Search results for: Sevil Yildiz
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 43

Search results for: Sevil Yildiz

13 The Effects of Kicking Leg Preference on the Bilateral Balance Ability Asymmetries in Collegian Football Players

Authors: Mehmet Yildiz, Mehmet Kale

Abstract:

The primary aim of the present study was to identify the bilateral balance asymmetries when comparing the dominant (DL) vs. the non-dominant leg (NDL) in the collegian soccer players. The secondary aim was to compare the inter-limb asymmetry index (ASI) when differentiating by kicking preference (right-dominant vs. left-dominant). 34 right-dominant leg (RightDL) (age:21.12±1.85, height:174.50±5.18, weight:69.42±6.86) and 23 left-dominant leg (LeftDL), (age:21.70±2.03, height:176.2±6.27, weight:68.73±5.96) collegian football players were tested for bilateral static and dynamic balance. Balance ability was assessed by measuring centre of pressure deviation on a single leg. Single leg static and dynamic balance scores and inter-limb asymmetry index (ASI) were determined. Student t tests were used for the comparison of dominant and nondominant leg balance scores and RightDL and LeftDL football players’ inter-limb asymmetry index of the balance scores. The results showed that there were significant differences in the dynamic balance scores in favour of the nondominant leg, (DL:738±211 vs. NDL:606±226, p < 0.01). Also, it has been seen that LeftDL players have significantly higher inter-limb asymmetry index when compared with rightDL players for both static (rightDL:-7.07±94.91 vs. leftDL:-183.19±354.05, p < 0.01) and dynamic (rightDL: 1.73±49.65 vs. leftDL:27.08±23.34, p < 0.05) balance scores. In conclusion, bilateral dynamic balance asymmetries may be affected using single leg predominantly in the mobilization workouts. Because of having higher inter-limb asymmetry index, left-dominant leg players may be screened and trained to minimize balance asymmetry.

Keywords: bilateral balance, asymmetries, dominant leg, leg preference

Procedia PDF Downloads 388
12 Computer Aided Shoulder Prosthesis Design and Manufacturing

Authors: Didem Venus Yildiz, Murat Hocaoglu, Murat Dursun, Taner Akkan

Abstract:

The shoulder joint is a more complex structure than the hip or knee joints. In addition to the overall complexity of the shoulder joint, two different factors influence the insufficient outcome of shoulder replacement: the shoulder prosthesis design is far from fully developed and it is difficult to place these shoulder prosthesis due to shoulder anatomy. The glenohumeral joint is the most complex joint of the human shoulder. There are various treatments for shoulder failures such as total shoulder arthroplasty, reverse total shoulder arthroplasty. Due to its reverse design than normal shoulder anatomy, reverse total shoulder arthroplasty has different physiological and biomechanical properties. Post-operative achievement of this arthroplasty is depend on improved design of reverse total shoulder prosthesis. Designation achievement can be increased by several biomechanical and computational analysis. In this study, data of human both shoulders with right side fracture was collected by 3D Computer Tomography (CT) machine in dicom format. This data transferred to 3D medical image processing software (Mimics Materilise, Leuven, Belgium) to reconstruct patient’s left and right shoulders’ bones geometry. Provided 3D geometry model of the fractured shoulder was used to constitute of reverse total shoulder prosthesis by 3-matic software. Finite element (FE) analysis was conducted for comparison of intact shoulder and prosthetic shoulder in terms of stress distribution and displacements. Body weight physiological reaction force of 800 N loads was applied. Resultant values of FE analysis was compared for both shoulders. The analysis of the performance of the reverse shoulder prosthesis could enhance the knowledge of the prosthetic design.

Keywords: reverse shoulder prosthesis, biomechanics, finite element analysis, 3D printing

Procedia PDF Downloads 128
11 The Role of Parents on Fear Acquisition of Children in COVID-19 Pandemic

Authors: Begum Serim-Yildiz

Abstract:

The aim of this study is to examine the role of parents' emotional and behavioral reactions on fears of children in the COVID-19 pandemic considering Rachman’s Three Pathways Theory. For this purpose, a phenomenological qualitative study was conducted. Thirteen participants living with their children were utilized through criterion and snowball sampling. In semi-structured interviews parents were asked about their own and their children’s beahavioral and emotional reactions in the COVID-19 pandemic, and they were expected to give detailed information about fears of their children before and in pandemic. Firstly, parents were asked about their behavioral and emotional reactions in the COVID-19 pandemic. As behavioral reactions, precautions taken by parents to protect the rest of the family from negative physical and emotional impact of the pandemic were mentioned, while emotional reactions were defined as acquisition of negative emotions like fear, anxiety, and worry. Secondly, parents were asked about their children’s behavioral and emotional reactions. Some of the parents talked about positive behavioral changes such as gaining self-control, while some others explained negative behavioral changes like increased time spent with technological tools. In the emotional changes section, all of the parents explained at least one negative emotion. All of the parents stated that their children had COVID-19 related fears. According to parents’ expressions, fears of children in pandemic were examined in two dimensions. Fears directly related to COVID-19 were fear of virus/microbes, illness or death of someone in family and death and fears. Fears indirectly related to COVID-19 were fear of going out, sleep alone at night, separation, touching stuff outside the home, and cold. Considering existing literature and based on the findings of this study, it can be concluded that children’s modelling experiences have impact on acquisition of negative emotions, especially fear, therefore, preventive interventions involving caregivers should be provided by mental health professionals working with children.

Keywords: children’s fears, COVID-19 pandemic, modelling experiences, parents’ reactions

Procedia PDF Downloads 136
10 The Effect of Ultrasound as Pre-Treatment for Drying of Red Delicious and Golden Delicious Apples

Authors: Gulcin Yildiz

Abstract:

Drying (dehydration) is the process of removing water from food in order to preserve the food and an alternative to reduce post-harvest loss of fruits. Different pre-treatment methods have been developed for fruit drying, such as ultrasound. If no pre-treatment is done, the fruits will continue to darken after they are dried. However, the effects of ultrasound as pre-treatment on drying of apples has not been well documented. This study was undertaken to investigate the effect of ultrasound as pre-treatment before oven drying of red delicious and golden delicious apples. Red delicious and golden delicious apples were dried in different temperatures. Before performing drying experiments in an oven at 50, 75 and 100 °C, ultrasound as pretreatment was applied in 5, 10, and 15 minutes. Colors of the dried apples were measured with a Minolta Chroma Meter CR-300 (Minolta Camera Co. Ltd., Osaka, Japan) by directly holding the device vertically to the surface of the samples. Content of total phenols was determined spectrophotometrically with the FolinCiocalteau assay, and the antioxidant capacity was evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The samples (both red delicious and golden delicious apples) with longer ultrasound treatment produced higher weight loss due to the changes in tissue structure. However less phenolic content and antioxidant capacity were observed for the samples with longer ultrasound pre-treatment. The highest total phenolic content (TPC) was determined in dried apples at 75 °C with 5 minutes pre-treatment ultrasound and the lowest TPC was determined in dried apples at 50 °C with 15 minutes pre-treatment ultrasound which was subjected to the longest ultrasound pre-treatment and drying. The combination of 5 min of ultrasound pre-treatment and 75 °C of oven-drying showed to be the best combination for an energy efficient process. This combination exhibited good antioxidant properties as well. The present study clearly demonstrated that applying ultrasound as pre-treatment for drying of apples is an effective process in terms of quality of dried products, time, and energy.

Keywords: golden delicious apples, red delicious apples, total phenolic content, Ultrasound

Procedia PDF Downloads 267
9 Comparison of Oven and Microwave Drying on Phenolic Contents and Antioxidant Activities of Red Delicious and Golden Delicious Apples

Authors: Gulcin Yildiz, Gokcen Izli

Abstract:

Drying (dehydration) is the process of removing water from food in order to preserve the food. Drying is one of the oldest methods known for the preservation of agricultural products such as fruits and vegetables. Drying of agricultural products enhances their storage life, minimizes losses during storage, and save shipping and transportation costs. Apples are considered excellent candidates for drying. The objective of this research was to investigate the effects of microwave and oven processing on the quality of selected apple products. Red delicious and golden delicious apples were washed, peeled, and sliced. Drying experiments were performed in an oven at 50, 75 and 100 °C and in a microwave at 140 W and 210 W. Quality attributes such as color, total phenolic content and antioxidant capacity of dried samples with different methods were compared with the fresh sample. A Minolta CR-300 Chroma Meter was used to examine color changes in the apples. Total phenolic content was determined using the Folin-Ciocalteu reagent. The free radical scavenging activity of the extract was determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH). It was found that the phenolic contents and antioxidant capacities of dried samples under all drying conditions were decreased compared to the fresh samples. The phenolic contents of microwave dried samples at 140 W and 210 W for both red and golden delicious apples were higher than those of the oven drying at 50, 75 and 100 °C. Similarly, the antioxidant activities of microwave dried samples at 140 W and 210 W were higher than those of the oven drying at 50, 75 and 100 °C for both types of apples. All color parameters (L*, a*, b*) were changed significantly depending on the drying methods and temperatures. The closest color values to the fresh sample were found for the microwave dried samples at 140 W. Microwave drying was proven to be more effective than oven drying.

Keywords: antioxidant capacity, color, golden delicious, microwave, red delicious, total phenolic content

Procedia PDF Downloads 202
8 Relation of Mean Platelet Volume with Serum Paraoxonase-1 Activity and Brachial Artery Diameter and Intima Media Thickness in Diabetic Patients with Respect to Obesity and Diabetic Complications

Authors: Pınar Karakaya, Meral Mert, Yildiz Okuturlar, Didem Acarer, Asuman Gedikbasi, Filiz Islim, Teslime Ayaz, Ozlem Soyluk, Ozlem Harmankaya, Abdulbaki Kumbasar

Abstract:

Objective: To evaluate the relation of mean platelet volume (MPV) levels with serum paraoxonase-1 activity and brachial artery diameter and intima media thickness in diabetic patients with respect to obesity and diabetic complications. Methods: A total of 201 diabetic patients grouped with respect to obesity [obese (n=89) and non-obese (n=112) and diabetic complications [with (n=50) or without (n=150) microvascular complications and with (n=91) or without (n=108) macrovascular complications] groups were included. Data on demographic and lifestyle characteristics of patients, anthropometric measurements, diabetes related microvascular and macrovascular complications, serum levels for MPV, bBrachial artery diameter and intima media thickness (IMT) and serum paraoxonase and arylesterase activities were recorded. Correlation of MPV values to paraoxonase and arylesterase activities as well as to brachial artery diameter and IMT was evaluated in study groups. Results: Mean(SD) paraoxonase and arylesterase values were 119.8(37.5) U/L and 149.0(39.9) U/L, respectively in the overall population with no significant difference with respect to obesity and macrovascular diabetic complications, whereas significantly lower values for paraoxonase (107.5(30.7) vs. 123.9(38.8) U/L, p=0.007) and arylesterase (132.1(30.2) vs. 154.7(41.2) U/L, p=0.001) were noted in patients with than without diabetic microvascular complications. Mean(SD) MPV values were 9.10 (0.87) fL in the overall population with no significant difference with respect to obesity and diabetic complications. No significant correlation of MPV values to paraoxonase, arylesterase activities, to brachial artery diameter and IMT was noted in the overall study population as well as in study groups. Conclusion: In conclusion, our findings revealed a significant decrease I PON-1 activity in diabetic patients with microvascular rather than macrovascular complications, whereas regardless of obesity and diabetic complications, no increase in thrombogenic activity and no relation of thrombogenic activity with PON-1 activity and brachial artery diameter and IMK.

Keywords: atherosclerosis, diabetes mellitus, microvascular complications, macrovascular complications, obesity, paraoxonase

Procedia PDF Downloads 321
7 Effects of Nano-Coating on the Mechanical Behavior of Nanoporous Metals

Authors: Yunus Onur Yildiz, Mesut Kirca

Abstract:

In this study, mechanical properties of a nanoporous metal coated with a different metallic material are studied through a new atomistic modelling technique and molecular dynamics (MD) simulations. This new atomistic modelling technique is based on the Voronoi tessellation method for the purpose of geometric representation of the ligaments. With the proposed technique, atomistic models of nanoporous metals which have randomly oriented ligaments with non-uniform mass distribution along the ligament axis can be generated by enabling researchers to control both ligament length and diameter. Furthermore, by the utilization of this technique, atomistic models of coated nanoporous materials can be numerically obtained for further mechanical or thermal characterization. In general, this study consists of two stages. At the first stage, we use algorithms developed for generating atomic coordinates of the coated nanoporous material. In this regard, coordinates of randomly distributed points are determined in a controlled way to be employed in the establishment of the Voronoi tessellation, which results in randomly oriented and intersected line segments. Then, line segment representation of the Voronoi tessellation is transformed to atomic structure by a special process. This special process includes generation of non-uniform volumetric core region in which atoms can be generated based on a specific crystal structure. As an extension, this technique can be used for coating of nanoporous structures by creating another volumetric region encapsulating the core region in which atoms for the coating material are generated. The ultimate goal of the study at this stage is to generate atomic coordinates that can be employed in the MD simulations of randomly organized coated nanoporous structures. At the second stage of the study, mechanical behavior of the coated nanoporous models is investigated by examining deformation mechanisms through MD simulations. In this way, the effect of coating on the mechanical behavior of the selected material couple is investigated.

Keywords: atomistic modelling, molecular dynamic, nanoporous metals, voronoi tessellation

Procedia PDF Downloads 258
6 Multi-Objective Discrete Optimization of External Thermal Insulation Composite Systems in Terms of Thermal and Embodied Energy Performance

Authors: Berfin Yildiz

Abstract:

These days, increasing global warming effects, limited amount of energy resources, etc., necessitates the awareness that must be present in every profession group. The architecture and construction sectors are responsible for both the embodied and operational energy of the materials. This responsibility has led designers to seek alternative solutions for energy-efficient material selection. The choice of energy-efficient material requires consideration of the entire life cycle, including the building's production, use, and disposal energy. The aim of this study is to investigate the method of material selection of external thermal insulation composite systems (ETICS). Embodied and in-use energy values of material alternatives were used for the evaluation in this study. The operational energy is calculated according to the u-value calculation method defined in the TS 825 (Thermal Insulation Requirements) standard for Turkey, and the embodied energy is calculated based on the manufacturer's Energy Performance Declaration (EPD). ETICS consists of a wall, adhesive, insulation, lining, mechanical, mesh, and exterior finishing materials. In this study, lining, mechanical, and mesh materials were ignored because EPD documents could not be obtained. The material selection problem is designed as a hypothetical volume area (5x5x3m) and defined as a multi-objective discrete optimization problem for external thermal insulation composite systems. Defining the problem as a discrete optimization problem is important in order to choose between materials of various thicknesses and sizes. Since production and use energy values, which are determined as optimization objectives in the study, are often conflicting values, material selection is defined as a multi-objective optimization problem, and it is aimed to obtain many solution alternatives by using Hypervolume (HypE) algorithm. The enrollment process started with 100 individuals and continued for 50 generations. According to the obtained results, it was observed that autoclaved aerated concrete and Ponce block as wall material, glass wool, as insulation material gave better results.

Keywords: embodied energy, multi-objective discrete optimization, performative design, thermal insulation

Procedia PDF Downloads 89
5 Parametric Study of a Washing Machine to Develop an Energy Efficient Program Regarding the Enhanced Washing Efficiency Index and Micro Organism Removal Performance

Authors: Peli̇n Yilmaz, Gi̇zemnur Yildiz Uysal, Emi̇ne Bi̇rci̇, Berk Özcan, Burak Koca, Ehsan Tuzcuoğlu, Fati̇h Kasap

Abstract:

Development of Energy Efficient Programs (EEP) is one of the most significant trends in the wet appliance industry of the recent years. Thanks to the EEP, the energy consumption of a washing machine as one of the most energy-consuming home appliances can shrink considerably, while its washing performance and the textile hygiene should remain almost unchanged. Here in, the goal of the present study is to achieve an optimum EEP algorithm providing excellent textile hygiene results as well as cleaning performance in a domestic washing machine. In this regard, steam-pretreated cold wash approach with a combination of innovative algorithm solution in a relatively short washing cycle duration was implemented. For the parametric study, steam exposure time, washing load, total water consumption, main-washing time, and spinning rpm as the significant parameters affecting the textile hygiene and cleaning performance were investigated within a Design of Experiment study using Minitab 2021 statistical program. For the textile hygiene studies, specific loads containing the contaminated cotton carriers with Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa bacteria were washed. Then, the microbial removal performance of the designed programs was expressed as log reduction calculated as a difference of microbial count per ml of the liquids in which the cotton carriers before and after washing. For the cleaning performance studies, tests were carried out with various types of detergents and EMPA Standard Stain Strip. According to the results, the optimum EEP program provided an excellent hygiene performance of more than 2 log reduction of microorganism and a perfect Washing Efficiency Index (Iw) of 1.035, which is greater than the value specified by EU ecodesign regulation 2019/2023.

Keywords: washing machine, energy efficient programs, hygiene, washing efficiency index, microorganism, escherichia coli, staphylococcus aureus, pseudomonas aeruginosa, laundry

Procedia PDF Downloads 97
4 Physicochemical Properties of Pea Protein Isolate (PPI)-Starch and Soy Protein Isolate (SPI)-Starch Nanocomplexes Treated by Ultrasound at Different pH Values

Authors: Gulcin Yildiz, Hao Feng

Abstract:

Soybean proteins are the most widely used and researched proteins in the food industry. Due to soy allergies among consumers, however, alternative legume proteins having similar functional properties have been studied in recent years. These alternative proteins are also expected to have a price advantage over soy proteins. One such protein that has shown good potential for food applications is pea protein. Besides the favorable functional properties of pea protein, it also contains fewer anti-nutritional substances than soy protein. However, a comparison of the physicochemical properties of pea protein isolate (PPI)-starch nanocomplexes and soy protein isolate (SPI)-starch nanocomplexes treated by ultrasound has not been well documented. This study was undertaken to investigate the effects of ultrasound treatment on the physicochemical properties of PPI-starch and SPI-starch nanocomplexes. Pea protein isolate (85% pea protein) provided by Roquette (Geneva, IL, USA) and soy protein isolate (SPI, Pro-Fam® 955) obtained from the Archer Daniels Midland Company were adjusted to different pH levels (2-12) and treated with 5 minutes of ultrasonication (100% amplitude) to form complexes with starch. The soluble protein content was determined by the Bradford method using BSA as the standard. The turbidity of the samples was measured using a spectrophotometer (Lambda 1050 UV/VIS/NIR Spectrometer, PerkinElmer, Waltham, MA, USA). The volume-weighted mean diameters (D4, 3) of the soluble proteins were determined by dynamic light scattering (DLS). The emulsifying properties of the proteins were evaluated by the emulsion stability index (ESI) and emulsion activity index (EAI). Both the soy and pea protein isolates showed a U-shaped solubility curve as a function of pH, with a high solubility above the isoelectric point and a low one below it. Increasing the pH from 2 to 12 resulted in increased solubility for both the SPI and PPI-starch complexes. The pea nanocomplexes showed greater solubility than the soy ones. The SPI-starch nanocomplexes showed better emulsifying properties determined by the emulsion stability index (ESI) and emulsion activity index (EAI) due to SPI’s high solubility and high protein content. The PPI had similar or better emulsifying properties at certain pH values than the SPI. The ultrasound treatment significantly decreased the particle sizes of both kinds of nanocomplex. For all pH levels with both proteins, the droplet sizes were found to be lower than 300 nm. The present study clearly demonstrated that applying ultrasonication under different pH conditions significantly improved the solubility and emulsify¬ing properties of the SPI and PPI. The PPI exhibited better solubility and emulsifying properties than the SPI at certain pH levels

Keywords: emulsifying properties, pea protein isolate, soy protein isolate, ultrasonication

Procedia PDF Downloads 280
3 Effect of Proteoliposome Concentration on Salt Rejection Rate of Polysulfone Membrane Prepared by Incorporation of Escherichia coli and Halomonas elongata Aquaporins

Authors: Aysenur Ozturk, Aysen Yildiz, Hilal Yilmaz, Pinar Ergenekon, Melek Ozkan

Abstract:

Water scarcity is one of the most important environmental problems of the World today. Desalination process is regarded as a promising solution to solve drinking water problem of the countries facing with water shortages. Reverse osmosis membranes are widely used for desalination processes. Nano structured biomimetic membrane production is one of the most challenging research subject for improving water filtration efficiency of the membranes and for reducing the cost of desalination processes. There are several researches in the literature on the development of novel biomimetic nanofiltration membranes by incorporation of aquaporin Z molecules. Aquaporins are cell membrane proteins that allow the passage of water molecules and reject all other dissolved solutes. They are present in cell membranes of most of the living organisms and provide high water passage capacity. In this study, GST (Glutathione S-transferas) tagged E. coli aquaporinZ and H. elongate aquaporin proteins, which were previously cloned and characterized, were purified from E. coli BL21 cells and used for fabrication of modified Polysulphone Membrane (PS). Aquaporins were incorporated on the surface of the membrane by using 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) phospolipids as carrier liposomes. Aquaporin containing proteoliposomes were immobilized on the surface of the membrane with m-phenylene-diamine (MPD) and trimesoyl chloride (TMC) rejection layer. Water flux, salt rejection and glucose rejection performances of the thin film composite membranes were tested by using Dead-End Reactor Cell. In this study, effect of proteoliposome concentration, and filtration pressure on water flux and salt rejection rate of membranes were investigated. Type of aquaporin used for membrane fabrication, flux and pressure applied for filtration were found to be important parameters affecting rejection rates. Results suggested that optimization of concentration of aquaporin carriers (proteoliposomes) on the membrane surface is necessary for fabrication of effective composite membranes used for different purposes.

Keywords: aquaporins, biomimmetic membranes, desalination, water treatment

Procedia PDF Downloads 169
2 Analysis of the Effects of Institutions on the Sub-National Distribution of Aid Using Geo-Referenced AidData

Authors: Savas Yildiz

Abstract:

The article assesses the performance of international aid donors to determine the sub-national distribution of their aid projects dependent on recipient countries’ governance. The present paper extends the scope from a cross-country perspective to a more detailed analysis by looking at the effects of institutional qualities on the sub-national distribution of foreign aid. The analysis examines geo-referenced aid project in 37 countries and 404 regions at the first administrative division level in Sub-Saharan Africa from the World Bank (WB) and the African Development Bank (ADB) that were approved between the years 2000 and 2011. To measure the influence of institutional qualities on the distribution of aid the following measures are used: control of corruption, government effectiveness, regulatory quality and rule of law from the World Governance Indicators (WGI) and the corruption perception index from Transparency International. Furthermore, to assess the importance of ethnic heterogeneity on the sub-national distribution of aid projects, the study also includes interaction terms measuring ethnic fragmentation. The regression results indicate a general skew of aid projects towards regions which hold capital cities, however, being incumbent presidents’ birth region does not increase the allocation of aid projects significantly. Nevertheless, with increasing quality of institutions aid projects are less skewed towards capital regions and the previously estimated coefficients loose significance in most cases. Higher ethnic fragmentation also seems to impede the possibility to allocate aid projects mainly in capital city regions and presidents’ birth places. Additionally, to assess the performance of the WB based on its own proclaimed goal to aim the poor in a country, the study also includes sub-national wealth data from the Demographic and Health Surveys (DSH), and finds that, even with better institutional qualities, regions with a larger share from the richest quintile receive significantly more aid than regions with a larger share of poor people. With increasing ethnic diversity, the allocation of aid projects towards regions where the richest citizens reside diminishes, but still remains high and significant. However, regions with a larger share of poor people still do not receive significantly more aid. This might imply that the sub-national distribution of aid projects increases in general with higher ethnic fragmentation, independent of the diverse regional needs. The results provide evidence that institutional qualities matter to undermine the influence of incumbent presidents on the allocation of aid projects towards their birth regions and capital regions. Moreover, even for countries with better institutional qualities the WB and the ADB do not seem to be able to aim the poor in a country with their aid projects. Even, if one considers need-based variables, such as infant mortality and child mortality rates, aid projects do not seem to be allocated in districts with a larger share of people in need. Therefore, the study provides further evidence using more detailed information on the sub-national distribution of aid projects that aid is not being allocated effectively towards regions with a larger share of poor people to alleviate poverty in recipient countries directly. Institutions do not have any significant influence on the sub-national distribution of aid towards the poor.

Keywords: aid allocation, georeferenced data, institutions, spatial analysis

Procedia PDF Downloads 93
1 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator

Authors: Yildiz Stella Dak, Jale Tezcan

Abstract:

Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.

Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection

Procedia PDF Downloads 301