Search results for: Lateral resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3803

Search results for: Lateral resistance

3683 Concepts in the Design of Lateral-Load Systems in High Rise Buildings to Reduce Operational Energy Consumption

Authors: Mohamed Ali MiladKrem Salem, Sergio F.Breña, Sanjay R. Arwade, Simi T. Hoque

Abstract:

The location of the main lateral‐load resisting system in high-rise buildings may have positive impacts on sustainability through a reduction in operational energy consumption, and this paper describes an assessment of the accompanying effects on structural performance. It is found that there is a strong influence of design for environmental performance on the structural performance the building, and that systems selected primarily with an eye towards energy use reduction may require substantial additional structural stiffening to meet safety and serviceability limits under lateral load cases. We present a framework for incorporating the environmental costs of meeting structural design requirements through the embodied energy of the core structural materials and also address the issue of economic cost brought on by incorporation of environmental concerns into the selection of the structural system. We address these issues through four case study high-rise buildings with differing structural morphologies (floor plan and core arrangement) and assess each of these building models for cost and embodied energy when the base structural system, which has been suggested by architect Kenneth Yeang based on environmental concerns, is augmented to meet lateral drift requirements under the wind loads prescribed by ASCE 7-10.

Keywords: sustainable, embodied, Outrigger, skyscraper, morphology, efficiency

Procedia PDF Downloads 440
3682 Prospective Study of the Evaluation of Autologous Blood Injection in the Treatment of Lateral Epicondylitis

Authors: Bheeshma B., Mathivanan N., Manoj Deepak M., Prabhu Thangaraju, K. Venkatachalam

Abstract:

This study involves the effect of autologous blood injection for patients who had degeneration of the origin of extensor carpi radialis brevis which was confirmed radio logically and by ultrasound examination and failed cortisone injections to the lateral epicondylitis. In this prospective longitudinal series involves pre-injection assessment of grip strength, pain, and function, using the patient-rated tennis elbow evaluation. In this study, blood from the contralateral limb is taken and injected into the affected limb with the help of ultrasound guidance and then the patient wore a customized wrist support for five days, after which they were commenced with stretching, strengthening, and massage programme with an occupational therapist. In these patients assessment was done after six months and then finally at 12 months after injection, using the patient-rated tennis elbow evaluation. 50 patients completed the study, showing significant improvement in pain; the worst pain decreased by two to five points out of a 10-point visual analogue for pain. Self-perceived function improved by 11–25 points out of 100. Women showed significant increase in grip, but men did not. Our study thus concludes that autologous blood injection show significant improvement in pain and function in patients with chronic lateral epicondylitis, who did not have relief with cortisone injection.

Keywords: lateral epicondylitis, autologous blood injection, conservative treatment, plasma-rich proteins (PRPs)

Procedia PDF Downloads 408
3681 Cantilever Secant Pile Constructed in Sand: Capping Beam Analysis and Deformation Limitations

Authors: Khaled R. Khater

Abstract:

This paper fits in soil-structure interaction division. Its theme is soil retaining structures. Hence, the cantilever secant-pile wall imposed itself, focusing on the capping beam. Four research questions are prompted and beg an answer. How to calculate the forces that control capping beam design? What is the statical system of ‘capping beam-secant pile’ as one unit? Is it possible to design it to satisfy pre-specific lateral deformation? Is it possible to suggest permissible lateral deformation limits? Briefly, pile head displacements induced by Plaxis-2D are converted to forces needed for STAAD-Pro 3D models. Those models are constructed based on the proposed structural system. This is the paper’s idea and methodology. Parametric study performed considered three sand densities, one pile rigidity, and two excavation depths, i.e., 3.0 m and 5.0 m. The research questions are satisfactorily answered. This paper could be a first step towards standardizing analysis, design, and lateral deformations checks.

Keywords: capping beam, secant pile, numerical, design aids, sandy soil

Procedia PDF Downloads 80
3680 Solar Photovoltaic Foundation Design

Authors: Daniel John Avutia

Abstract:

Solar Photovoltaic (PV) development is reliant on the sunlight hours available in a particular region to generate electricity. A potential area is assessed through its inherent solar radiation intensity measured in watts per square meter. Solar energy development involves the feasibility, design, construction, operation and maintenance of the relevant infrastructure, but this paper will focus on the design and construction aspects. Africa and Australasia have the longest sunlight hours per day and the highest solar radiation per square meter, 7 sunlight hours/day and 5 kWh/day respectively. Solar PV support configurations consist of fixed-tilt support and tracker system structures, the differentiation being that the latter was introduced to improve the power generation efficiency of the former due to the sun tracking movement capabilities. The installation of Solar PV foundations involves rammed piles, drilling/grout piles and shallow raft reinforced concrete structures. This paper presents a case study of 2 solar PV projects in Africa and Australia, discussing the foundation design consideration and associated construction cost implications of the selected foundations systems. Solar PV foundations represent up to one fifth of the civil works costs in a project. Therefore, the selection of the most structurally sound and feasible foundation for the prevailing ground conditions is critical towards solar PV development. The design wind speed measured by anemometers govern the pile embedment depth for rammed and drill/grout foundation systems. The lateral pile deflection and vertical pull out resistance of piles increase proportionally with the embedment depth for uniform pile geometry and geology. The pile driving rate may also be used to anticipate the lateral resistance and skin friction restraining the pile. Rammed pile foundations are the most structurally suitable due to the pile skin friction and ease of installation in various geological conditions. The competitiveness of solar PV projects within the renewable energy mix is governed by lowering capital expenditure, improving power generation efficiency and power storage technological advances. The power generation reliability and efficiency are areas for further research within the renewable energy niche.

Keywords: design, foundations, piles, solar

Procedia PDF Downloads 161
3679 Effect of Three Resistance Training Methods on Performance-Related Variables of Powerlifters

Authors: K. Shyamnath, K. Suresh Kutty

Abstract:

The purpose of the study was to find out the effect of three resistance training methods on performance-related variables of powerlifters. A total of forty male students (N=40) who had participated in Kannur University powerlifting championship were selected as subjects. The age group of the subjects ranged from 18 years old to 25 years old. The selected subjects were equally divided into four groups (n=10) of three experimental groups and a control group. The experimental Group I underwent traditional resistance training (TRTG), Group II underwent combined traditional resistance training and plyometrics (TRTPG), and Group III underwent combined traditional resistance training and resistance training with high rhythm (TRTHRG). Group IV acted as the control group (CG) receiving no training during the experimental period. The duration of the experimental period was sixteen weeks, five days per week. Powerlifting performance was assessed by the 1RM test in the squat, bench press and deadlift. Performance-related variables assessed were chest girth, arm girth, forearm girth, thigh girth, and calf girth. Pre-test and post-test were conducted a day before and two days after the experimental period on all groups. Analysis of covariance (ANCOVA) was applied to analyze the significant difference. The 0.05 level of confidence was fixed as the level of significance to test the F ratio obtained by the analysis of covariance. The result indicates that there is a significant effect of all the selected resistance training methods on the performance and selected performance-related variables of powerlifters. Combined traditional resistance training and plyometrics and combined traditional resistance training and resistance training with high rhythm proved better than the traditional resistance training in improving performance and selected performance-related variables of powerlifters. There was no significant difference between combined traditional resistance training and plyometrics and combined traditional resistance training and resistance training with high rhythm in improving performance and selected performance-related variables of powerlifters.

Keywords: girth, plyometrics, powerlifting, resistance training

Procedia PDF Downloads 466
3678 Assessing Influence of End-Boundary Conditions on Stability and Second-Order Lateral Stiffness of Beam-Column Elements Embedded in Non-Homogeneous Soil

Authors: Carlos A. Vega-Posada, Jeisson Alejandro Higuita-Villa, Julio C. Saldarriaga-Molina

Abstract:

This paper presents a simplified analytical approach to conduct elastic stability and second-order lateral stiffness analyses of beam-column elements (i.e., piles) with generalized end-boundary conditions embedded on a homogeneous or non-homogeneous Pasternak foundation. The solution is derived using the well-known Differential Transformation Method (DTM), and it consists simply of solving a system of two linear algebraic equations. Using other conventional approaches to solve the governing differential equation of the proposed element can be cumbersome and the solution challenging to implement, especially when the non-homogeneity of the soil is considered. The proposed formulation includes the effects of i) any rotational or lateral transverse spring at the ends of the pile, ii) any external transverse load acting along the pile, iii) soil non-homogeneity, and iv) the second-parameter of the elastic foundation (i.e., shear layer connecting the springs at the top). A parametric study is conducted to investigate the effects of different modulus of subgrade reactions, degrees of non-homogeneities, and intermediate end-boundary conditions on the pile response. The same set of equations can be used to conduct both elastic stability and static analyses. Comprehensive examples are presented to show the simplicity and practicability of the proposed method.

Keywords: elastic stability, second-order lateral stiffness, soil-non-homogeneity, pile analysis

Procedia PDF Downloads 173
3677 Experiment and Analytical Study on Fire Resistance Performance of Slot Type Concrete-Filled Tube

Authors: Bum Yean Cho, Heung-Youl Kim, Ki-Seok Kwon, Kang-Su Kim

Abstract:

In this study, a full-scale test and analysis (numerical analysis) of fire resistance performance of bare CFT column on which slot was used instead of existing welding method to connect the steel pipe on the concrete-filled tube were conducted. Welded CFT column is known to be vulnerable to high or low temperature because of low brittleness of welding part. As a result of a fire resistance performance test of slot CFT column after removing the welding part and fixing it by a slot which was folded into the tube, slot type CFT column indicated the improved fire resistance performance than welded CFT column by 28% or more. And as a result of conducting finite element analysis of slot type column using ABAQUS, analysis result proved the reliability of the test result in predicting the fire behavior and fire resistance hour.

Keywords: CFT (concrete-filled tube) column, fire resistance performance, slot, weld

Procedia PDF Downloads 151
3676 Parameters Affecting the Elasto-Plastic Behavior of Outrigger Braced Walls to Earthquakes

Authors: T. A. Sakr, Hanaa E. Abd-El-Mottaleb

Abstract:

Outrigger-braced wall systems are commonly used to provide high rise buildings with the required lateral stiffness for wind and earthquake resistance. The existence of outriggers adds to the stiffness and strength of walls as reported by several studies. The effects of different parameters on the elasto-plastic dynamic behavior of outrigger-braced wall systems to earthquakes are investigated in this study. Parameters investigated include outrigger stiffness, concrete strength, and reinforcement arrangement as the main design parameters in wall design. In addition to being significant to the wall behavior, such parameters may lead to the change of failure mode and the delay of crack propagation and consequently failure as the wall is excited by earthquakes. Bi-linear stress-strain relation for concrete with limited tensile strength and truss members with bi-linear stress-strain relation for reinforcement were used in the finite element analysis of the problem. The famous earthquake record, El-Centro, 1940 is used in the study. Emphasis was given to the lateral drift, normal stresses and crack pattern as behavior controlling determinants. Results indicated significant effect of the studied parameters such that stiffer outrigger, higher grade concrete and concentrating the reinforcement at wall edges enhance the behavior of the system. Concrete stresses and cracking behavior are sigbificantly enhanced while lesser drift improvements are observed.

Keywords: outrigger, shear wall, earthquake, nonlinear

Procedia PDF Downloads 258
3675 Thermal Contact Resistance of Nanoscale Rough Surfaces

Authors: Ravi Prasher

Abstract:

In nanostructured material thermal transport is dominated by contact resistance. Theoretical models describing thermal transport at interfaces assume perfectly flat surface whereas in reality surfaces can be rough with roughness ranging from sub-nanoscale dimension to micron scale. Here we introduce a model which includes both nanoscale contact mechanics and nanoscale heat transfer for rough nanoscale surfaces. This comprehensive model accounts for the effect of phonon acoustic mismatch, mechanical properties, chemical properties and randomness of the rough surface.

Keywords: adhesion and contact resistance, Kaptiza resistance of rough surfaces, nanoscale thermal transport

Procedia PDF Downloads 342
3674 Muscle Activation Comparisons in a Lat Pull down Exercise with Machine Weights, Resistance Bands and Body Weight Exercises

Authors: Trevor R. Higgins

Abstract:

The aim of this study was to compare muscle activation of the latissimus dorsi between pin-loaded machine (Lat Pull Down), resistance band (Lat Pull Down) and body-weight (Chin Up) exercises. A convenient sample of male college students with >2 years resistance training experience volunteered for the study. A paired t-test with repeated measures designs was carried out on results from EMG analysis. EMG analysis was conducted with Trigno wireless sensors (Delsys) placed laterally on the latissimus dorsi (left and right) of each participant. By conventional criteria the two-tailed P value suggested that differences between pin-loaded and body-weight was not significantly different (p = 0.93) and differences between pin-loaded and resistance band was not significantly different (p = 0.17) in muscle activity. In relation to conventional criteria the two-tailed P value suggested differences between body-weight and resistance band was not quite significantly different (p = 0.06) in muscle activity. However, effect size trends indicated that both body-weight and pin-loaded exercises where more effective in stimulating muscle electrical activity than a resistance band with male college athletes with >2 years resistance training experience. Although, resistance bands have increased in popularity in health and fitness centres, that for well-trained participants, they may not be effective in stimulating muscles of the latissimus dorsi. Therefore, when considering equipment and exercise selection for experienced resistance training participants pin-loaded machines and body-weight should be prescribed.

Keywords: pin-loaded, resistance bands, body weight, EMG analysis

Procedia PDF Downloads 239
3673 Confidence Levels among UK Emergency Medicine Doctors in Performing Emergency Lateral Canthotomy: Should it be a Key Skill in the ED

Authors: Mohanad Moustafa, Julia Sieberer, Rhys Davies

Abstract:

Background: Orbital compartment syndrome (OCS) is a sight-threatening Ophthalmologic emergency caused by rapidly increasing intraorbital pressure. It is usually caused by a retrobulbar hemorrhage as a result of trauma. If not treated in a timely manner, permanent vision loss can occur. Lateral canthotomy and cantholysis are minor procedures that can be performed bedside with equipment available in the emergency department. The aim of the procedure is to release the attachments between the suspensory ligaments of the eye and the bony orbital wall, leading to a decrease in intraorbital pressure and preventing irreversible loss of vision. As most Ophthalmologists across the UK provide non-resident on-call service, this may lead to a delay in the treatment of OCS and stresses the need for Emergency medical staff to be able to provide this sight-saving procedure independently. Aim: To survey current training, experience, and confidence levels among Emergency Medicine doctors in performing emergency lateral canthotomy and to establish whether these variables change the following teaching from experienced ophthalmologists. RESULTS: Most EM registrars had little to no experience in performing lateral canthotomy and cantholysis. The majority of them showed a significant increase in their confidence to perform the procedure following ophthalmic-led teaching. The survey also showed that the registrars felt such training should be added to/part of the EM curriculum. Conclusion: The involvement of Ophthalmologists in the teaching of EM doctors to recognise and treat OCS independently may prevent delays in treatment and reduce the risk of permanent sight loss. This project showed potential in improving patient care and will lead to a National Survey of EM doctors across the UK.

Keywords: lateral canthotomy, retrobulbar hemorrhage, Ophthalmology, orbital compartment syndrome, sight loss, blindness

Procedia PDF Downloads 73
3672 Vision Aided INS for Soft Landing

Authors: R. Sri Karthi Krishna, A. Saravana Kumar, Kesava Brahmaji, V. S. Vinoj

Abstract:

The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained.

Keywords: vision aided INS, image processing, lateral velocity estimation, materials engineering

Procedia PDF Downloads 435
3671 Double Negative Differential Resistance Features in GaN-Based Bipolar Resonance Tunneling Diodes

Authors: Renjie Liu, Junshuai Xue, Jiajia Yao, Guanlin Wu, Zumao L, Xueyan Yang, Fang Liu, Zhuang Guo

Abstract:

Here, we report the study of the performance of AlN/GaN bipolar resonance tunneling diodes (BRTDs) using numerical simulations. The I-V characteristics of BRTDs show double negative differential resistance regions, which exhibit similar peak current density and peak-to-valley current ratio (PVCR). Investigations show that the PVCR can approach 4.6 for the first and 5.75 for the second negative resistance region. The appearance of the two negative differential resistance regions is realized by changing the collector material of conventional GaN RTD to P-doped GaN. As the bias increases, holes in the P-region and electrons in the N-region undergo resonant tunneling, respectively, resulting in two negative resistance regions. The appearance of two negative resistance regions benefits from the high AlN barrier and the precise regulation of the potential well thickness. This result shows the promise of GaN BRTDs in the development of multi-valued logic circuits.

Keywords: GaN bipolar resonant tunneling diode, double negative differential resistance regions, peak to valley current ratio, multi-valued logic

Procedia PDF Downloads 135
3670 Effectiveness of Intraoperative Heparinization in Neonatal and Pediatric Patients with Congenital Heart Diseases: Focus in Heparin Resistance

Authors: Karakhalis N. B.

Abstract:

This study aimed to determine the prevalence of heparin resistance among cardiac surgical pediatric and neonatal patients and identify associated risk factors. Materials and Methods: The study included 306 pediatric and neonatal patients undergoing on-pump cardiac surgery. Patients whose activated clotting time (ACT) targets were achieved after the first administration of heparin formed the 1st group (n=280); the 2nd group (n=26) included patients with heparin resistance. The initial assessment of the haemostasiological profile included determining the PT, aPPT, FG, AT III activity, and INR. Intraoperative control of heparinization was carried out with a definition of ACT using a kaolin activator. A weight-associated protocol at the rate of 300 U/kg with target values of ACT >480 sec was used for intraoperative heparinization. Results: The heparin resistance was verified in 8.5% of patients included in the study. Repeated heparin administration at the maximum dose of≥600 U/kg is required in 80.77% of cases. Despite additional heparinization, 19.23% of patients had FFP infusion. There was reduced antithrombin activity in the heparin resistance group (p=0.01). Most patients with heparin resistance (57.7%) were pretreated with low molecular weight heparins during the preoperative period. Conclusion: Determining the initial level of antithrombin activity can predict the risk of developing heparin resistance. The factor analysis verified hidden risk factors for heparin resistance to the heparin pretreatment, chronic hypoxia, and chronic heart failure.

Keywords: congenital heart disease, heparin, antithrombin, activated clotting time, heparin resistance

Procedia PDF Downloads 57
3669 Effect of Plastic Fines on Liquefaction Resistance of Sandy Soil Using Resonant Column Test

Authors: S. A. Naeini, M. Ghorbani Tochaee

Abstract:

The aim of this study is to assess the influence of plastic fines content on sand-clay mixtures on maximum shear modulus and liquefaction resistance using a series of resonant column tests. A high plasticity clay called bentonite was added to 161 Firoozkooh sand at the percentages of 10, 15, 20, 25, 30 and 35 by dry weight. The resonant column tests were performed on the remolded specimens at constant confining pressure of 100 KPa and then the values of Gmax and liquefaction resistance were investigated. The maximum shear modulus and cyclic resistance ratio (CRR) are examined in terms of fines content. Based on the results, the maximum shear modulus and liquefaction resistance tend to decrease within the increment of fine contents.

Keywords: Gmax, liquefaction, plastic fines, resonant column, sand-clay mixtures, bentonite

Procedia PDF Downloads 117
3668 Training Volume and Myoelectric Responses of Lower Body Muscles with Differing Foam Rolling Periods

Authors: Humberto Miranda, Haroldo G. Santana, Gabriel A. Paz, Vicente P. Lima, Jeffrey M. Willardson

Abstract:

Foam rolling is a practice that has increased in popularity before and after strength training. The purpose of this study was to compare the acute effects of different foam rolling periods for the lower body muscles on subsequent performance (total repetitions and training volume), myoelectric activity and rating of perceived exertion in trained men. Fourteen trained men (26.2 ± 3.2 years, 178 ± 0.04 cm height, 82.2 ± 10 kg weight and body mass index 25.9 ± 3.3kg/m2) volunteered for this study. Four repetition maximum (4-RM) loads were determined for hexagonal bar deadlift and 45º angled leg press during test and retest sessions over two nonconsecutive days. Five experimental protocols were applied in a randomized design, which included: a traditional protocol (control)—a resistance training session without prior foam rolling; or resistance training sessions performed following one (P1), two (P2), three (P3), or four (P4) sets of 30 sec. foam rolling for the lower extremity musculature. Subjects were asked to roll over the medial and lateral aspects of each muscle group with as much pressure as possible. All foam rolling was completed at a cadence of 50 bpm. These procedures were performed on both sides unilaterally as described below. Quadriceps: between the apex of the patella and the ASIS; Hamstring: between the gluteal fold and popliteal fossa; Triceps surae: between popliteal fossa and calcaneus tendon. The resistance training consisted of five sets with 4-RM loads and two-minute rest intervals between sets, and a four-minute rest interval between the hexagonal bar deadlift and the 45º angled leg press. The number of repetitions completed, the myoelectric activity of vastus lateralis (VL), vastus medialis oblique (VMO), semitendinosus (SM) and medial gastrocnemius (GM) were recorded, as well as the rating of perceived exertion for each protocol. There were no differences between the protocols in the total repetitions for the hexagonal bar deadlift (Control - 16.2 ± 5.9; P1 - 16.9 ± 5.5; P2 - 19.2 ± 5.7; P3 - 19.4 ± 5.2; P4 - 17.2 ± 8.2) (p > 0.05) and 45º angled leg press (Control - 23.3 ± 9.7; P1 - 25.9 ± 9.5; P2 - 29.1 ± 13.8; P3 - 28.0 ± 11.7; P4 - 30.2 ± 11.2) exercises. Similar results between protocols were also noted for myoelectric activity (p > 0.05) and rating of perceived exertion (p > 0.05). Therefore, the results of the present study indicated no deleterious effects on performance, myoelectric activity and rating of perceived exertion responses during lower body resistance training.

Keywords: self myofascial release, foam rolling, electromyography, resistance training

Procedia PDF Downloads 199
3667 Simulative Study of the Influence of Degraded Twin-Tube Shock Absorbers on the Lateral Forces of Vehicle Axles

Authors: Tobias Schramm, Günther Prokop

Abstract:

Degraded vehicle shock absorbers represent a risk for road safety. The exact effect of degraded vehicle dampers on road safety is still the subject of research. This work is intended to contribute to estimating the effect of degraded twin-tube dampers of passenger cars on road safety. An axle model was built using a damper model to simulate different degradation levels. To parameterize the model, a realistic parameter space was estimated based on test rig measurements and database analyses, which is intended to represent the vehicle field in Germany. Within the parameter space, simulations of the axle model were carried out, which calculated the transmittable lateral forces of the various axle configurations as a function of vehicle speed, road surface, damper conditions and axle parameters. A degraded damper has the greatest effect on the transmittable lateral forces at high speeds and in poor road conditions. If a vehicle is traveling at a speed of 100 kph on a Class D road, a degraded damper reduces the transmissible lateral forces of an axle by 20 % on average. For individual parameter configurations, this value can rise to 50 %. The axle parameters that most influence the effect of a degraded damper are the vertical stiffness of the tire, the unsprung mass and the stabilizer stiffness of the axle.

Keywords: vehicle dynamics, vehicle simulation, vehicle component degradation, shock absorber model, shock absorber degradation

Procedia PDF Downloads 75
3666 Mutational Analysis of JAK2V617F in Tunisian CML Patients with TKI-Resistance

Authors: R. Frikha, H. Kamoun

Abstract:

Background:Chronicmyeloidleukemia (CML), a hematologicaldisease, ischaracterized by t (9; 22) and relatedoncogene BCR-ABL formation. Although Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of CML, resistanceoccurs and possibly médiates by mutation in severalgenesindependently of the bcr-abl1 kinase mechanism. it has been reportedthat JAK2V617F/BCR-ABL double positivitymaybe a potential marker of resistance in CML. Aims: This studywasinvestigated the JAK2V617F mutation in TKI-resistant CML patients. Methods: A retrospectivestudywasconducted in the Hospital University of Sfax, south of Tunisia, including all CML TKI-resistant patients. A Sanger sequencingwasperformedusing a high-fidelity DNA polymerase. Results:Nineresistant CP-CML patients wereenrolled in thisstudy. The JAK2V617F mutation wasdetectedin 3 patients with TKI resistance. Conclusion:Despite the limit of ourstudy, ourfinding highlights the high frequency of JAK2V617F/BCR-ABL double positivity as an important marker of resistance. So; the combination of JAK and TKI inhibitorsmightbe effective and potentiallybeguided by molecular monitoring of minimal residual disease1.

Keywords: chronic myeloid leukemia, tyrosine kinase inhibitors, resistance, JAK2V617F, BCR-ABL

Procedia PDF Downloads 35
3665 Study on the Non-Contact Sheet Resistance Measuring of Silver Nanowire Coated Film Using Terahertz Wave

Authors: Dong-Hyun Kim, Wan-Ho Chung, Hak-Sung Kim

Abstract:

In this work, non-destructive evaluation was conducted to measure the sheet resistance of silver nanowire coated film and find a damage of that film using terahertz (THz) wave. Pulse type THz instrument was used, and the measurement was performed under transmission and pitch-catch reflection modes with 30 degree of incidence angle. In the transmission mode, the intensity of the THz wave was gradually increased as the conductivity decreased. Meanwhile, the intensity of THz wave was decreased as the conductivity decreased in the pitch-catch reflection mode. To confirm the conductivity of the film, sheet resistance was measured by 4-point probe station. Interaction formula was drawn from a relation between the intensity and the sheet resistance. Through substituting sheet resistance to the formula and comparing the resultant value with measured maximum THz wave intensity, measurement of sheet resistance using THz wave was more suitable than that using 4-point probe station. In addition, the damage on the silver nanowire coated film was detected by applying the THz image system. Therefore, the reliability of the entire film can be also be ensured. In conclusion, real-time monitoring using the THz wave can be applied in the transparent electrodes with detecting the damaged area as well as measuring the sheet resistance.

Keywords: terahertz wave, sheet resistance, non-destructive evaluation, silver nanowire

Procedia PDF Downloads 464
3664 Variation in the Morphology of Soft Palate

Authors: Hema Lattupalli

Abstract:

Introduction: The palate forms a partition between the oral cavity and nasal cavity. The palate is made up of two parts hard palate and soft palate. The Hard palate forms the anterior part of the palate, the soft palate forms a movable muscular fold covered by mucous membrane that is suspended from the posterior border of a hard palate. Aim and Objectives: Soft palate morphological variations have a great paucity in the literature. It’s also believed that the soft palate has no such important anatomical variations. There is a variable presentation of the soft palate morphology in the lateral cephalograms. The aim of this study is to identify the velar morphology. Materials and Methods: 100 normal subjects between the age group of 20 – 35 were taken for the study. Method: Lateral Cephalogram (radiologic study). Results: Different shapes of the soft palate were observed in the lateral cephalograms. The morphology of soft palate was classified into six types 1.Leaf like (50 cases) most common type, 2.Straight line (20 cases), 3.S shaped (4 cases) very rare, 4.Butt like (10 cases), 5. Rat tail (6 cases), 6. Hook shaped (10 cases). Conclusion: This classification helps us to understand the better diversity of the velar morphology in mid-sagittal plane. These findings help us to understand the etiology of OSAS.

Keywords: soft palate, cephalometric radiographs, morphology, cleft palate, obstructive sleep apnoea syndrome

Procedia PDF Downloads 335
3663 In silico Analysis of Isoniazid Resistance in Mycobacterium tuberculosis

Authors: A. Nusrath Unissa, Sameer Hassan, Luke Elizabeth Hanna

Abstract:

Altered drug binding may be an important factor in isoniazid (INH) resistance, rather than major changes in the enzyme’s activity as a catalase or peroxidase (KatG). The identification of structural or functional defects in the mutant KatGs responsible for INH resistance remains as an area to be explored. In this connection, the differences in the binding affinity between wild-type (WT) and mutants of KatG were investigated, through the generation of three mutants of KatG, Ser315Thr [S315T], Ser315Asn [S315N], Ser315Arg [S315R] and a WT [S315]) with the help of software-MODELLER. The mutants were docked with INH using the software-GOLD. The affinity is lower for WT than mutant, suggesting the tight binding of INH with the mutant protein compared to WT type. These models provide the in silico evidence for the binding interaction of KatG with INH and implicate the basis for rationalization of INH resistance in naturally occurring KatG mutant strains of Mycobacterium tuberculosis.

Keywords: Mycobacterium tuberculosis, KatG, INH resistance, mutants, modelling, docking

Procedia PDF Downloads 276
3662 A Study on the Coefficient of Transforming Relative Lateral Displacement under Linear Analysis of Structure to Its Real Relative Lateral Displacement

Authors: Abtin Farokhipanah

Abstract:

In recent years, analysis of structures is based on ductility design in contradictory to strength design in surveying earthquake effects on structures. ASCE07-10 code offers to intensify relative drifts calculated from a linear analysis with Cd which is called (Deflection Amplification Factor) to obtain the real relative drifts which can be calculated using nonlinear analysis. This lateral drift should be limited to the code boundaries. Calculation of this amplification factor for different structures, comparing with ASCE07-10 code and offering the best coefficient are the purposes of this research. Following our target, short and tall building steel structures with various earthquake resistant systems in linear and nonlinear analysis should be surveyed, so these questions will be answered: 1. Does the Response Modification Coefficient (R) have a meaningful relation to Deflection Amplification Factor? 2. Does structure height, seismic zone, response spectrum and similar parameters have an effect on the conversion coefficient of linear analysis to real drift of structure? The procedure has used to conduct this research includes: (a) Study on earthquake resistant systems, (b) Selection of systems and modeling, (c) Analyzing modeled systems using linear and nonlinear methods, (d) Calculating conversion coefficient for each system and (e) Comparing conversion coefficients with the code offered ones and concluding results.

Keywords: ASCE07-10 code, deflection amplification factor, earthquake engineering, lateral displacement of structures, response modification coefficient

Procedia PDF Downloads 321
3661 Normal Meniscal Extrusion Using Ultrasonography during the Different Range of Motion Running Head: Sonography for Meniscal Extrusion

Authors: Arash Sharafat Vaziri, Leila Aghaghazvini, Soodeh Jahangiri, Mohammad Tahami, Roham Borazjani, Mohammad Naghi Tahmasebi, Hamid Rabie, Hesan Jelodari Mamaghani, Fardis Vosoughi, Maryam Salimi

Abstract:

Aims: It is essential to know the normal extrusion measures in order to detect pathological ones. In this study, we aimed to define some normal reference values for meniscal extrusion in the normal knees during different ranges of motion. Methods: The amount of anterior and posterior portion of meniscal extrusion among twenty-one asymptomatic volunteers (42 knees) were tracked at 0, 45, and 90 degrees of knee flexion using an ultrasound machine. The repeated measures analysis of variance (ANOVA) was used to show the interaction between the amounts of meniscal extrusion and the different degrees of knee flexion. Result: The anterior portion of the lateral menisci at full knee extension (0.59±1.40) and the posterior portion of the medial menisci during 90° flexion (3.06±2.36) showed the smallest and the highest mean amount of extrusion, respectively. The normal average amounts of anterior extrusion were 1.12± 1.17 mm and 0.99± 1.34 mm for medial and lateral menisci, respectively. The posterior meniscal normal extrusions were significantly increasing in both medial and lateral menisci during the survey (F= 20.250 and 11.298; both P-values< 0.001) as they were measured at 2.37± 2.16 mm and 1.53± 2.18 mm in order. Conclusion: The medial meniscus can extrude 1.74± 1.84 mm normally, while this amount was 1.26± 1.82 mm for the lateral meniscus. These measures commonly increased with the rising of knee flexion motion. Likewise, the posterior portion showed more extrusion than the anterior portion on both sides. These measures commonly increased with higher knee flexion.

Keywords: meniscal extrusion, ultrasonography, knee

Procedia PDF Downloads 68
3660 Investigations into the in situ Enterococcus faecalis Biofilm Removal Efficacies of Passive and Active Sodium Hypochlorite Irrigant Delivered into Lateral Canal of a Simulated Root Canal Model

Authors: Saifalarab A. Mohmmed, Morgana E. Vianna, Jonathan C. Knowles

Abstract:

The issue of apical periodontitis has received considerable critical attention. Bacteria is integrated into communities, attached to surfaces and consequently form biofilm. The biofilm structure provides bacteria with a series protection skills against, antimicrobial agents and enhances pathogenicity (e.g. apical periodontitis). Sodium hypochlorite (NaOCl) has become the irrigant of choice for elimination of bacteria from the root canal system based on its antimicrobial findings. The aim of the study was to investigate the effect of different agitation techniques on the efficacy of 2.5% NaOCl to eliminate the biofilm from the surface of the lateral canal using the residual biofilm, and removal rate of biofilm as outcome measures. The effect of canal complexity (lateral canal) on the efficacy of the irrigation procedure was also assessed. Forty root canal models (n = 10 per group) were manufactured using 3D printing and resin materials. Each model consisted of two halves of an 18 mm length root canal with apical size 30 and taper 0.06, and a lateral canal of 3 mm length, 0.3 mm diameter located at 3 mm from the apical terminus. E. faecalis biofilms were grown on the apical 3 mm and lateral canal of the models for 10 days in Brain Heart Infusion broth. Biofilms were stained using crystal violet for visualisation. The model halves were reassembled, attached to an apparatus and tested under a fluorescence microscope. Syringe and needle irrigation protocol was performed using 9 mL of 2.5% NaOCl irrigant for 60 seconds. The irrigant was either left stagnant in the canal or activated for 30 seconds using manual (gutta-percha), sonic and ultrasonic methods. Images were then captured every second using an external camera. The percentages of residual biofilm were measured using image analysis software. The data were analysed using generalised linear mixed models. The greatest removal was associated with the ultrasonic group (66.76%) followed by sonic (45.49%), manual (43.97%), and passive irrigation group (control) (38.67%) respectively. No marked reduction in the efficiency of NaOCl to remove biofilm was found between the simple and complex anatomy models (p = 0.098). The removal efficacy of NaOCl on the biofilm was limited to the 1 mm level of the lateral canal. The agitation of NaOCl results in better penetration of the irrigant into the lateral canals. Ultrasonic agitation of NaOCl improved the removal of bacterial biofilm.

Keywords: 3D printing, biofilm, root canal irrigation, sodium hypochlorite

Procedia PDF Downloads 205
3659 Stability of Concrete Moment Resisting Frames in View of Current Codes Requirements

Authors: Mahmoud A. Mahmoud, Ashraf Osman

Abstract:

In this study, the different approaches currently followed by design codes to assess the stability of buildings utilizing concrete moment resisting frames structural system are evaluated. For such purpose, a parametric study was performed. It involved analyzing group of concrete moment resisting frames having different slenderness ratios (height/width ratios), designed for different lateral loads to vertical loads ratios and constructed using ordinary reinforced concrete and high strength concrete for stability check and overall buckling using code approaches and computer buckling analysis. The objectives were to examine the influence of such parameters that directly linked to frames’ lateral stiffness on the buildings’ stability and evaluates the code approach in view of buckling analysis results. Based on this study, it was concluded that, the most susceptible buildings to instability and magnification of second order effects are buildings having high aspect ratios (height/width ratio), having low lateral to vertical loads ratio and utilizing construction materials of high strength. In addition, the study showed that the instability limits imposed by codes are mainly mathematical to ensure reliable analysis not a physical ones and that they are in general conservative. Also, it has been shown that the upper limit set by one of the codes that second order moment for structural elements should be limited to 1.4 the first order moment is not justified, instead, the overall story check is more reliable.

Keywords: buckling, lateral stability, p-delta, second order

Procedia PDF Downloads 224
3658 Non-Linear Static Analysis of Screwed Moment Connections in Cold-Formed Steel Frames

Authors: Jikhil Joseph, Satish Kumar S R.

Abstract:

Cold-formed steel frames are preferable for framed constructions due to its low seismic weights and results into low seismic forces, but on the contrary, significant lateral deflections are expected under seismic/wind loading. The various factors affecting the lateral stiffness of steel frames are the stiffness of connections, beams and columns. So, by increasing the stiffness of beam, column and making the connections rigid will enhance the lateral stiffness. The present study focused on Structural elements made of rectangular hollow sections and fastened with screwed in-plane moment connections for the building frames. The self-drilling screws can be easily drilled on either side of the connection area with the help of gusset plates. The strength of screwed connections can be made 1.2 times the connecting elements. However, achieving high stiffness in connections is also a challenging job. Hence in addition to beam and column stiffness’s the connection stiffness are also going to be a governing parameter in the lateral deflections of the frames. SAP 2000 Non-linear static analysis has been planned to study the seismic behavior of steel frames. The SAP model will be consisting of nonlinear spring model for the connection to account the semi-rigid connections and the nonlinear hinges will be assigned for beam and column sections according to FEMA 273 guidelines. The reliable spring and hinge parameters will be assigned based on an experimental and analytical database. The non-linear static analysis is mainly focused on the identification of various hinge formations and the estimation of lateral deflection and these will contribute as an inputs for the direct displacement-based Seismic design. The research output from this study are the modelling techniques and suitable design guidelines for the performance-based seismic design of cold-formed steel frames.

Keywords: buckling, cold formed steel, nonlinear static analysis, screwed connections

Procedia PDF Downloads 143
3657 Comparative Performance Study of Steel Plate Shear Wall with Reinforced Concrete Shear Wall

Authors: Amit S. Chauhan, S. Mandal

Abstract:

The structural response of shear walls subjected to various types of loads is difficult to predict precisely. They are incorporated in buildings to resist lateral forces and support the gravity loads. The steel plate shear walls (SPSWs) are used as lateral load resisting systems for buildings and acts as an alternative to reinforced concrete shear walls (RCSWs). This paper compares the behavior of SPSW with the RCSW incorporated in a building frame having G+6 storey, located in Zone III, using the technique of Equivalent Static Method (ESM) as per Indian Standard Criteria For Earthquake Resistant Design of Structures IS 1893:2002. This paper intends to evaluate several parameters such as lateral displacement at tip, inter-storey drift, weight of steel and volume of concrete with the alteration of the shear wall with respect to different types viz., SPSW and RCSW. The strip model employed in this study is a widely accepted analytical tool for SPSW analysis. SPSW can be modelled as truss members by using a series of diagonal tension strips positioned at 45-degree angles. In this paper, by replacing the SPSWs with the tension strips, the G+6 building has been analyzed using STAAD.Pro V8i. Based on the present study, it can be concluded that structure with SPSWs is much better then structure with RCSWs.

Keywords: equivalent static method, inter-storey drift, lateral displacement, Steel plate shear wall, strip model

Procedia PDF Downloads 212
3656 Disturbance Observer for Lateral Trajectory Tracking Control for Autonomous and Cooperative Driving

Authors: Christian Rathgeber, Franz Winkler, Dirk Odenthal, Steffen Müller

Abstract:

In this contribution a structure for high level lateral vehicle tracking control based on the disturbance observer is presented. The structure is characterized by stationary compensating side forces disturbances and guaranteeing a cooperative behavior at the same time. Driver inputs are not compensated by the disturbance observer. Moreover the structure is especially useful as it robustly stabilizes the vehicle. Therefore the parameters are selected using the Parameter Space Approach. The implemented algorithms are tested in real world scenarios.

Keywords: disturbance observer, trajectory tracking, robust control, autonomous driving, cooperative driving

Procedia PDF Downloads 527
3655 The Effects of Passive and Active Recoveries on Responses of Platelet Indices and Hemodynamic Variables to Resistance Exercise

Authors: Mohammad Soltani, Sajad Ahmadizad, Fatemeh Hoseinzadeh, Atefe Sarvestan

Abstract:

The exercise recovery is an important variable in designing resistance exercise training. This study determined the effects of passive and active recoveries on responses of platelet indices and hemodynamic variables to resistance exercise. Twelve healthy subjects (six men and six women, age, 25.4 ±2.5 yrs) performed two types of resistance exercise protocols (six exercises including upper- and lower-body parts) at two separate sessions with one-week intervening. First resistance protocol included three sets of six repetitions at 80% of 1RM with 2 min passive rest between sets and exercises; while, the second protocol included three sets of six repetitions at 60% of 1RM followed by active recovery included six repetitions of the same exercise at 20% of 1RM. The exercise volume was equalized. Three blood samples were taken before exercise, immediately after exercise and after 1-hour recovery, and analyzed for fibrinogen and platelet indices. Blood pressure (BP), heart rate (HR) and rate pressure product (RPP), were measured before, immediately after exercise and every 5 minutes during recovery. Data analyzes showed a significant increase in SBP (systolic blood pressure), HR, rate of pressure product (RPP) and PLT in response to resistance exercise (P<0.05) and that changes for HR and RPP were significantly different between two protocols (P<0.05). Furthermore, MPV and P_LCR did not change in response to resistance exercise, though significant reductions were observed after 1h recovery compared to before and after exercise (P<0.05). No significant changes in fibrinogen and PDW following two types of resistance exercise protocols were observed (P>0.05). On the other hand, no significant differences in platelet indices were found between the two protocols (P>0.05). Resistance exercise induces changes in platelet indices and hemodynamic variables, and that these changes are not related to the type of recovery and returned to normal levels after 1h recovery.

Keywords: hemodynamic variables, platelet indices, resistance exercise, recovery intensity

Procedia PDF Downloads 104
3654 The Correlation between Nasal Resistance and Obligatory Oronasal Switching Point in Non-Athletic Non-Smoking Healthy Men

Authors: Amir H. Bayat, Mohammad R. Alipour, Saeed Khamneh

Abstract:

As the respiration via nose is important physiologically, many studies have been done about nasal breathing that switches to oronasal breathing during exercise. The aim of this study was to assess the role of anterior nasal resistance as one of the effective factors on this switching. Twelve young, healthy, non-athletic and non-smoker male volunteers with normal BMI were selected after physical examination and participated in exercise protocol, including measurement of the ventilation, work load and oronasal switching point (OSP) during exercise, and anterior rhinomanometry at rest. The protocol was an incremental exercise with 25 watt increase in work load per minute up to OSP occurrence. There was a significant negative correlation between resting total anterior nasal resistance with OSP, work load and ventilation (p<0.05, r= -0.709). Resting total anterior nasal resistance can be considered as an important factor on OSP occurrence. So, the reducing the resistance of nasal passage may increase nasal respiration tolerance for longer time during exercise.

Keywords: anterior nasal resistance, exercise, OSP, ventilation, work load

Procedia PDF Downloads 375