen as the terminology to describe immersiveness in VR. Eight studies that tested VR technologies were identified. Many other studies were included to back up the incentives behind these technologies. VR technologies include vibration, airflow, thermal components, EMS, and quadcopters. Study results from selected papers were analyzed, compared, and generally positive. Seven studies had positive results, and only one had negative results. Vibration is the most effective option to improve SoP.

Keywords: virtual reality, sense of presence, self-awareness, literature review

Procedia PDF Downloads 93
4817 Exploring Augmented Reality Applications for UNESCO World Heritage Sites in Greece: Addressing Purpose, Scenarios, Platforms, and Visitor Impact

Authors: A. Georgiou, A. Galani, A. Karatza, G. E. Bampasidis

Abstract:

Augmented Reality (AR) technology has become integral in enhancing visitor experiences at Greece's UNESCO World Heritage Sites. This research meticulously investigates various facets of AR applications/games associated with these revered sites. The cultural heritage represents the identity of each nation in the world. Technology can breathe life into this identity. Through Augmented Reality (AR), individuals can travel back in time, visit places they cannot access in real life, discover the history of these places, and live unique experiences. The study examines the objectives and intended goals behind the development and deployment of each augmented reality application/game pertaining to the UNESCO World Heritage Sites in Greece. It thoroughly analyzes the scenarios presented within these AR games/applications, examining how historical narratives, interactive elements, and cultural context are incorporated to engage users. Furthermore, the research identifies and assesses the technological platforms utilized for the development and implementation of these AR experiences, encompassing mobile devices, AR headsets, or specific software frameworks. It classifies and examines the types of augmented reality employed within these applications/games, including marker-based, markerless, location-based, or immersive AR experiences. Evaluation of the benefits accrued by visitors engaging with these AR applications/games, such as enhanced learning experiences, improved cultural understanding, and heightened engagement with the heritage sites, forms a crucial aspect of this study. Additionally, the research scrutinizes potential drawbacks or limitations associated with the AR applications/games, considering technological barriers, user accessibility issues, or constraints affecting user experience. By thoroughly investigating these pivotal aspects, this research aims to provide a comprehensive overview and analysis of the landscape of augmented reality applications/games linked to the UNESCO World Heritage Sites in Greece. The findings seek to contribute nuanced insights into the effectiveness, challenges, and opportunities associated with leveraging AR technology for heritage site preservation, visitor engagement, and cultural enrichment.

Keywords: augmented reality, AR applications, UNESCO sites, cultural heritage, Greece, visitor engagement, historical narratives

Procedia PDF Downloads 33
4816 Virtual Reality as a Method in Transformative Learning: A Strategy to Reduce Implicit Bias

Authors: Cory A. Logston

Abstract:

It is imperative researchers continue to explore every transformative strategy to increase empathy and awareness of racial bias. Racism is a social and political concept that uses stereotypical ideology to highlight racial inequities. Everyone has biases they may not be aware of toward disparate out-groups. There is some form of racism in every profession; doctors, lawyers, and teachers are not immune. There have been numerous successful and unsuccessful strategies to motivate and transform an individual’s unconscious biased attitudes. One method designed to induce a transformative experience and identify implicit bias is virtual reality (VR). VR is a technology designed to transport the user to a three-dimensional environment. In a virtual reality simulation, the viewer is immersed in a realistic interactive video taking on the perspective of a Black man. The viewer as the character experiences discrimination in various life circumstances growing up as a child into adulthood. For instance, the prejudice felt in school, as an adolescent encountering the police and false accusations in the workplace. Current research suggests that an immersive VR simulation can enhance self-awareness and become a transformative learning experience. This study uses virtual reality immersion and transformative learning theory to create empathy and identify any unintentional racial bias. Participants, White teachers, will experience a VR immersion to create awareness and identify implicit biases regarding Black students. The desired outcome provides a springboard to reconceptualize their own implicit bias. Virtual reality is gaining traction in the research world and promises to be an effective tool in the transformative learning process.

Keywords: empathy, implicit bias, transformative learning, virtual reality

Procedia PDF Downloads 168
4815 Assessing Students’ Attitudinal Response towards the Use of Virtual Reality in a Mandatory English Class at a Women’s University in Japan

Authors: Felix David

Abstract:

The use of virtual reality (VR) technology is still in its infancy. This is especially true in a Japanese educational context with very little to no exposition of VR technology inside classrooms. Technology is growing and changing rapidly in America, but Japan seems to be lagging behind in integrating VR into its curriculum. The aim of this research was to expose 111 students from Hiroshima Jogakuin University (HJU) to seven classes that involved virtual reality content and assess students’ attitudinal responses toward this new technology. The students are all female, and they are taking the “Kiso Eigo/基礎英語” or “Foundation English” course, which is mandatory for all first-year and second-year students. Two surveys were given, one before the treatment and a second survey after the treatment, which in this case means the seven VR classes. These surveys first established that the technical environment could accommodate VR activities in terms of internet connection, VR headsets, and the quality of the smartphone’s screen. Based on the attitudinal responses gathered in this research, VR is perceived by students as “fun,” useful to “learn about the world,” as well as being useful to “learn about English.” This research validates VR as a worthy educational tool and should therefore continue being an integral part of the mandatory English course curriculum at HJU University.

Keywords: virtual reality, smartphone, English learning, curriculum

Procedia PDF Downloads 37
4814 Improvement of Students’ Active Experience through the Provision of Foundational Architecture Pedagogy by Virtual Reality Tools

Authors: Mehdi Khakzand, Flora Fakourian

Abstract:

It has been seen in recent years that architects are using virtual modeling to help them visualize their projects. Research has indicated that virtual media, particularly virtual reality, enhances architects' comprehension of design and spatial perception. Creating a communal experience for active learning is an essential component of the design process in architecture pedagogy. It has been particularly challenging to replicate design principles as a critical teaching function, and this is a complex issue that demands comprehension. Nonetheless, the usage of simulation should be studied and limited as appropriate. In conjunction with extensive technology, 3D geometric illustration can bridge the gap between the real and virtual worlds. This research intends to deliver a pedagogical experience in the architecture basics course to improve the architectural design process utilizing virtual reality tools. This tool seeks to tackle current challenges in current ways of architectural illustration by offering building geometry illustration, building information (data from the building information model), and simulation results. These tools were tested over three days in a design workshop with 12 architectural students. This article provided an architectural VR-based course and explored its application in boosting students' active experiences. According to the research, this technology can improve students' cognitive skills from challenging simulations by boosting visual understanding.

Keywords: active experience, architecture pedagogy, virtual reality, spatial perception

Procedia PDF Downloads 45
4813 Trainees' Perception of Virtual Learning Skills in Setting up the Simulator Welding Technology

Authors: Mohd Afif Md Nasir, Mohd Faizal Amin Nur, Jamaluddin Hasim, Abd Samad Hasan Basari, Mohd Halim Sahelan

Abstract:

This study is aimed to investigate the suitability of Computer-Based Training (CBT) as one of the approaches in skills competency development at the Centre of Instructor and Advanced Skills Training (CIAST) Shah Alam Selangor and National Youth Skills Institute (NYSI) Pagoh Muar Johor. This study has also examined the perception among trainees toward Virtual Learning Environment (VLE) as to realize the development of skills in Welding Technology. The significance of the study is to create a computer-based skills development approach in welding technology among new trainees in CIAST and IKBN as well as to cultivate the element of general skills among them. This study is also important in elevating the number of individual knowledge workers (K-Workers) working in manufacturing industry in order to achieve the national vision which is to be an industrial nation in the year 2020. The design is a survey of research which using questionnaires as the instruments and is conducted towards 136 trainees from CIAST and IKBN. Data from the questionnaires is proceeding in a Statistical Package for Social Science (SPSS) in order to find the frequency, mean and chi-square testing. The findings of the study show the welding technology skills have developed in the trainees as a result of the application of the Virtual Reality simulator at a high level (mean=3.90) and the respondents agreed the skills could be embedded through the application of the Virtual Reality simulator (78.01%). The Study also found that there is a significant difference between trainee skill characteristics through the application of the Virtual Reality simulator (p<0.05). Thereby, the Virtual Reality simulator is suitable to be used in the development of welding skills among trainees through the skills training institute.

Keywords: computer-based training, virtual learning environment, welding technology, virtual reality simulator, virtual learning environment

Procedia PDF Downloads 392
4812 The OLOS® Way to Cultural Heritage: User Interface with Anthropomorphic Characteristics

Authors: Daniele Baldacci, Remo Pareschi

Abstract:

Augmented Reality and Augmented Intelligence are radically changing information technology. The path that starts from the keyboard and then, passing through milestones such as Siri, Alexa and other vocal avatars, reaches a more fluid and natural communication with computers, thus converting the dichotomy between man and machine into a harmonious interaction, now heads unequivocally towards a new IT paradigm, where holographic computing will play a key role. The OLOS® platform contributes substantially to this trend in that it infuses computers with human features, by transferring the gestures and expressions of persons of flesh and bones to anthropomorphic holographic interfaces which in turn will use them to interact with real-life humans. In fact, we could say, boldly but with a solid technological background to back the statement, that OLOS® gives reality to an altogether new entity, placed at the exact boundary between nature and technology, namely the holographic human being. Holographic humans qualify as the perfect carriers for the virtual reincarnation of characters handed down from history and tradition. Thus, they provide for an innovative and highly immersive way of experiencing our cultural heritage as something alive and pulsating in the present.

Keywords: digital cinematography, human-computer interfaces, holographic simulation, interactive museum exhibits

Procedia PDF Downloads 89
4811 Training for Safe Tree Felling in the Forest with Symmetrical Collaborative Virtual Reality

Authors: Irene Capecchi, Tommaso Borghini, Iacopo Bernetti

Abstract:

One of the most common pieces of equipment still used today for pruning, felling, and processing trees is the chainsaw in forestry. However, chainsaw use highlights dangers and one of the highest rates of accidents in both professional and non-professional work. Felling is proportionally the most dangerous phase, both in severity and frequency, because of the risk of being hit by the plant the operator wants to cut down. To avoid this, a correct sequence of chainsaw cuts must be taught concerning the different conditions of the tree. Virtual reality (VR) makes it possible to virtually simulate chainsaw use without danger of injury. The limitations of the existing applications are as follow. The existing platforms are not symmetrical collaborative because the trainee is only in virtual reality, and the trainer can only see the virtual environment on a laptop or PC, and this results in an inefficient teacher-learner relationship. Therefore, most applications only involve the use of a virtual chainsaw, and the trainee thus cannot feel the real weight and inertia of a real chainsaw. Finally, existing applications simulate only a few cases of tree felling. The objectives of this research were to implement and test a symmetrical collaborative training application based on VR and mixed reality (MR) with the overlap between real and virtual chainsaws in MR. The research and training platform was developed for the Meta quest 2 head-mounted display. The research and training platform application is based on the Unity 3D engine, and Present Platform Interaction SDK (PPI-SDK) developed by Meta. PPI-SDK avoids the use of controllers and enables hand tracking and MR. With the combination of these two technologies, it was possible to overlay a virtual chainsaw with a real chainsaw in MR and synchronize their movements in VR. This ensures that the user feels the weight of the actual chainsaw, tightens the muscles, and performs the appropriate movements during the test allowing the user to learn the correct body posture. The chainsaw works only if the right sequence of cuts is made to felling the tree. Contact detection is done by Unity's physics system, which allows the interaction of objects that simulate real-world behavior. Each cut of the chainsaw is defined by a so-called collider, and the felling of the tree can only occur if the colliders are activated in the right order simulating a safe technique felling. In this way, the user can learn how to use the chainsaw safely. The system is also multiplayer, so the student and the instructor can experience VR together in a symmetrical and collaborative way. The platform simulates the following tree-felling situations with safe techniques: cutting the tree tilted forward, cutting the medium-sized tree tilted backward, cutting the large tree tilted backward, sectioning the trunk on the ground, and cutting branches. The application is being evaluated on a sample of university students through a special questionnaire. The results are expected to test both the increase in learning compared to a theoretical lecture and the immersive and telepresence of the platform.

Keywords: chainsaw, collaborative symmetric virtual reality, mixed reality, operator training

Procedia PDF Downloads 83
4810 Navigating Construction Project Outcomes: Synergy Through the Evolution of Digital Innovation and Strategic Management

Authors: Derrick Mirindi, Frederic Mirindi, Oluwakemi Oshineye

Abstract:

The ongoing high rate of construction project failures worldwide is often blamed on the difficulties of managing stakeholders. This highlights the crucial role of strategic management (SM) in achieving project success. This study investigates how integrating digital tools into the SM framework can effectively address stakeholder-related challenges. This work specifically focuses on the impact of evolving digital tools, such as Project Management Software (PMS) (e.g., Basecamp and Wrike), Building Information Modeling (BIM) (e.g., Tekla BIMsight and Autodesk Navisworks), Virtual and Augmented Reality (VR/AR) (e.g., Microsoft HoloLens), drones and remote monitoring, and social media and Web-Based platforms, in improving stakeholder engagement and project outcomes. Through existing literature with examples of failed projects, the study highlights how the evolution of digital tools will serve as facilitators within the strategic management process. These tools offer benefits such as real-time data access, enhanced visualization, and more efficient workflows to mitigate stakeholder challenges in construction projects. The findings indicate that integrating digital tools with SM principles effectively addresses stakeholder challenges, resulting in improved project outcomes and stakeholder satisfaction. The research advocates for a combined approach that embraces both strategic management and digital innovation to navigate the complex stakeholder landscape in construction projects.

Keywords: strategic management, digital tools, virtual and augmented reality, stakeholder management, building information modeling, project management software

Procedia PDF Downloads 26
4809 Application of Learning Media Based Augmented Reality on Molecular Geometry Concept

Authors: F. S. Irwansyah, I. Farida, Y. Maulana

Abstract:

Studying chemistry requires the ability to understand three levels of understanding in the form of macroscopic, submicroscopic and symbolic, but the lack of emphasis on the submicroscopic level leads to the understanding of chemical concepts becoming incomplete, due to the limitations of the tools capable of providing visualization of submicroscopic concepts. The purpose of this study describes the stages of making augmented reality learning media on the concept of molecular geometry and analyze the feasibility test result of augmented reality learning media on the concept of molecular geometry. This research uses Research and Development (R & D) method which produces a product of AR learning media on molecular geometry concept and test the effectiveness of the product. Research stages include concept analysis and learning indicators, design development, validation, feasibility, and limited testing. The stages of validation and limited trial are aimed to get feedback in the form of assessment, suggestion and improvement on learning aspect, material substance aspect, visual communication aspect and software engineering aspects and media feasibility in terms of media creation purpose to be used in learning. The results of the overall feasibility test obtained r-calculation 0,7-0,9 with the interpretation of high feasibility value, whereas the result of limited trial got the percentage of eligibility with the average value equal to 70,83-92,5%. This percentage indicates that AR's learning media product on the concept of molecular geometry, deserves to be used as a learning resource.

Keywords: android, augmented reality, chemical learning, geometry

Procedia PDF Downloads 181
4808 Developing a Virtual Reality System to Assist in Anatomy Teaching and Evaluating the Effectiveness of That System

Authors: Tarek Abdelkader, Suresh Selvaraj, Prasad Iyer, Yong Mun Hin, Hajmath Begum, P. Gopalakrishnakone

Abstract:

Nowadays, more and more educational institutes, as well as students, rely on 3D anatomy programs as an important tool that helps students correlate the actual locations of anatomical structures in a 3D dimension. Lately, virtual reality (VR) is gaining more favor from the younger generations due to its higher interactive mode. As a result, using virtual reality as a gamified learning platform for anatomy became the current goal. We present a model where a Virtual Human Anatomy Program (VHAP) was developed to assist with the anatomy learning experience of students. The anatomy module has been built, mostly, from real patient CT scans. Segmentation and surface rendering were used to create the 3D model by direct segmentation of CT scans for each organ individually and exporting that model as a 3D file. After acquiring the 3D files for all needed organs, all the files were introduced into a Virtual Reality environment as a complete body anatomy model. In this ongoing experiment, students from different Allied Health orientations are testing the VHAP. Specifically, the cardiovascular system has been selected as the focus system of study since all of our students finished learning about it in the 1st trimester. The initial results suggest that the VHAP system is adding value to the learning process of our students, encouraging them to get more involved and to ask more questions. Involved students comments show that they are excited about the VHAP system with comments about its interactivity as well as the ability to use it solo as a self-learning aid in combination with the lectures. Some students also experienced minor side effects like dizziness.

Keywords: 3D construction, health sciences, teaching pedagogy, virtual reality

Procedia PDF Downloads 129