Search results for: J. M. Domínguez
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 49

Search results for: J. M. Domínguez

19 Counting Fishes in Aquaculture Ponds: Application of Imaging Sonars

Authors: Juan C. Gutierrez-Estrada, Inmaculada Pulido-Calvo, Ignacio De La Rosa, Antonio Peregrin, Fernando Gomez-Bravo, Samuel Lopez-Dominguez, Alejandro Garrocho-Cruz, Jairo Castro-Gutierrez

Abstract:

The semi-intensive aquaculture in traditional earth ponds is the main rearing system in Southern Spain. These fish rearing systems are approximately two thirds of aquatic production in this area which has made a significant contribution to the regional economy in recent years. In this type of rearing system, a crucial aspect is the correct quantification and control of the fish abundance in the ponds because the fish farmer knows how many fishes he puts in the ponds but doesn’t know how many fishes will harvest at the end of the rear period. This is a consequence of the mortality induced by different causes as pathogen agents as parasites, viruses and bacteria and other factors as predation of fish-eating birds and poaching. Track the fish abundance in these installations is very difficult because usually the ponds take up a large area of land and the management of the water flow is not automatized. Therefore, there is a very high degree of uncertainty on the abundance fishes which strongly hinders the management and planning of the sales. A novel and non-invasive procedure to count fishes in the ponds is by the means of imaging sonars, particularly fixed systems and/or linked to aquatic vehicles as Remotely Operated Vehicles (ROVs). In this work, a method based on census stations procedures is proposed to evaluate the fish abundance estimation accuracy using images obtained of multibeam sonars. The results indicate that it is possible to obtain a realistic approach about the number of fishes, sizes and therefore the biomass contained in the ponds. This research is included in the framework of the KTTSeaDrones Project (‘Conocimiento y transferencia de tecnología sobre vehículos aéreos y acuáticos para el desarrollo transfronterizo de ciencias marinas y pesqueras 0622-KTTSEADRONES-5-E’) financed by the European Regional Development Fund (ERDF) through the Interreg V-A Spain-Portugal Programme (POCTEP) 2014-2020.

Keywords: census station procedure, fish biomass, semi-intensive aquaculture, multibeam sonars

Procedia PDF Downloads 184
18 Weight Loss and Symptom Improvement in Women with Secondary Lymphedema Using Semaglutide

Authors: Shivani Thakur, Jasmin Dominguez Cervantes, Ahmed Zabiba, Fatima Zabiba, Sandhini Agarwal, Kamalpreet Kaur, Hussein Maatouk, Shae Chand, Omar Madriz, Tiffany Huang, Saloni Bansal

Abstract:

The prevalence of lymphedema in women in rural communities highlights the importance of developing effective treatment and prevention methods. Subjects with secondary lymphedema in California’s Central Valley were surveyed at 6 surgical clinics to assess demographics and symptoms of lymphedema. Additionally, subjects on semaglutide treatment for obesity and/or T2DM were monitored for their diabetes management, weight loss progress, and lymphedema symptoms compared to subjects who were not treated with semaglutide. The subjects were followed for 12 months. Subjects who were treated with semaglutide completed pre-treatment questionnaires and follow-up post-treatment questionnaires at 3, 6, 9, 12 months, along with medical assessment. The untreated subjects completed similar questionnaires. The questionnaires investigated subjective feelings regarding lymphedema symptoms and management using a Likert-scale; quantitative leg measurements were collected, and blood work reviewed at these appointments. Paired difference t-tests, chi-squared tests, and independent sample t-tests were performed. 50 subjects, aged 18-75 years, completed the surveys evaluating secondary lymphedema: 90% female, 69% Hispanic, 45% Spanish speaking, 42% disabled, 57 % employed, 54% income range below 30 thousand dollars, and average BMI of 40. Both treatment and non-treatment groups noted the most common symptoms were leg swelling (x̄=3.2, ▁d= 1.3), leg pain (x̄=3.2, ▁d=1.6 ), loss of daily function (x̄=3, ▁d=1.4 ), and negative body image (x̄=4.4, ▁d=0.54). Subjects in the semaglutide treatment group >3 months of treatment compared to the untreated group demonstrated: 55% subject in the treated group had a 10% weight loss vs 3% in the untreated group (average BMI reduction by 11% vs untreated by 2.5%, p<0.05) and improved subjective feelings about their lymphedema symptoms: leg swelling (x̄=2.4, ▁d=0.45 vs x̄=3.2, ▁d=1.3, p<0.05), leg pain (x̄=2.2, ▁d=0.45 vs x̄= 3.2, ▁d= 1.6, p<0.05), and heaviness (x̄=2.2, ▁d=0.45 vs x̄=3, ▁d=1.56, p<0.05). Improvement in diabetes management was demonstrated by an average of 0.9 % decrease in A1C values compared to untreated 0.1 %, p<0.05. In comparison to untreated subjects, treatment subjects on semaglutide noted 6 cm decrease in the circumference of the leg, knee, calf, and ankle compared to 2 cm in untreated subjects, p<0.05. Semaglutide was shown to significantly improve weight loss, T2DM management, leg circumference, and secondary lymphedema functional, physical and psychosocial symptoms.

Keywords: diabetes, secondary lymphedema, semaglutide, obesity

Procedia PDF Downloads 34
17 Influence of 3D Printing Parameters on Surface Finish of Ceramic Hip Prostheses Fixed by Means of Osteointegration

Authors: Irene Buj-Corral, Ali Bagheri, Alejandro Dominguez-Fernandez

Abstract:

In recent years, use of ceramic prostheses as an implant in some parts of body has become common. In the present study, research has focused on replacement of the acetabulum bone, which is a part of the pelvis bone. Metallic prostheses have shown some problems such as release of metal ions into patient's blood. In addition, fracture of liners and squeezing between surface of femoral head and inner surface of acetabulum have been reported. Ceramic prostheses have the advantage of low debris and high strength, although they are more difficult to be manufactured than metallic ones. Specifically, new designs try to attempt an acetabulum in which the outer surface will be porous for proliferation of cells and fixation of the prostheses by means of osteointegration, while inner surface must be smooth enough to assure that the movement between femoral head and inner surface will be carried out with on feasibility. In the present study, 3D printing technologies are used for manufacturing ceramic prostheses. In Fused Deposition Modelling (FDM) process, 3D printed plastic prostheses are obtained by means of melting of a plastic filament and subsequent deposition on a glass surface. A similar process is applied to ceramics in which ceramic powders need to be mixed with a liquid polymer before depositing them. After 3D printing, parts are subjected to a sintering process in an oven so that they can achieve final strength. In the present paper, influence of printing parameters on surface roughness 3D printed ceramic parts are presented. Three parameter full factorial design of experiments was used. Selected variables were layer height, infill and nozzle diameter. Responses were average roughness Ra and mean roughness depth Rz. Regression analysis was applied to responses in order to obtain mathematical models for responses. Results showed that surface roughness depends mainly on layer height and nozzle diameter employed, while infill was found not to be significant. In order to get low surface roughness, low layer height and low infill should be selected. As a conclusion, layer height and infill are important parameters for obtaining good surface finish in ceramic 3D printed prostheses. However, use of too low infill could lead to prostheses with low mechanical strength. Such prostheses could not be able to bear the static and dynamic charges to which they are subjected once they are implanted in the body. This issue will be addressed in further research.

Keywords: ceramic, hip prostheses, surface roughness, 3D printing

Procedia PDF Downloads 165
16 Effects of Soaking of Maize on the Viscosity of Masa and Tortilla Physical Properties at Different Nixtamalization Times

Authors: Jorge Martínez-Rodríguez, Esther Pérez-Carrillo, Diana Laura Anchondo Álvarez, Julia Lucía Leal Villarreal, Mariana Juárez Dominguez, Luisa Fernanda Torres Hernández, Daniela Salinas Morales, Erick Heredia-Olea

Abstract:

Maize tortillas are a staple food in Mexico which are mostly made by nixtamalization, which includes the cooking and steeping of maize kernels in alkaline conditions. The cooking step in nixtamalization demands a lot of energy and also generates nejayote, a water pollutant, at the end of the process. The aim of this study was to reduce the cooking time by adding a maize soaking step before nixtamalization while maintaining the quality properties of masa and tortillas. Maize kernels were soaked for 36 h to increase moisture up to 36%. Then, the effect of different cooking times (0, 5, 10, 15, 20, 20, 25, 30, 35, 45-control and 50 minutes) was evaluated on viscosity profile (RVA) of masa to select the treatments with a profile similar or equal to control. All treatments were left steeping overnight and had the same milling conditions. Treatments selected were 20- and 25-min cooking times which had similar values for pasting temperature (79.23°C and 80.23°C), Maximum Viscosity (105.88 Cp and 96.25 Cp) and Final Viscosity (188.5 Cp and 174 Cp) to those of 45 min-control (77.65 °C, 110.08 Cp, and 186.70 Cp, respectively). Afterward, tortillas were produced with the chosen treatments (20 and 25 min) and for control, then were analyzed for texture, damage starch, colorimetry, thickness, and average diameter. Colorimetric analysis of tortillas only showed significant differences for yellow/blue coordinates (b* parameter) at 20 min (0.885), unlike the 25-minute treatment (1.122). Luminosity (L*) and red/green coordinates (a*) showed no significant differences from treatments with respect control (69.912 and 1.072, respectively); however, 25 minutes was closer in both parameters (73.390 and 1.122) than 20 minutes (74.08 and 0.884). For the color difference, (E), the 25 min value (3.84) was the most similar to the control. However, for tortilla thickness and diameter, the 20-minute with 1.57 mm and 13.12 cm respectively was closer to those of the control (1.69 mm and 13.86 cm) although smaller to it. On the other hand, the 25 min treatment tortilla was smaller than both 20 min and control with 1.51 mm thickness and 13.590 cm diameter. According to texture analyses, there was no difference in terms of stretchability (8.803-10.308 gf) and distance for the break (95.70-126.46 mm) among all treatments. However, for the breaking point, all treatments (317.1 gf and 276.5 gf for 25 and 20- min treatment, respectively) were significantly different from the control tortilla (392.2 gf). Results suggest that by adding a soaking step and reducing cooking time by 25 minutes, masa and tortillas obtained had similar functional and textural properties to the traditional nixtamalization process.

Keywords: tortilla, nixtamalization, corn, lime cooking, RVA, colorimetry, texture, masa rheology

Procedia PDF Downloads 128
15 Potential Applications of Biosurfactants from Corn Steep Liquor in Cosmetic

Authors: J. M. Cruz, X. Vecıno, L. Rodrıguez-López, J. M. Dominguez, A. B. Moldes

Abstract:

The cosmetic and personal care industry are the fields where biosurfactants could have more possibilities of success because in this kind of products the replacement of synthetic detergents by natural surfactants will provide an additional added value to the product, at the same time that the harmful effects produced by some synthetic surfactants could be avoided or reduced. Therefore, nowadays, consumers are disposed to pay and additional cost if they obtain more natural products. In this work we provide data about the potential of biosurfactants in the cosmetic and personal care industry. Biosurfactants from corn steep liquor, that is a fermented and condensed stream, have showed good surface-active properties, reducing substantially the surface tension of water. The bacteria that usually growth in corn steep liquor comprises Lactobacillus species, generally recognize as safe. The biosurfactant extracted from CSL consists of a lipopeptide, composed by fatty acids, which can reduce the surface tension of water in more than 30 units. It is a yellow and viscous liquid with a density of 1.053 mg/mL and pH=4. By these properties, they could be introduced in the formulation of cosmetic creams, hair conditioners or shampoos. Moreover this biosurfactant extracted from corn steep liquor, have showed a potent antimicrobial effect on different strains of Streptococcus. Some species of Streptococcus are commonly found weakly living in the human respiratory and genitourinary systems, producing several diseases in humans, including skin diseases. For instance, Streptococcus pyogenes produces many toxins and enzymes that help to stabilize skin infections; probably biosurfactants from corn steep liquor can inhibit the mechanisms of the S. pyogenes enzymes. S. pyogenes is an important cause of pharyngitis, impetigo, cellulitis and necrotizing fasciitis. In this work it was observed that 50 mg/L of biosurfactant extract obtained from corn steep liquor is able to inhibit more than 50% the growth of S. pyogenes. Thus, cosmetic and personal care products, formulated with biosurfactants from corn steep liquor, could have prebiotic properties. The natural biosurfactant presented in this work and obtained from corn milling industry streams, have showed a high potential to provide an interesting and sustainable alternative to those, antibacterial and surfactant ingredients used in cosmetic and personal care manufacture, obtained by chemical synthesis, which can cause irritation, and often only show short time effects.

Keywords: antimicrobial activity, biosurfactants, cosmetic, personal care

Procedia PDF Downloads 225
14 Effect of Enzymatic Hydrolysis and Ultrasounds Pretreatments on Biogas Production from Corn Cob

Authors: N. Pérez-Rodríguez, D. García-Bernet, A. Torrado-Agrasar, J. M. Cruz, A. B. Moldes, J. M. Domínguez

Abstract:

World economy is based on non-renewable, fossil fuels such as petroleum and natural gas, which entails its rapid depletion and environmental problems. In EU countries, the objective is that at least 20% of the total energy supplies in 2020 should be derived from renewable resources. Biogas, a product of anaerobic degradation of organic substrates, represents an attractive green alternative for meeting partial energy needs. Nowadays, trend to circular economy model involves efficiently use of residues by its transformation from waste to a new resource. In this sense, characteristics of agricultural residues (that are available in plenty, renewable, as well as eco-friendly) propitiate their valorisation as substrates for biogas production. Corn cob is a by-product obtained from maize processing representing 18 % of total maize mass. Corn cob importance lies in the high production of this cereal (more than 1 x 109 tons in 2014). Due to its lignocellulosic nature, corn cob contains three main polymers: cellulose, hemicellulose and lignin. Crystalline, highly ordered structures of cellulose and lignin hinders microbial attack and subsequent biogas production. For the optimal lignocellulose utilization and to enhance gas production in anaerobic digestion, materials are usually submitted to different pretreatment technologies. In the present work, enzymatic hydrolysis, ultrasounds and combination of both technologies were assayed as pretreatments of corn cob for biogas production. Enzymatic hydrolysis pretreatment was started by adding 0.044 U of Ultraflo® L feruloyl esterase per gram of dry corncob. Hydrolyses were carried out in 50 mM sodium-phosphate buffer pH 6.0 with a solid:liquid proportion of 1:10 (w/v), at 150 rpm, 40 ºC and darkness for 3 hours. Ultrasounds pretreatment was performed subjecting corn cob, in 50 mM sodium-phosphate buffer pH 6.0 with a solid: liquid proportion of 1:10 (w/v), at a power of 750W for 1 minute. In order to observe the effect of the combination of both pretreatments, some samples were initially sonicated and then they were enzymatically hydrolysed. In terms of methane production, anaerobic digestion of the corn cob pretreated by enzymatic hydrolysis was positive achieving 290 L CH4 kg MV-1 (compared with 267 L CH4 kg MV-1 obtained with untreated corn cob). Although the use of ultrasound as the only pretreatment resulted detrimentally (since gas production decreased to 244 L CH4 kg MV-1 after 44 days of anaerobic digestion), its combination with enzymatic hydrolysis was beneficial, reaching the highest value (300.9 L CH4 kg MV-1). Consequently, the combination of both pretreatments improved biogas production from corn cob.

Keywords: biogas, corn cob, enzymatic hydrolysis, ultrasound

Procedia PDF Downloads 238
13 Contribution of the Corn Milling Industry to a Global and Circular Economy

Authors: A. B. Moldes, X. Vecino, L. Rodriguez-López, J. M. Dominguez, J. M. Cruz

Abstract:

The concept of the circular economy is focus on the importance of providing goods and services sustainably. Thus, in a future it will be necessary to respond to the environmental contamination and to the use of renewables substrates by moving to a more restorative economic system that drives towards the utilization and revalorization of residues to obtain valuable products. During its evolution our industrial economy has hardly moved through one major characteristic, established in the early days of industrialization, based on a linear model of resource consumption. However, this industrial consumption system will not be maintained during long time. On the other hand, there are many industries, like the corn milling industry, that although does not consume high amount of non renewable substrates, they produce valuable streams that treated accurately, they could provide additional, economical and environmental, benefits by the extraction of interesting commercial renewable products, that can replace some of the substances obtained by chemical synthesis, using non renewable substrates. From this point of view, the use of streams from corn milling industry to obtain surface-active compounds will decrease the utilization of non-renewables sources for obtaining this kind of compounds, contributing to a circular and global economy. However, the success of the circular economy depends on the interest of the industrial sectors in the revalorization of their streams by developing relevant and new business models. Thus, it is necessary to invest in the research of new alternatives that reduce the consumption of non-renewable substrates. In this study is proposed the utilization of a corn milling industry stream to obtain an extract with surfactant capacity. Once the biosurfactant is extracted, the corn milling stream can be commercialized as nutritional media in biotechnological process or as animal feed supplement. Usually this stream is combined with other ingredients obtaining a product namely corn gluten feed or may be sold separately as a liquid protein source for beef and dairy feeding, or as a nutritional pellet binder. Following the productive scheme proposed in this work, the corn milling industry will obtain a biosurfactant extract that could be incorporated in its productive process replacing those chemical detergents, used in some point of its productive chain, or it could be commercialized as a new product of the corn manufacture. The biosurfactants obtained from corn milling industry could replace the chemical surfactants in many formulations, and uses, and it supposes an example of the potential that many industrial streams could offer for obtaining valuable products when they are manage properly.

Keywords: biosurfactantes, circular economy, corn, sustainability

Procedia PDF Downloads 227
12 Rheological and Sensory Attributes of Dough and Crackers Including Amaranth Flour (Amaranthus spp.)

Authors: Claudia Cabezas-Zabala, Jairo Lindarte-Artunduaga, Carlos Mario Zuluaga-Dominguez

Abstract:

Amaranth is an emerging pseudocereal rich in such essential nutrients as protein and dietary fiber, which was employed as an ingredient in the formulation of crackers to evaluate the rheological performance and sensory acceptability of the obtained food. A completely randomized factorial design was used with two factors: (A) ratio of wheat and amaranth flour used in the preparation of the dough, in proportion 90:10 and 80:20 (% w/w) and (B) two levels of inulin addition of 8.4% and 16.7 %, having two control doughs made from amaranth and wheat flour, respectively. Initially, the functional properties of the formulations mentioned were measured, showing no significant differences in the water absorption capacity (WAC) and swelling power (SP), having mean values between 1.66 and 1.81 g/g for WAC and between 1.75 and 1.86 g/g for SP, respectively. The amaranth flour had the highest water holding capacity (WHR) of 8.41 ± 0.15 g/g and emulsifying activity (EA) of 74.63 ± 1.89 g/g. Moreover, the rheological behavior, measured through the use of farinograph, extensograph, Mixolab, and falling index, showed that the formulation containing 20% of amaranth flour and 7.16% of inulin had a rheological behavior similar to the control produced exclusively with wheat flour, being the former, the one selected for the preparation of crackers. For this formulation, the farinograph showed a mixing tolerance index of 11 UB, indicating a strong and cohesive dough; likewise, the Mixolab showed dough reaches stability at 6.47 min, indicating a good resistance to mixing. On the other hand, the extensograph exhibited a dough resistance of 637 UB, as well as extensibility of 13.4 mm, which corresponds to a strong dough capable of resisting the laminate. Finally, the falling index was 318 s, which indicates the crumb will retain enough air to enhance the crispness of a characteristic cracker. Finally, a sensory consumer test did not show significant differences in the evaluation of aroma between the control and the selected formulation, while this latter had a significantly lower rating in flavor. However, a purchase intention of 70 % was observed among the population surveyed. The results obtained in this work give perspectives for the industrial use of amaranth in baked goods. Additionally, amaranth has been a product typically linked to indigenous populations in the Andean South American countries; therefore, the search for diversification and alternatives of use for this pseudocereal has an impact on the social and economic conditions of such communities. The technological versatility and nutritional quality of amaranth is an advantage for consumers, favoring the consumption of healthy products with important contributions of dietary fiber and protein.

Keywords: amaranth, crackers, rheology, pseudocereals, kneaded products

Procedia PDF Downloads 88
11 Gas-Phase Nondestructive and Environmentally Friendly Covalent Functionalization of Graphene Oxide Paper with Amines

Authors: Natalia Alzate-Carvajal, Diego A. Acevedo-Guzman, Victor Meza-Laguna, Mario H. Farias, Luis A. Perez-Rey, Edgar Abarca-Morales, Victor A. Garcia-Ramirez, Vladimir A. Basiuk, Elena V. Basiuk

Abstract:

Direct covalent functionalization of prefabricated free-standing graphene oxide paper (GOP) is considered as the only approach suitable for systematic tuning of thermal, mechanical and electronic characteristics of this important class of carbon nanomaterials. At the same time, the traditional liquid-phase functionalization protocols can compromise physical integrity of the paper-like material up to its total disintegration. To avoid such undesirable effects, we explored the possibility of employing an alternative, solvent-free strategy for facile and nondestructive functionalization of GOP with two representative aliphatic amines, 1-octadecylamine (ODA) and 1,12-diaminododecane (DAD), as well as with two aromatic amines, 1-aminopyrene (AP) and 1,5-diaminonaphthalene (DAN). The functionalization was performed under moderate heating at 150-180 °C in vacuum. Under such conditions, it proceeds through both amidation and epoxy ring opening reactions. Comparative characterization of pristine and amine-functionalized GOP mats was carried out by using Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopy (XPS), thermogravimetric (TGA) and differential thermal analysis, scanning electron and atomic force microscopy (SEM and AFM, respectively). Besides that, we compared the stability in water, wettability, electrical conductivity and elastic (Young's) modulus of GOP mats before and after amine functionalization. The highest content of organic species was obtained in the case of GOP-ODA, followed by GOP-DAD, GOP-AP and GOP-DAN samples. The covalent functionalization increased mechanical and thermal stability of GOP, as well as its electrical conductivity. The magnitude of each effect depends on the particular chemical structure of amine employed, which allows for tuning a given GOP property. Morphological characterization by using SEM showed that, compared to pristine graphene oxide paper, amine-modified GOP mats become relatively ordered layered assemblies, in which individual GO sheets are organized in a near-parallel pattern. Financial support from the National Autonomous University of Mexico (grants DGAPA-IN101118 and IN200516) and from the National Council of Science and Technology of Mexico (CONACYT, grant 250655) is greatly appreciated. The authors also thank David A. Domínguez (CNyN of UNAM) for XPS measurements and Dr. Edgar Alvarez-Zauco (Faculty of Science of UNAM) for the opportunity to use TGA equipment.

Keywords: amines, covalent functionalization, gas-phase, graphene oxide paper

Procedia PDF Downloads 138
10 Electrophysiological Correlates of Statistical Learning in Children with and without Developmental Language Disorder

Authors: Ana Paula Soares, Alexandrina Lages, Helena Oliveira, Francisco-Javier Gutiérrez-Domínguez, Marisa Lousada

Abstract:

From an early age, exposure to a spoken language allows us to implicitly capture the structure underlying the succession of the speech sounds in that language and to segment it into meaningful units (words). Statistical learning (SL), i.e., the ability to pick up patterns in the sensory environment even without intention or consciousness of doing it, is thus assumed to play a central role in the acquisition of the rule-governed aspects of language and possibly to lie behind the language difficulties exhibited by children with development language disorder (DLD). The research conducted so far has, however, led to inconsistent results, which might stem from the behavioral tasks used to test SL. In a classic SL experiment, participants are first exposed to a continuous stream (e.g., syllables) in which, unbeknownst to the participants, stimuli are grouped into triplets that always appear together in the stream (e.g., ‘tokibu’, ‘tipolu’), with no pauses between each other (e.g., ‘tokibutipolugopilatokibu’) and without any information regarding the task or the stimuli. Following exposure, SL is assessed by asking participants to discriminate between triplets previously presented (‘tokibu’) from new sequences never presented together during exposure (‘kipopi’), i.e., to perform a two-alternative-forced-choice (2-AFC) task. Despite the widespread use of the 2-AFC to test SL, it has come under increasing criticism as it is an offline post-learning task that only assesses the result of the learning that had occurred during the previous exposure phase and that might be affected by other factors beyond the computation of regularities embedded in the input, typically the likelihood two syllables occurring together, a statistic known as transitional probability (TP). One solution to overcome these limitations is to assess SL as exposure to the stream unfolds using online techniques such as event-related potentials (ERP) that is highly sensitive to the time-course of the learning in the brain. Here we collected ERPs to examine the neurofunctional correlates of SL in preschool children with DLD, and chronological-age typical language development (TLD) controls who were exposed to an auditory stream in which eight three-syllable nonsense words, four of which presenting high-TPs and the other four low-TPs, to further analyze whether the ability of DLD and TLD children to extract-word-like units from the steam was modulated by words’ predictability. Moreover, to ascertain if the previous knowledge of the to-be-learned-regularities affected the neural responses to high- and low-TP words, children performed the auditory SL task, firstly, under implicit, and, subsequently, under explicit conditions. Although behavioral evidence of SL was not obtained in either group, the neural responses elicited during the exposure phases of the SL tasks differentiated children with DLD from children with TLD. Specifically, the results indicated that only children from the TDL group showed neural evidence of SL, particularly in the SL task performed under explicit conditions, firstly, for the low-TP, and, subsequently, for the high-TP ‘words’. Taken together, these findings support the view that children with DLD showed deficits in the extraction of the regularities embedded in the auditory input which might underlie the language difficulties.

Keywords: development language disorder, statistical learning, transitional probabilities, word segmentation

Procedia PDF Downloads 157
9 The Influence of Age and Education on Patients' Attitudes Towards Contraceptives in Rural California

Authors: Shivani Thakur, Jasmin Dominguez Cervantes, Ahmed Zabiba, Fatima Zabiba, Sandhini Agarwal, Kamalpreet Kaur, Hussein Maatouk, Shae Chand, Omar Madriz, Tiffany Huang, Saloni Bansal

Abstract:

Contraceptives are an effective public health achievement, allowing for family planning and reducing the risk of sexually transmitted diseases (STDs). California’s rural Central Valley has high rates of teenage pregnancy and STDs. Factors affecting contraceptive usage here may include religious concerns, financial issues, and regional variations in the accessibility and availability of contraceptives. The increasing population and diversity of the Central Valley make the understanding of the determinants of unintended pregnancy and STDs increasingly nuanced. Patients in California’s Central Valley were surveyed at 6 surgical clinics to assess attitudes toward contraceptives. The questionnaire consisted of demographics and 14 Likert-scale statements investigating patients’ feelings regarding contraceptives. Parametric and non-parametric analysis was performed on the Likert statements. A correlation matrix for the Likert-scale statements was used to evaluate the strength of the relationship between each question. 76 patients aged 18-75 years completed the questionnaire. 90% of the participants were female, 76% Hispanic, 36% married, 44% with an income range between 30-60K, and 83% were between childbearing ages. 60% of participants stated they are currently using or had used some type of contraceptive. 25% of participants had at least one unplanned pregnancy. The most common type of contraceptives used were oral contraceptives(28%) and condoms(38%). The top reasons for patients’ contraceptive usage were: prevention of pregnancy (72%), safe sex/prevention of STDs (32%), and regulation of menstrual cycle (19%). Further analysis of Likert responses revealed that contraception usage increased due to approval of contraceptives (x̄=3.98, σ =1.02); partner approval of contraceptives (x̄=3.875, σ =1.16); and reduced anxiety about pregnancy (x̄=3.875, σ =1.23). Younger females (18-34 years old) agreed more with the statement that the cost of contraceptive supplies is too expensive than older females (35-75 years old), (x̄=3.2, σ = 1.4 vs x̄=2.8, σ =1.3, p<0.05). Younger females (44%) were also more likely to use short-acting contraceptive methods (oral and male condoms) compared to older females (64%) who use long-acting methods (implants/ intrauterine devices). 51% of Hispanic females were using some type of contraceptive. Of those Hispanic females who do not use contraceptives, 33% stated having no children, and all plan to have at least one child in the future. 35% of participants had a bachelor's degree. Those with bachelor’s degrees were more likely to use contraceptives, 58% vs 51%, p<0.05, and less likely to have unplanned pregnancy, 50% vs. 12%, p<0.01. There is increasing use and awareness among patients in rural settings concerning contraceptives. Our finding shows that younger women and women with higher educational attainment tend to have more positive attitudes towards the use of contraceptives. This work gives physicians an understanding of patients’ concerns about contraceptive methods and offers insight into culturally competent intervention programs that respect individual values.

Keywords: contraceptives, public health, rural california, women of child baring age

Procedia PDF Downloads 33
8 Distribution Routs Redesign through the Vehicle Problem Routing in Havana Distribution Center

Authors: Sonia P. Marrero Duran, Lilian Noya Dominguez, Lisandra Quintana Alvarez, Evert Martinez Perez, Ana Julia Acevedo Urquiaga

Abstract:

Cuban business and economic policy are in the constant update as well as facing a client ever more knowledgeable and demanding. For that reason become fundamental for companies competitiveness through the optimization of its processes and services. One of the Cuban’s pillars, which has been sustained since the triumph of the Cuban Revolution back in 1959, is the free health service to all those who need it. This service is offered without any charge under the concept of preserving human life, but it implied costly management processes and logistics services to be able to supply the necessary medicines to all the units who provide health services. One of the key actors on the medicine supply chain is the Havana Distribution Center (HDC), which is responsible for the delivery of medicines in the province; as well as the acquisition of medicines from national and international producers and its subsequent transport to health care units and pharmacies in time, and with the required quality. This HDC also carries for all distribution centers in the country. Given the eminent need to create an actor in the supply chain that specializes in the medicines supply, the possibility of centralizing this operation in a logistics service provider is analyzed. Based on this decision, pharmacies operate as clients of the logistic service center whose main function is to centralize all logistics operations associated with the medicine supply chain. The HDC is precisely the logistic service provider in Havana and it is the center of this research. In 2017 the pharmacies had affectations in the availability of medicine due to deficiencies in the distribution routes. This is caused by the fact that they are not based on routing studies, besides the long distribution cycle. The distribution routs are fixed, attend only one type of customer and there respond to a territorial location by the municipality. Taking into consideration the above-mentioned problem, the objective of this research is to optimize the routes system in the Havana Distribution Center. To accomplish this objective, the techniques applied were document analysis, random sampling, statistical inference and tools such as Ishikawa diagram and the computerized software’s: ArcGis, Osmand y MapIfnfo. As a result, were analyzed four distribution alternatives; the actual rout, by customer type, by the municipality and the combination of the two last. It was demonstrated that the territorial location alternative does not take full advantage of the transportation capacities or the distance of the trips, which leads to elevated costs breaking whit the current ways of distribution and the currents characteristics of the clients. The principal finding of the investigation was the optimum option distribution rout is the 4th one that is formed by hospitals and the join of pharmacies, stomatology clinics, polyclinics and maternal and elderly homes. This solution breaks the territorial location by the municipality and permits different distribution cycles in dependence of medicine consumption and transport availability.

Keywords: computerized geographic software, distribution, distribution routs, vehicle problem routing (VPR)

Procedia PDF Downloads 132
7 Experimental and Modelling Performances of a Sustainable Integrated System of Conditioning for Bee-Pollen

Authors: Andrés Durán, Brian Castellanos, Marta Quicazán, Carlos Zuluaga-Domínguez

Abstract:

Bee-pollen is an apicultural-derived food product, with a growing appreciation among consumers given the remarkable nutritional and functional composition, in particular, protein (24%), dietary fiber (15%), phenols (15 – 20 GAE/g) and carotenoids (600 – 900 µg/g). These properties are given by the geographical and climatic characteristics of the region where it is collected. There are several countries recognized by their pollen production, e.g. China, United States, Japan, Spain, among others. Beekeepers use traps in the entrance of the hive where bee-pollen is collected. After the removal of foreign particles and drying, this product is ready to be marketed. However, in countries located along the equator, the absence of seasons and a constant tropical climate throughout the year favors a more rapid spoilage condition for foods with elevated water activity. The climatic conditions also trigger the proliferation of microorganisms and insects. This, added to the factor that beekeepers usually do not have adequate processing systems for bee-pollen, leads to deficiencies in the quality and safety of the product. In contrast, the Andean region of South America, lying on equator, typically has a high production of bee-pollen of up to 36 kg/year/hive, being four times higher than in countries with marked seasons. This region is also located in altitudes superior to 2500 meters above sea level, having extremes sun ultraviolet radiation all year long. As a mechanism of defense of radiation, plants produce more secondary metabolites acting as antioxidant agents, hence, plant products such as bee-pollen contain remarkable more phenolics and carotenoids than collected in other places. Considering this, the improvement of bee-pollen processing facilities by technical modifications and the implementation of an integrated cleaning and drying system for the product in an apiary in the area was proposed. The beehives were modified through the installation of alternative bee-pollen traps to avoid sources of contamination. The processing facility was modified according to considerations of Good Manufacturing Practices, implementing the combined use of a cabin dryer with temperature control and forced airflow and a greenhouse-type solar drying system. Additionally, for the separation of impurities, a cyclone type system was implemented, complementary to a screening equipment. With these modifications, a decrease in the content of impurities and the microbiological load of bee-pollen was seen from the first stages, principally with a reduction of the presence of molds and yeasts and in the number of foreign animal origin impurities. The use of the greenhouse solar dryer integrated to the cabin dryer allowed the processing of larger quantities of product with shorter waiting times in storage, reaching a moisture content of about 6% and a water activity lower than 0.6, being appropriate for the conservation of bee-pollen. Additionally, the contents of functional or nutritional compounds were not affected, even observing an increase of up to 25% in phenols content and a non-significant decrease in carotenoids content and antioxidant activity.

Keywords: beekeeping, drying, food processing, food safety

Procedia PDF Downloads 79
6 The Role of a Biphasic Implant Based on a Bioactive Silk Fibroin for Osteochondral Tissue Regeneration

Authors: Lizeth Fuentes-Mera, Vanessa Perez-Silos, Nidia K. Moncada-Saucedo, Alejandro Garcia-Ruiz, Alberto Camacho, Jorge Lara-Arias, Ivan Marino-Martinez, Victor Romero-Diaz, Adolfo Soto-Dominguez, Humberto Rodriguez-Rocha, Hang Lin, Victor Pena-Martinez

Abstract:

Biphasic scaffolds in cartilage tissue engineering have been designed to influence not only the recapitulation of the osteochondral architecture but also to take advantage of the healing ability of bone to promote the implant integration with the surrounding tissue and then bone restoration and cartilage regeneration. This study reports the development and characterization of a biphasic scaffold based on the assembly of a cartilage phase constituted by fibroin biofunctionalized with bovine cartilage matrix; cellularized with differentiated pre-chondrocytes from adipose tissue stem cells (autologous) and well attached to a bone phase (bone bovine decellularized) to mimic the structure of the nature of native tissue and to promote the cartilage regeneration in a model of joint damage in pigs. Biphasic scaffolds were assembled by fibroin crystallization with methanol. The histological and ultrastructural architectures were evaluated by optical and scanning electron microscopy respectively. Mechanical tests were conducted to evaluate Young's modulus of the implant. For the biological evaluation, pre-chondrocytes were loaded onto the scaffolds and cellular adhesion, proliferation, and gene expression analysis of cartilage extracellular matrix components was performed. The scaffolds that were cellularized and matured for 10 days were implanted into critical 3 mm in diameter and 9-mm in depth osteochondral defects in a porcine model (n=4). Three treatments were applied per knee: Group 1: monophasic cellular scaffold (MS) (single chondral phase), group 2: biphasic scaffold, cellularized only in the chondral phase (BS1), group 3: BS cellularized in both bone and chondral phases (BS2). Simultaneously, a control without treatment was evaluated. After 4 weeks of surgery, integration and regeneration tissues were analyzed by x-rays, histology and immunohistochemistry evaluation. The mechanical assessment showed that the acellular biphasic composites exhibited Young's modulus of 805.01 kPa similar to native cartilage (400-800 kPa). In vitro biological studies revealed the chondroinductive ability of the biphasic implant, evidenced by an increase in sulfated glycosaminoglycan (GAGs) and type II collagen, both secreted by the chondrocytes cultured on the scaffold during 28 days. No evidence of adverse or inflammatory reactions was observed in the in vivo trial; however, In group 1, the defects were not reconstructed. In group 2 and 3 a good integration of the implant with the surrounding tissue was observed. Defects in group 2 were fulfilled by hyaline cartilage and normal bone. Group 3 defects showed fibrous repair tissue. In conclusion; our findings demonstrated the efficacy of biphasic and bioactive scaffold based on silk fibroin, which entwined chondroinductive features and biomechanical capability with appropriate integration with the surrounding tissue, representing a promising alternative for osteochondral tissue-engineering applications.

Keywords: biphasic scaffold, extracellular cartilage matrix, silk fibroin, osteochondral tissue engineering

Procedia PDF Downloads 121
5 Transcriptional Differences in B cell Subpopulations over the Course of Preclinical Autoimmunity Development

Authors: Aleksandra Bylinska, Samantha Slight-Webb, Kevin Thomas, Miles Smith, Susan Macwana, Nicolas Dominguez, Eliza Chakravarty, Joan T. Merrill, Judith A. James, Joel M. Guthridge

Abstract:

Background: Systemic Lupus Erythematosus (SLE) is an interferon-related autoimmune disease characterized by B cell dysfunction. One of the main hallmarks is a loss of tolerance to self-antigens leading to increased levels of autoantibodies against nuclear components (ANAs). However, up to 20% of healthy ANA+ individuals will not develop clinical illness. SLE is more prevalent among women and minority populations (African, Asian American and Hispanics). Moreover, African Americans have a stronger interferon (IFN) signature and develop more severe symptoms. The exact mechanisms involved in ethnicity-dependent B cell dysregulation and the progression of autoimmune disease from ANA+ healthy individuals to clinical disease remains unclear. Methods: Peripheral blood mononuclear cells (PBMCs) from African (AA) and European American (EA) ANA- (n=12), ANA+ (n=12) and SLE (n=12) individuals were assessed by multimodal scRNA-Seq/CITE-Seq methods to examine differential gene signatures in specific B cell subsets. Library preparation was done with a 10X Genomics Chromium according to established protocols and sequenced on Illumina NextSeq. The data were further analyzed for distinct cluster identification and differential gene signatures in the Seurat package in R and pathways analysis was performed using Ingenuity Pathways Analysis (IPA). Results: Comparing all subjects, 14 distinct B cell clusters were identified using a community detection algorithm and visualized with Uniform Manifold Approximation Projection (UMAP). The proportion of each of those clusters varied by disease status and ethnicity. Transitional B cells trended higher in ANA+ healthy individuals, especially in AA. Ribonucleoprotein high population (HNRNPH1 elevated, heterogeneous nuclear ribonucleoprotein, RNP-Hi) of proliferating Naïve B cells were more prevalent in SLE patients, specifically in EA. Interferon-induced protein high population (IFIT-Hi) of Naive B cells are increased in EA ANA- individuals. The proportion of memory B cells and plasma cells clusters tend to be expanded in SLE patients. As anticipated, we observed a higher signature of cytokine-related pathways, especially interferon, in SLE individuals. Pathway analysis among AA individuals revealed an NRF2-mediated Oxidative Stress response signature in the transitional B cell cluster, not seen in EA individuals. TNFR1/2 and Sirtuin Signaling pathway genes were higher in AA IFIT-Hi Naive B cells, whereas they were not detected in EA individuals. Interferon signaling was observed in B cells in both ethnicities. Oxidative phosphorylation was found in age-related B cells (ABCs) for both ethnicities, whereas Death Receptor Signaling was found only in EA patients in these cells. Interferon-related transcription factors were elevated in ABCs and IFIT-Hi Naive B cells in SLE subjects of both ethnicities. Conclusions: ANA+ healthy individuals have altered gene expression pathways in B cells that might drive apoptosis and subsequent clinical autoimmune pathogenesis. Increases in certain regulatory pathways may delay progression to SLE. Further, AA individuals have more elevated activation pathways that may make them more susceptible to SLE.

Keywords:

Procedia PDF Downloads 148
4 Regenerating Habitats. A Housing Based on Modular Wooden Systems

Authors: Rui Pedro de Sousa Guimarães Ferreira, Carlos Alberto Maia Domínguez

Abstract:

Despite the ambitions to achieve climate neutrality by 2050, to fulfill the Paris Agreement's goals, the building and construction sector remains one of the most resource-intensive and greenhouse gas-emitting industries in the world, accounting for 40% of worldwide CO ₂ emissions. Over the past few decades, globalization and population growth have led to an exponential rise in demand in the housing market and, by extension, in the building industry. Considering this housing crisis, it is obvious that we will not stop building in the near future. However, the transition, which has already started, is challenging and complex because it calls for the worldwide participation of numerous organizations in altering how building systems, which have been a part of our everyday existence for over a century, are used. Wood is one of the alternatives that is most frequently used nowadays (under responsible forestry conditions) because of its physical qualities and, most importantly, because it produces fewer carbon emissions during manufacturing than steel or concrete. Furthermore, as wood retains its capacity to store CO ₂ after application and throughout the life of the building, working as a natural carbon filter, it helps to reduce greenhouse gas emissions. After a century-long focus on other materials, in the last few decades, technological advancements have made it possible to innovate systems centered around the use of wood. However, there are still some questions that require further exploration. It is necessary to standardize production and manufacturing processes based on prefabrication and modularization principles to achieve greater precision and optimization of the solutions, decreasing building time, prices, and waste from raw materials. In addition, this approach will make it possible to develop new architectural solutions to solve the rigidity and irreversibility of buildings, two of the most important issues facing housing today. Most current models are still created as inflexible, fixed, monofunctional structures that discourage any kind of regeneration, based on matrices that sustain the conventional family's traditional model and are founded on rigid, impenetrable compartmentalization. Adaptability and flexibility in housing are, and always have been, necessities and key components of architecture. People today need to constantly adapt to their surroundings and themselves because of the fast-paced, disposable, and quickly obsolescent nature of modern items. Migrations on a global scale, different kinds of co-housing, or even personal changes are some of the new questions that buildings have to answer. Designing with the reversibility of construction systems and materials in mind not only allows for the concept of "looping" in construction, with environmental advantages that enable the development of a circular economy in the sector but also unleashes multiple social benefits. In this sense, it is imperative to develop prefabricated and modular construction systems able to address the formalization of a reversible proposition that adjusts to the scale of time and its multiple reformulations, many of which are unpredictable. We must allow buildings to change, grow, or shrink over their lifetime, respecting their nature and, finally, the nature of the people living in them. It´s the ability to anticipate the unexpected, adapt to social factors, and take account of demographic shifts in society to stabilize communities, the foundation of real innovative sustainability.

Keywords: modular, timber, flexibility, housing

Procedia PDF Downloads 23
3 Prevalence of Antibiotic-Resistant Bacteria Isolated from Fresh Vegetables Retailed in Eastern Spain

Authors: Miguel García-Ferrús, Yolanda Domínguez, M Angeles Castillo, M Antonia Ferrús, Ana Jiménez-Belenguer

Abstract:

Antibiotic resistance is a growing public health concern worldwide, and it is now regarded as a critical issue within the "One Health" approach that affects human and animal health, agriculture, and environmental waste management. This concept focuses on the interconnected nature of human, animal and environmental health, and WHO highlights zoonotic diseases, food safety, and antimicrobial resistance as three particularly relevant areas for this framework. Fresh vegetables are garnering attention in the food chain due to the presence of pathogens and because they can act as a reservoir for Antibiotic Resistance Bacteria (ARB) and Antibiotic Resistance Genes (ARG). These fresh products are frequently consumed raw, thereby contributing to the spread and transmission of antibiotic resistance. Therefore, the aim of this research was to study the microbiological quality, the prevalence of ARB, and their role in the dissemination of ARG in fresh vegetables intended for human consumption. For this purpose, 102 samples of fresh vegetables (30 lettuce, 30 cabbage, 18 strawberries and 24 spinach) from different retail establishments in Valencia (Spain) have been analyzed to determine their microbiological quality and their role in spreading ARB and ARG. The samples were collected and examined according to standardized methods for total viable bacteria, coliforms, Shiga toxin-producing Escherichia coli (STEC), Listeria monocytogenes and Salmonella spp. Isolation was made in culture media supplemented with antibiotics (cefotaxime and meropenem). A total of 239 strains resistant to beta-lactam antibiotics (Third-Generation Cephalosporins and Carbapenems) were isolated. Thirty Gram-negative isolates were selected and biochemically identified or partial sequencing of 16S rDNA. Their sensitivity to 12 antibiotic discs was determined using the Kirby-Bauer disc diffusion technique to different therapeutic groups. To determine the presence of ARG, PCR assays for the direct sample and selected isolate DNA were performed for main expanded spectrum beta-lactamase (ESBL)-, carbapenemase-encoding genes and plasmid-mediated quinolone resistance genes. From the total samples, 68% (24/24 spinach, 28/30 lettuce and 17/30 cabbage) showed total viable bacteria levels over the accepted standard 10(2)-10(5) cfu/g range; and 48% (24/24 spinach, 19/30 lettuce and 6/30) showed coliforms levels over the accepted standard 10(2)-10(4) cfu/g range. In 9 samples (3/24 spinach, 3/30 lettuce, 3/30 cabbage; 9/102 (9%)) E. coli levels were higher than the standard 10(3) cfu/g limit. Listeria monocytogenes, Salmonella and STEC have not been detected. Six different bacteria species were isolated from samples. Stenotrophomonas maltophilia (64%) was the prevalent species, followed by Acinetobacter pitii (14%) and Burkholderia cepacia (7%). All the isolates were resistant to at least one tested antibiotic, including meropenem (85%) and ceftazidime (46%). Of the total isolates, 86% were multidrug-resistant and 68% were ESBL productors. Results of PCR showed the presence of resistance genes to beta-lactams blaTEM (4%) and blaCMY-2 (4%), to carbapenemes blaOXA-48 (25%), blaVIM (7%), blaIMP (21%) and blaKPC (32%), and to quinolones QnrA (7%), QnrB (11%) and QnrS (18%). Thus, fresh vegetables harboring ARB and ARG constitute a potential risk to consumers. Further studies must be done to detect ARG and how they propagate in non-medical environments.

Keywords: ESBL, β-lactams, resistances, fresh vegetables.

Procedia PDF Downloads 32
2 Laboratory and Numerical Hydraulic Modelling of Annular Pipe Electrocoagulation Reactors

Authors: Alejandra Martin-Dominguez, Javier Canto-Rios, Velitchko Tzatchkov

Abstract:

Electrocoagulation is a water treatment technology that consists of generating coagulant species in situ by electrolytic oxidation of sacrificial anode materials triggered by electric current. It removes suspended solids, heavy metals, emulsified oils, bacteria, colloidal solids and particles, soluble inorganic pollutants and other contaminants from water, offering an alternative to the use of metal salts or polymers and polyelectrolyte addition for breaking stable emulsions and suspensions. The method essentially consists of passing the water being treated through pairs of consumable conductive metal plates in parallel, which act as monopolar electrodes, commonly known as ‘sacrificial electrodes’. Physicochemical, electrochemical and hydraulic processes are involved in the efficiency of this type of treatment. While the physicochemical and electrochemical aspects of the technology have been extensively studied, little is known about the influence of the hydraulics. However, the hydraulic process is fundamental for the reactions that take place at the electrode boundary layers and for the coagulant mixing. Electrocoagulation reactors can be open (with free water surface) and closed (pressurized). Independently of the type of rector, hydraulic head loss is an important factor for its design. The present work focuses on the study of the total hydraulic head loss and flow velocity and pressure distribution in electrocoagulation reactors with single or multiple concentric annular cross sections. An analysis of the head loss produced by hydraulic wall shear friction and accessories (minor head losses) is presented, and compared to the head loss measured on a semi-pilot scale laboratory model for different flow rates through the reactor. The tests included laminar, transitional and turbulent flow. The observed head loss was compared also to the head loss predicted by several known conceptual theoretical and empirical equations, specific for flow in concentric annular pipes. Four single concentric annular cross section and one multiple concentric annular cross section reactor configuration were studied. The theoretical head loss resulted higher than the observed in the laboratory model in some of the tests, and lower in others of them, depending also on the assumed value for the wall roughness. Most of the theoretical models assume that the fluid elements in all annular sections have the same velocity, and that flow is steady, uniform and one-dimensional, with the same pressure and velocity profiles in all reactor sections. To check the validity of such assumptions, a computational fluid dynamics (CFD) model of the concentric annular pipe reactor was implemented using the ANSYS Fluent software, demonstrating that pressure and flow velocity distribution inside the reactor actually is not uniform. Based on the analysis, the equations that predict better the head loss in single and multiple annular sections were obtained. Other factors that may impact the head loss, such as the generation of coagulants and gases during the electrochemical reaction, the accumulation of hydroxides inside the reactor, and the change of the electrode material with time, are also discussed. The results can be used as tools for design and scale-up of electrocoagulation reactors, to be integrated into new or existing water treatment plants.

Keywords: electrocoagulation reactors, hydraulic head loss, concentric annular pipes, computational fluid dynamics model

Procedia PDF Downloads 196
1 Effects of Delphinidin on Lipid Metabolism in HepG2 Cells and Diet-Induced Obese Mice

Authors: Marcela Parra-Vargas, Ana Sandoval-Rodriguez, Roberto Rodriguez-Echevarria, Jose Dominguez-Rosales, Juan Armendariz-Borunda

Abstract:

Non-alcoholic fatty liver disease (NAFLD) is characterized by an excess of hepatic lipids, and it is to author’s best knowledge, the most prevalent chronic liver disorder. Anthocyanin-rich food consumption is linked to health benefits in metabolic disorders associated with obesity and NAFLD, although the precise functional role of anthocyanidin delphinidin (Dp) has yet to be established. The aim of this study was to investigate the effect of the Dp in NAFLD metabolic alterations by evaluating prevention or amelioration of hepatic lipid accumulation, as well as molecular mechanisms in two experimental obesity-related models of NALFD. In vitro: HepG2 cells were incubated with sodium palmitate (PA, 1 mM) to induce lipotoxic damage, and concomitantly treated with Dp (180 uM) for 24 h. Subsequently, total lipid accumulation was measured by colorimetric staining with Oil Red O, and total intrahepatic triglycerides were determined by an enzymatic assay. To assess molecular mechanisms, cells were pre-treated with PA for 24 h and then exposed to Dp for 1 h. In vivo: four-week-old male C57BL/6Nhsd mice were allocated in two main groups. Mice were fed with standard diet (control) or high-fat and high-carbohydrate diet (45% fat, HFD) for 16 wk to induce NAFLD. Then HFD was divided into subgroups: one treated orally with Dp (15 mg/kg bw, HFD-Dp) every day for 4 wk, while HFD group treated with vehicle (DMSO). Weight and fasting glucose were recorded weekly, while dietary ingestion was measured daily. Insulin tolerance test was performed at the end of treatment. Liver histology was evaluated with H&E and Masson’s trichrome stain. RT-PCR was used to evaluate gene expression and Western Blot to determine levels of protein in both experimental models. Parametric data were analyzed with one-way ANOVA and Tukey’s post-hoc test. Kruskal-Wallis and Mann-Whitney U test for non-parametric data, and P < 0.5 were considered significant. Dp prevented hepatic lipid accumulation by PA in HepG2 hepatocytes. Furthermore, Dp down-regulated gene expression of SREBP1c, FAS, and CPT1a without modifying AMPK phosphorylation levels. In vivo, Dp oral administration did not ameliorate lipid metabolic alterations raised by HFD. Adiposity, dietary ingestion, fasting glucose, and insulin sensitivity after Dp treatment remained similar to HFD group. Histological analysis showed hepatic damage in HFD groups and no differences between HFD and HFD-Dp groups were found. Hepatic gene expression of ACC and FAS were not altered by HFD. SREBP1c was similar in both HFD and HFD-Dp groups. No significant changes were observed in SREBP1c, ACC, and FAS adipose tissue gene expression by HFD or Dp treatment. Additionally, immunoblotting analysis revealed no changes in pathway SIRT1-LKB-AMPK and PPAR alpha by both HFD groups compared to control. In conclusion, the antioxidant Dp may provoke beneficial effects in the prevention of hepatic lipid accumulation. Nevertheless, the oral dose administrated in mice that simulated the total intake of anthocyanins consumed daily by humans has no effect as a treatment on hepatic lipid metabolic alterations and histological abnormalities associated with exposure to chronic HFD. A healthy lifestyle with regular intake of antioxidants such as anthocyanins may prevent metabolic alterations in NAFLD.

Keywords: anthocyanins, antioxidants, delphinidin, non-alcoholic fatty liver disease, obesity

Procedia PDF Downloads 175