Search results for: Letemariam Gebreslassie Gebrekidan
18 Synthesis of Silver Nanoparticles Adsorbent from Phytolacca Dodecandra ‘Endod’ Leaf to Water Treatment, at Almeda Textile Factory, Tigray Ethiopia
Authors: Letemariam Gebreslassie Gebrekidan
Abstract:
Water pollution is one of the most feared problems in modern societies, especially in developing countries like Ethiopia. Nanoparticles with controlled size and composition are of fundamental and technological interest as they provide solutions to technological and environmental challenges in the areas of solar energy conversion, catalysis, medicine, and water treatment. The synthesis of metallic nanoparticles is an active area of academic and, more importantly, application research in nanotechnology. Adsorption is a process in which pollutants are absorbed on a solid surface. A molecule (pollutant) adhered to the solid surface is called an adsorbate, and the solid surface is an adsorbent. Adsorption is controlled by various parameters such as temperature, the nature of the adsorbate and adsorbent, and the presence of other pollutants along with the experimental conditions (pH, concentration of pollutants, contact time, particle size, and temperature). Depending on the main problem of water pollution, this research is available on the adsorption of wastewater using silver nanoparticles extracted from phytolacca Dodecandra leaf. AgNP was synthesized from a 1mM aqueous solution of silver nitrate (AgNO3) and Phytolacca Dodecandra leaf extract at room temperature. The synthesized nanoparticles were characterized using UV/visible Spectrometer, FTIR and XRD. In the UV-Vis spectrum, The Surface Plasmon resonance (SPR) peak was observed at 414 nm, which confirmed the synthesis of AgNPs. FTIR spectroscopy, recorded from 4000 cm-1 to 400 cm-1, indicated the presence of a capping agent with the nanoparticles. From the XRD results, the average crystalline size was estimated to be 20 nm Confirming the nanoparticle nature of the obtained sample. Thus, the present method leads to the formation of silver nanoparticles with well-defined dimensions. The effects of different parameters like solution pH, adsorbent dose, contact time and initial concentration of dye were studied. The concentration of MB is 0.01 mg/L and 0.002 mg/L before and after adsorption, respectively. The wastewater containing MB was well purified using AgNP adsorbent.Keywords: wastewater, silver nanoparticle, Characterization, adsorption, parameter
Procedia PDF Downloads 1017 Wireless Network and Its Application
Authors: Henok Mezemr Besfat, Haftom Gebreslassie Gebregwergs
Abstract:
wireless network is one of the most important mediums of transmission of information from one device to another devices. Wireless communication has a broad range of applications, including mobile communications through cell phones and satellites, Internet of Things (IoT) connecting several devices, wireless sensor networks for traffic management and environmental monitoring, satellite communication for weather forecasting and TV without requiring any cable or wire or other electronic conductors, by using electromagnetic waves like IR, RF, satellite, etc. This paper summarizes different wireless network technologies, applications of different wireless technologies and different types of wireless networks. Generally, wireless technology will further enhance operations and experiences across sectors with continued innovation. This paper suggests different strategies that can improve wireless networks and technologies.Keywords: wireless senser, wireless technology, wireless network, internet of things
Procedia PDF Downloads 5116 AI-Based Technologies for Improving Patient Safety and Quality of Care
Authors: Tewelde Gebreslassie Gebreanenia, Frie Ayalew Yimam, Seada Hussen Adem
Abstract:
Patient safety and quality of care are essential goals of health care delivery, but they are often compromised by human errors, system failures, or resource constraints. In a variety of healthcare contexts, artificial intelligence (AI), a quickly developing field, can provide fresh approaches to enhancing patient safety and treatment quality. Artificial Intelligence (AI) has the potential to decrease errors and enhance patient outcomes by carrying out tasks that would typically require human intelligence. These tasks include the detection and prevention of adverse events, monitoring and warning patients and clinicians about changes in vital signs, symptoms, or risks, offering individualized and evidence-based recommendations for diagnosis, treatment, or prevention, and assessing and enhancing the effectiveness of health care systems and services. This study examines the state-of-the-art and potential future applications of AI-based technologies for enhancing patient safety and care quality, as well as the opportunities and problems they present for patients, policymakers, researchers, and healthcare providers. In order to ensure the safe, efficient, and responsible application of AI in healthcare, the paper also addresses the ethical, legal, social, and technical challenges that must be addressed and regulated.Keywords: artificial intelligence, health care, human intelligence, patient safty, quality of care
Procedia PDF Downloads 7615 Quantitative Analysis of Caffeine in Pharmaceutical Formulations Using a Cost-Effective Electrochemical Sensor
Authors: Y. T. Gebreslassie, Abrha Tadesse, R. C. Saini, Rishi Pal
Abstract:
Caffeine, known chemically as 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione, is a naturally occurring alkaloid classified as an N-methyl derivative of xanthine. Given its widespread use in coffee and other caffeine-containing products, it is the most commonly consumed psychoactive substance in everyday human life. This research aimed to develop a cost-effective, sensitive, and easily manufacturable sensor for the detection of caffeine. Antraquinone-modified carbon paste electrode (AQMCPE) was fabricated, and the electrochemical behavior of caffeine on this electrode was investigated using cyclic voltammetry (CV) and square wave voltammetry (SWV) in a solution of 0.1M perchloric acid at pH 0.56. The modified electrode displayed enhanced electrocatalytic activity towards caffeine oxidation, exhibiting a two-fold increase in peak current and an 82 mV shift of the peak potential in the negative direction compared to an unmodified carbon paste electrode (UMCPE). Exploiting the electrocatalytic properties of the modified electrode, SWV was employed for the quantitative determination of caffeine. Under optimized experimental conditions, a linear relationship between peak current and concentration was observed within the range of 2.0 x 10⁻⁶ to 1.0× 10⁻⁴ M, with a correlation coefficient of 0.998 and a detection limit of 1.47× 10⁻⁷ M (signal-to-noise ratio = 3). Finally, the proposed method was successfully applied to the quantitative analysis of caffeine in pharmaceutical formulations, yielding recovery percentages ranging from 95.27% to 106.75%.Keywords: antraquinone-modified carbon paste electrode, caffeine, detection, electrochemical sensor, quantitative analysis
Procedia PDF Downloads 6314 Design and Modeling of a Green Building Energy Efficient System
Authors: Berhane Gebreslassie
Abstract:
Conventional commericial buildings are among the highest unwisely consumes enormous amount of energy and as consequence produce significant amount Carbon Dioxide (CO2). Traditional/conventional buildings have been built for years without consideration being given to their impact on the global warming issues as well as their CO2 contributions. Since 1973, simulation of Green Building (GB) for Energy Efficiency started and many countries in particular the US showed a positive response to minimize the usage of energy in respect to reducing the CO2 emission. As a consequence many software companies developed their own unique building energy efficiency simulation software, interfacing interoperability with Building Information Modeling (BIM). The last decade has witnessed very rapid growing number of researches on GB energy efficiency system. However, the study also indicates that the results of current GB simulation are not yet satisfactory to meet the objectives of GB. In addition most of these previous studies are unlikely excluded the studies of ultimate building energy efficiencies simulation. The aim of this project is to meet the objectives of GB by design, modeling and simulation of building ultimate energy efficiencies system. This research project presents multi-level, L-shape office building in which every particular part of the building materials has been tested for energy efficiency. An overall of 78.62% energy is saved, approaching to NetZero energy saving. Furthermore, the building is implements with distributed energy resources like renewable energies and integrating with Smart Building Automation System (SBAS) for controlling and monitoring energy usage.Keywords: ultimate energy saving, optimum energy saving, green building, sustainable materials and renewable energy
Procedia PDF Downloads 27313 Sustainable Production of Tin Oxide Nanoparticles: Exploring Synthesis Techniques, Formation Mechanisms, and Versatile Applications
Authors: Yemane Tadesse Gebreslassie, Henok Gidey Gebretnsae
Abstract:
Nanotechnology has emerged as a highly promising field of research with wide-ranging applications across various scientific disciplines. In recent years, tin oxide has garnered significant attention due to its intriguing properties, particularly when synthesized in the nanoscale range. While numerous physical and chemical methods exist for producing tin oxide nanoparticles, these approaches tend to be costly, energy-intensive, and involve the use of toxic chemicals. Given the growing concerns regarding human health and environmental impact, there has been a shift towards developing cost-effective and environmentally friendly processes for tin oxide nanoparticle synthesis. Green synthesis methods utilizing biological entities such as plant extracts, bacteria, and natural biomolecules have shown promise in successfully producing tin oxide nanoparticles. However, scaling up the production to an industrial level using green synthesis approaches remains challenging due to the complexity of biological substrates, which hinders the elucidation of reaction mechanisms and formation processes. Thus, this review aims to provide an overview of the various sources of biological entities and methodologies employed in the green synthesis of tin oxide nanoparticles, as well as their impact on nanoparticle properties. Furthermore, this research delves into the strides made in comprehending the mechanisms behind the formation of nanoparticles as documented in existing literature. It also sheds light on the array of analytical techniques employed to investigate and elucidate the characteristics of these minuscule particles.Keywords: nanotechnology, tin oxide, green synthesis, formation mechanisms
Procedia PDF Downloads 5112 Seroprevalence and Associated Factors of Hepatitis B and Hepatitis C Viral Infections Among Prisoners in Tigray, Northern Ethiopia
Authors: Belaynesh Tsegay, Teklay Gebrecherkos, Atsebaha Gebrekidan Kahsay, Mahmud Abdulkader
Abstract:
Background: Hepatitis B and C viruses are important health and socioeconomic problem across the globe, with a remarkable number of diseases and deaths in sub-Saharan African countries. The burden of hepatitis is unknown in the prison settings of Tigray. Therefore, we aimed to describe the seroprevalence and associated factors of hepatitis B and C viruses among prisoners in Tigray, Ethiopia. Methods: A cross-sectional study was carried out from February 2020 to May 2020 at the prison facilities of Tigray. Demographics and associated factors were collected from 315 prisoners prospectively. Five milliliters of blood were collected and tested using rapid tests kits of HBsAg (Zhejiang orient Gene Biotech Co., Ltd., China) and HCV antibodies (Volkan Kozmetik Sanayi Ve Ticaret Ltd. STI, Turkey). Positive samples were confirmed using ELISA (Beijing Wantai Biological Pharmacy Enterprise Co. Ltd). Data were analyzed using the SPSS version 20, and p<0.05 was considered statistically significant. Results: The overall seroprevalence of HBV and HCV were 25 (7.9%) and 1 (0.3%), respectively. The majority of hepatitis B viral infections were identified from the age groups of 18–25 years (10.7%) and unmarried prisoners (11.8%). Prisoners greater than 100 per cell (AOR=3.95, 95% CI=1.15–13.6, p=0.029) and with a history of alcohol consumption (AOR=3.01, 95% CI=1.17–7.74, p=0.022) were significantly associated with HBV infections. Conclusion: The seroprevalence of HBV among prisoners was nearly high or borderline, with a very low HCV prevalence. HBV was most prevalent among young adults, those housed with a large number of prisoners per cell, and those who had a history of alcohol consumption. This study recommends that there should be prison-focused intervention, including regular health education, with the emphasis on the mode of transmission and introducing HBV screening policy for prisoners, especially when they enter the prison.Keywords: seroprevalence, HBV, HCV, prisoners, tigray
Procedia PDF Downloads 8411 Seroprevalence and Associated Factors of Hepatitis B and Hepatitis C Viral Infections among Prisoners in Tigrai, Northern Ethiopia
Authors: Belaynesh Tsegay Beyene, Teklay Gebrecherkos, Atsebaha Gebrekidan Kahsay, Mahmud Abdulkader
Abstract:
Background: Hepatitis B and C viruses are of important health and socioeconomic problem of the globe with remarkable diseases and deaths in Sub-Saharan African countries. The burden of hepatitis is unknown in the prison settings of Tigrai. Therefore, we aimed to describe the seroprevalence and associated factors of hepatitis B and C viruses among prisoners of Tigrai, Ethiopia. Methods: A cross-sectional study was carried out from February 2020 to May 2020 at the prison facilities of Tigrai. Demographics and associated factors were collected from 315 prisoners prospectively. Five milliliter of blood was collected and tested using rapid tests kits of HBsAg (Zhejiang orient Gene Biotech Co., Ltd., China) and HCV antibodies (Volkan Kozmetik Sanayi Ve Ticaret Ltd. STI, Turkey). Positive samples were confirmed using enzyme-linked immunosorbent assay (ELISA) (Beijing Wantai Biological Pharmacy Enterprise Co. Ltd). Data were analyzed using Statistical Package for Social Sciences (SPSS) version 20 and p < 0.05 was considered statistically significant. Results: The overall seroprevalence of HBV and HCV were 25 (7.9%) and 1(0.3%), respectively. The majority of hepatitis B viral infections were identified from the age groups of 18-25 years (10.7%) and unmarried prisoners (11.8%). Prisoners greater than 100 per cell [AOR =3.95, 95% CI= (1.15, 13.6, p =0.029)] and having history of alcohol consumption [AOR =3.01, 95% CI= (1.17, 7.74, p =0.022)] were significantly associated with HBV infections. Conclusions: The seroprevalence of HBV among prisoners was nearly high or borderline (7.9%) with a very low HCV prevalence (0.3%). HBV was most prevalent among young adults, large number of prisoners per cell and those who had history of alcohol consumption. This study recommends that there should be prison-focused intervention including regular health education by emphasis on the mode of transmission and introducing HBV screening policy for prisoners especially when they enter to the prison.Keywords: seroprevalence, HBV, HCV, prisoners, Tigrai
Procedia PDF Downloads 7210 A Comprehensive Overview of Solar and Vertical Axis Wind Turbine Integration Micro-Grid
Authors: Adnan Kedir Jarso, Mesfin Megra Rorisa, Haftom Gebreslassie Gebregwergis, Frie Ayalew Yimam, Seada Hussen Adem
Abstract:
A microgrid is a small-scale power grid that can operate independently or in conjunction with the main power grid. It is a promising solution for providing reliable and sustainable energy to remote areas. The integration of solar and vertical axis wind turbines (VAWTs) in a microgrid can provide a stable and efficient source of renewable energy. This paper provides a comprehensive overview of the integration of solar and VAWTs in a microgrid. The paper discusses the design, operation, and control of a microgrid that integrates solar and VAWTs. The paper also examines the performance of the microgrid in terms of efficiency, reliability, and cost-effectiveness. The paper highlights the advantages and disadvantages of using solar and VAWTs in a microgrid. The paper concludes that the integration of solar and VAWTs in a microgrid is a promising solution for providing reliable and sustainable energy to remote areas. The paper recommends further research to optimize the design and operation of a microgrid that integrates solar and VAWTs. The paper also recommends the development of policies and regulations that promote the use of microgrids that integrate solar and VAWTs. In conclusion, the integration of solar and VAWTs in a microgrid is a promising solution for providing reliable and sustainable energy to remote areas. The paper provides a comprehensive overview of the integration of solar and VAWTs in a microgrid and highlights the advantages and disadvantages of using solar and VAWTs in a microgrid. The paper recommends further research and the development of policies and regulations that promote the use of microgrids that integrate solar and VAWTs.Keywords: hybrid generation, intermittent power, optimization, photovoltaic, vertical axis wind turbine
Procedia PDF Downloads 949 A Systematic Review on Prevalence, Serotypes and Antibiotic Resistance of Salmonella in Ethiopia
Authors: Atsebaha Gebrekidan Kahsay, Tsehaye Asmelash, Enquebaher Kassaye
Abstract:
Background: Salmonella remains a global public health problem with a significant burden in sub-Saharan African countries. Human restricted cause of typhoid and paratyphoid fever are S. Typhi and S. Paratyphi, whereas S. Enteritidis and S. Typhimurium is the causative agent of invasive nontyphoidal diseases among humans and animals are their reservoir. The antibiotic resistance of Salmonella is another public health threat around the globe. To come up with full information about human and animal salmonellosis, we made a systematic review of the prevalence, serotypes, and antibiotic resistance of Salmonella in Ethiopia. Methods: This systematic review used Google Scholar and PubMed search engines to search articles from Ethiopia that were published in English in peer-reviewed international journals from 2010 to 2022. We used keywords to identify the intended research articles and used a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist to ensure the inclusion and exclusion criteria. Frequencies and percentages were analyzed using Microsoft Excel. Results: Two hundred seven published articles were searched, and 43 were selected for a systematic review, human (28) and animals (15). The prevalence of Salmonella in humans and animals was 434 (5.2%) and 641(10.1%), respectively. Fourteen serotypes were identified from animals, and S. Typhimurium was among the top five. Among the ciprofloxacin-resistant isolates in human studies, 16.7% was the highest, whereas, for ceftriaxone, 100% resistance was reported. Conclusions: The prevalence of Salmonella among diarrheic patients and food handlers (5.2%) was lower than the prevalence in food animals (10.1%). We did not find serotypes of Salmonella in human studies, although fourteen serotypes were included in food-animal studies, and S. Typhimurium was among the top five. Salmonella species from some human studies revealed a non-susceptibility to ceftriaxone. We recommend further study about invasive nontyphoidal Salmonella and predisposing factors among humans and animals in Ethiopia.Keywords: antibiotic resistance, prevalence, systematic review, serotypes, Salmonella, Ethiopia
Procedia PDF Downloads 808 Utilization, Barriers and Determinants of Emergency Medical Services in Mekelle City, Tigray, Ethiopia: A Community-Based Cross-Sectional Study
Authors: Goitom Molalign Takele, Tsegalem Hailemariam Ballo, Kiros Belay Gebrekidan, Birhan Gebresilassie Gebregiorgis
Abstract:
Background: Emergency medical services (EMS) are services that provide out-of-hospital emergency medical care to injured or ill peoples, and transporting to definitive care. EMS is an integral part of the emergency medical system and has been associated with decreased morbidity and mortality related to emergency cases. The aim of this study was to assess the utilization, barriers, and determinants of EMS in Mekelle, Ethiopia. Methods: A community-based cross-sectional study was conducted in selected sub-cities of Mekelle. A multistage sampling method was employed to recruit study participants, and data were collected by trained data collectors using an interviewer-administered questionnaire. Multivariate logistic regression analysis was used to examine the statistical association of the determinants of EMS utilization. Results: Half (50.5%) of the respondents had experienced or witnessed an emergency incident in the past year. The common means of transportations used were Bajaj’s (39.2%) and ambulances (22.7%). Majority (88.1%) of the respondents did not knew the EMS access phone number of an ambulance. As their preferred mode of transportation in case of emergency conditions, 42.2% of the participants reported an ambulance, followed by Bajaj 33.7%. Where participants who had gynecologic emergencies were 9.4 times (AOR=9.4, 95% CI: 1.04, 85, p=0.046), and those who knew any ambulance numbers were 3.6 times (AOR=3.6, 95% CI: 1.22, 10.8, p=0.02) more likely to use ambulance services in case of emergencies. Conclusion: The ambulance utilization level in Mekelle city was low and victims of emergency conditions were being transported mainly using public transports such as Bajaj’s and taxis. Even though the perception of the public towards EMS services is favorable, lack of awareness of EMS access, and lack of integrated EMS system in the city are the barriers that may have contributed to the low utilization. Actions to improve EMS access and integrating the system are warranted to promote the services utilization.Keywords: emergency medical services, utilization, Mekelle, barriers
Procedia PDF Downloads 767 Characterising Indigenous Chicken (Gallus gallus domesticus) Ecotypes of Tigray, Ethiopia: A Combined Approach Using Ecological Niche Modelling and Phenotypic Distribution Modelling
Authors: Gebreslassie Gebru, Gurja Belay, Minister Birhanie, Mulalem Zenebe, Tadelle Dessie, Adriana Vallejo-Trujillo, Olivier Hanotte
Abstract:
Livestock must adapt to changing environmental conditions, which can result in either phenotypic plasticity or irreversible phenotypic change. In this study, we combine Ecological Niche Modelling (ENM) and Phenotypic Distribution Modelling (PDM) to provide a comprehensive framework for understanding the ecological and phenotypic characteristics of indigenous chicken (Gallus gallus domesticus) ecotypes. This approach helped us to classify these ecotypes, differentiate their phenotypic traits, and identify associations between environmental variables and adaptive traits. We measured 297 adult indigenous chickens from various agro-ecologies, including 208 females and 89 males. A subset of the 22 measured traits was selected using stepwise selection, resulting in seven traits for each sex. Using ENM, we identified four agro-ecologies potentially harbouring distinct phenotypes of indigenous Tigray chickens. However, PDM classified these chickens into three phenotypical ecotypes. Chickens grouped in ecotype-1 and ecotype-3 exhibited superior adaptive traits compared to those in ecotype-2, with significant variance observed. This high variance suggests a broader range of trait expression within these ecotypes, indicating greater adaptation capacity and potentially more diverse genetic characteristics. Several environmental variables, such as soil clay content, forest cover, and mean temperature of the wettest quarter, were strongly associated with most phenotypic traits. This suggests that these environmental factors play a role in shaping the observed phenotypic variations. By integrating ENM and PDM, this study enhances our understanding of indigenous chickens' ecological and phenotypic diversity. It also provides valuable insights into their conservation and management in response to environmental changes.Keywords: adaptive traits, agro-ecology, appendage, climate, environment, imagej, morphology, phenotypic variation
Procedia PDF Downloads 316 Prevalence, Antimicrobial Susceptibility Pattern and Associated Risk Factors for Salmonella Species and Escherichia coli from Raw Meat at Butchery Houses in Mekelle, Tigray, Ethiopia
Authors: Haftay Abraha Tadesse, Atsebaha Gebrekidan Kahsay, Mahumd Abdulkader
Abstract:
Background: Salmonella species and Escherichia coli are important foodborne pathogens affecting humans and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. This study was aimed to determine the prevalence, antimicrobial susceptibility patterns and associated risk factors for Salmonella species and E. coli in raw meat from butchery houses of Mekelle, Northern Ethiopia. Methodology: A cross-sectional study was conducted from January to September 2019. Socio-demographic data and risk factors were collected using a predesigned questionnaire. Meat samples were collected aseptically from the butchery houses and transported using icebox to Mekelle University, College of Veterinary Sciences for the isolation and identification of Salmonella species and E. coli, Antimicrobial susceptibility patterns were determined using Kirby disc diffusion method. Data obtained were cleaned and entered into Statistical Package for the Social Sciences version 22 and logistic regression models with odds ratio were calculated. P-value < 0.05 was considered as statistically significant. Results: A total of 153 out of 384 (39.8%) of the meat specimens were found to be contaminated. The contamination of Salmonella species and E. coli were 15.6% (n=60) and 20.8%) (n=80), respectively. Mixed contamination (Salmonella species and E. coli) was observed in 13 (3.4 %) of the analyzed. Poor washing hands regularly (AOR = 8.37; 95% CI: 2.75-25.50) and not using gloves during meat handling (AOR=11. 28; 95% CI: (4.69 27.10) were associated with an overall bacterial contamination.About 95.5% of the tested isolates were sensitive to chloramphenicol and norfloxacin while the resistance of amoxyclav_amoxicillin and erythromycin were both isolated bacteria species. The overall multidrug resistance pattern for Salmonella and E. coli were 51.4% (n=19) and 31.8% (14), respectively. Conclusion: Of the 153 (153/384) contaminated raw meat, 60 (15.6%) and 80 (20.8%) were contaminated by Salmonella species and E. coli, respectively. Poor hand washing practice and not using glove during meat handling showed significant association with bacterial contamination. Multidrug-resistant showed in Salmonella species and E. coli were 19 (51.4%) and 14 (31.8%), respectively.Keywords: antimicrobial susceptibility test, butchery houses, e. coli, salmonella species
Procedia PDF Downloads 515 The Role of Principals’ Emotional Intelligence on School Leadership Effectiveness
Authors: Daniel Gebreslassie Mekonnen
Abstract:
Effective leadership has a crucial role in excelling in the overall success of a school. Today there is much attention given to school leadership, without which schools can never be successful. Therefore, the study was aimed at investigating the role of principals’ leadership styles and their emotional intelligence on the work motivation and job performance of teachers in Addis Ababa, Ethiopia. The study, thus, first examined the relationship between work motivation and job performance of the teachers in relation to the perceived leadership styles and emotional intelligence of principals. Second, it assessed the mean differences and the interaction effects of the principals’ leadership styles and emotional intelligence on the work motivation and job performance of the teachers. Finally, the study investigated whether principals’ leadership styles and emotional intelligence variables had significantly predicted the work motivation and job performance of teachers. As a means, a quantitative approach and descriptive research design were employed to conduct the study. Three hundred sixteen teachers were selected using multistage sampling techniques as participants of the study from the eight sub-cities in Addis Ababa. The main data-gathering instruments used in this study were the path-goal leadership questionnaire, emotional competence inventory, multidimensional work motivation scale, and job performance appraisal scale. The quantitative data were analyzed by using the statistical techniques of Pearson–product-moment correlation analysis, two-way analysis of variance, and stepwise multiple regression analysis. Major findings of the study have revealed that the work motivation and job performance of the teachers were significantly correlated with the perceived participative leadership style, achievement-oriented leadership style, and emotional intelligence of principals. Moreover, the emotional intelligence of the principals was found to be the best predictor of the teachers’ work motivation, whereas the achievement-oriented leadership style of the principals was identified as the best predictor of the job performance of the teachers. Furthermore, the interaction effects of all four path-goal leadership styles vis-a-vis the emotional intelligence of the principals have shown differential effects on the work motivation and job performance of teachers. Thus, it is reasonable to conclude that emotional intelligence is the sine qua non of effective school leadership. Hence, this study would be useful for policymakers and educational leaders to come up with policies that would enhance the role of emotional intelligence on school leadership effectiveness. Finally, pertinent recommendations were drawn from the findings and the conclusions of the study.Keywords: emotional intelligence, leadership style, job performance, work motivation
Procedia PDF Downloads 944 Prevalence, Antimicrobial Susceptibility Pattern and Associated Risk Factors for Salmonella Species and Escherichia Coli from Raw Meat at Butchery Houses in Mekelle, Tigray, Northern Ethiopia
Authors: Haftay Abraha Tadesse, Dawit Gebreegziabiher Hagos, Atsebaha Gebrekidan Kahsay, Mahumd Abdulkader
Abstract:
Background: Salmonella species and Escherichia coli (E. coli) are important foodborne pathogens affecting humans and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. This study was aimed to determine the prevalence, antimicrobial susceptibility patterns and associated risk factors for Salmonella species and E. coli in raw meat from butchery houses of Mekelle, Northern Ethiopia. Method: A cross-sectional study was conducted from January to December 2019. Socio-demographic data and risk factors were collected using a predesigned questionnaire. Meat samples were collected aseptically from the butchery houses and transported using icebox to Mekelle University, College of Veterinary Sciences for the isolation and identification of Salmonella species and E. coli. Antimicrobial susceptibility patterns were determined using Kirby disc diffusion method. Data obtained were cleaned and entered into Statistical Package for the Social Sciences version 22 and logistic regression models with odds ratio were calculated. P-value < 0.05 was considered as statistically significant. Results: A total of 153 out of 384 (39.8%) of the meat specimens were found to be contaminated. The contamination of Salmonella species and E. coli were 15.6% (n=60) and 20.8%) (n=80), respectively. Mixed contamination (Salmonella species and E. coli) was observed in 13 (3.4 %) of the analyzed. Poor washing hands regularly (AOR = 8.37; 95% CI: 2.75-25.50) and not using gloves during meat handling (AOR=11. 28; 95% CI:(4.69 27.10) were associated with overall bacterial contamination. About 100% of the tested isolates were sensitive to ciprofloxacin, gentamicin, Co trimoxazole , sulphamethoxazole, ceftriaxone, and trimethoprim and ciprofloxacin, gentamicin, and norfloxacine of E. coli and Salmonella species, respectively, while the resistance of amoxyclav_amoxicillin and erythromycin were both isolated bacteria species. The overall multidrug resistance pattern for Salmonella and E. coli were 51.4% (n=19) and 31.8% (14), respectively. Conclusion: Of the 153 (153/384) contaminated raw meat, 60 (15.6%) and 80 (20.8%) were contaminated by Salmonella species and E. coli, respectively. Poor handwashing practice and not using glove during meat handling showed a significant association with bacterial contamination. Multidrug-resistant showed in Salmonella species, and E. coli were 19 (51.4%) and 14 (31.8%), respectively.Keywords: antimicrobial susceptibility test, butchery houses, E. coli, raw meat, salmonella species
Procedia PDF Downloads 1723 Sustainable Nanoengineering of Copper Oxide: Harnessing Its Antimicrobial and Anticancer Capabilities
Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel
Abstract:
Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.Keywords: copper oxide nanoparticles, green synthesis, nanotechnology, microbial infection
Procedia PDF Downloads 602 Green and Cost-Effective Biofabrication of Copper Oxide Nanoparticles: Exploring Antimicrobial and Anticancer Applications
Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel
Abstract:
Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.Keywords: biological synthesis, copper oxide nanoparticles, microbial infection, nanotechnology
Procedia PDF Downloads 601 Municipal Solid Waste Management in Ethiopia: Systematic Review of Physical and Chemical Compositions and Generation Rate
Authors: Tsegay Kahsay Gebrekidan, Gebremariam Gebrezgabher Gebremedhin, Abraha Kahsay Weldemariam, Meaza Kidane Teferi
Abstract:
Municipal solid waste management (MSWM) in Ethiopia is a complex issue with institutional, social, political, environmental, and economic dimensions, impacting sustainable development. Effective MSWM planning necessitates understanding the generation rate and composition of waste. This systematic review synthesizes qualitative and quantitative data from various sources to aggregate current knowledge, identify gaps, and provide a comprehensive understanding of municipal solid waste management in Ethiopia. The findings reveal that the generation rate of municipal solid waste in Ethiopia is 0.38 kg/ca/day, with the waste composition being predominantly food waste, followed by ash, dust, and sand, and yard waste. Over 85% of this MSW is either reusable or recyclable, with a significant portion being organic matter (73.13% biodegradable) and 11.78% recyclable materials. Physicochemical analyses reveal that Ethiopian MSW is suitable for composting and biogas production, offering opportunities to reduce environmental pollution, and GHGs, support urban agriculture, and create job opportunities. However; challenges persist, including a lack of political will, weak municipal planning, limited community awareness, and inadequate waste management infrastructure, and only 31.8% of MSW is collected legally, leading to inefficient and harmful disposal practices. To improve MSWM, Ethiopia should focus on public awareness; increased funding, infrastructure investment, private sector partnerships, and implementing the 4 R principles (reduce, reuse, and recycle). An integrated approach involving government, industry, and civil society is essential. Further research on the physicochemical properties and strategic uses of MSW is needed to enhance management practices. Implications: The comprehensive study of municipal solid waste management (MSWM) in Ethiopia reveals the intricate interplay of institutional, social, political, environmental, and economic factors that influence the nation’s sustainable development. The findings underscore the urgent need for tailored, integrated waste management strategies that are informed by a thorough understanding of MSW generation rates, composition, and current management practices. Ethiopia’s lower per capita MSW generation compared to developed countries and the predominantly organic composition of its waste present significant opportunities for sustainable waste management practices such as composting and recycling. These practices can not only minimize the environmental impact but also support urban greening, agriculture, and renewable energy production. The high organic content, suitable physicochemical properties of MSW for composting, and potential for biogas and briquette production highlight pathways for creating employment, reducing waste, and enhancing soil fertility. Despite these opportunities, Ethiopia faces substantial challenges due to inadequate political will, weak municipal planning, limited community awareness, insufficient waste management infrastructure, and poor policy implementation. The high rate of illegal waste disposal further exacerbates environmental and health issues, emphasizing the need for a more effective and integrated MSWM approach. To address these challenges and harness the potential of MSW, Ethiopia must prioritize increasing public awareness; investing in infrastructure, fostering private sector partnerships, and implementing the principles of reduce, reuse, and recycle (3 R). Developing strategies that involve all stakeholders and turning waste into valuable resources is crucial. Government, industry, and civil society must collaborate to implement integrated MSWM systems that focus on waste reduction at the source, alternative material use, and advanced recycling technologies. Further research at both federal and regional levels is essential to optimize the physicochemical analysis and strategic use of MSW. Prompt action is required to transform waste management into a pillar of sustainable urban development, ultimately improving environmental quality and human health in Ethiopia.Keywords: biodegradable, healthy environment, integrated solid waste management, municipal
Procedia PDF Downloads 9