Search results for: InsituSoil determination; shearing wave; hardness; correlation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7556

Search results for: InsituSoil determination; shearing wave; hardness; correlation

7406 Deep Cryogenic Treatment With Subsequent Aging Applied to Martensitic Stainless Steel: Evaluation of Hardness, Tenacity and Microstructure

Authors: Victor Manuel Alcántara Alza

Abstract:

The way in which the application of the deep cryogenic treatment DCT(-196°C) affects, applied with subsequent aging, was investigated, regarding the mechanical properties of hardness, toughness and microstructure, applied to martensitic stainless steels, with the aim of establishing a different methodology compared to the traditional DCT cryogenic treatment with subsequent tempering. For this experimental study, a muffle furnace was used, first subjecting the specimens to deep cryogenization in a liquid Nitrogen bath/4h, after being previously austenitized at the following temperatures: 1020-1030-1040-1050 (°C) / 1 hour; and then tempered in oil. A first group of cryogenic samples were subjected to subsequent aging at 150°C, with immersion times: 2.5 -5- 10 - 20 - 50 – 100 (h). The next group was subjected to subsequent tempering at temperatures: 480-500-510-520-530-540 (°C)/ 2h. The hardness tests were carried out under standards, using a Universal Durometer, and the readings were made on the HRC scale. The Impact Resistance tests were carried out in a Charpy machine following the ASTM E 23 – 93ª standard. Measurements were taken in joules. Microscopy was performed at the optical level using a 1000X microscope. It was found: For the entire aging interval, the samples austenitized at 1050°C present greater hardness than austenitized at 1040°C, with the maximum peak aged being at 30h. In all cases, the aged samples exceed the hardness of the tempered samples, even in their minimum values. In post-tempered samples, the tempering temperature hardly have effect on the impact strength of material. In the Cryogenic Treatment: DCT + subsequent aging, the maximum hardness value (58.7 HRC) is linked to an impact toughness value (54J) obtained with aging time of 39h, which is considered an optimal condition. The higher hardness of steel after the DCT treatment is attributed to the transformation of retained austenite into martensite. The microstructure is composed mainly of lath martensite; and the original grain size of the austenite can be appreciated. The choice of the combination: Hardness-toughness, is subject to the required service conditions of steel.

Keywords: deep cryogenic treatment; aged precipitation; martensitic steels;, mechanical properties; martensitic steels, hardness, carbides precipitaion

Procedia PDF Downloads 51
7405 The Properties of Na2CO3 and Ti Hybrid Modified LM 6 Alloy Using Ladle Metallurgy

Authors: M. N. Ervina Efzan, H. J. Kong, C. K. Kok

Abstract:

The present work deals with a study on the influences of hybrid modifier on LM 6 added through ladle metallurgy. In this study, LM 6 served as the reference alloy while Na2CO3 and Ti powders were used as the hybrid modifier. The effects of hybrid modifier on the micro structural enhancement of LM 6 were investigated using optical microscope (OM) and Scanning Electron Microscope (SEM). The results showed fragmented Si-rich needles and strength enhanced petal/ globular-like structures without obvious formation of soft primary α-Al and β-Fe-rich inter metallic compound (IMC) after the hybrid modification. Hardness test was conducted to examine the mechanical improvement of hybrid modified LM 6. 10% of hardness improvement was recorded in the hybrid modified LM 6 through ladle metallurgy.

Keywords: Al-Si, hybrid modifier, ladle metallurgy, hardness

Procedia PDF Downloads 363
7404 Production of Biocomposites Using Chars Obtained by Co-Pyrolysis of Olive Pomace with Plastic Wastes

Authors: Esra Yel, Tabriz Aslanov, Merve Sogancioglu, Suheyla Kocaman, Gulnare Ahmetli

Abstract:

The disposal of waste plastics has become a major worldwide environmental problem. Pyrolysis of waste plastics is one of the routes to waste minimization and recycling that has been gaining interest. In pyrolysis, the pyrolysed material is separated into gas, liquid (both are fuel) and solid (char) products. All fractions have utilities and economical value depending upon their characteristics. The first objective of this study is to determine the co-pyrolysis product fractions of waste HDPE- (high density polyethylene) and LDPE (low density polyethylene)-olive pomace (OP) and to determine the qualities of the solid product char. Chars obtained at 700 °C pyrolysis were used in biocomposite preparation as additive. As the second objective, the effects of char on biocomposite quality were investigated. Pyrolysis runs were performed at temperature 700 °C with heating rates of 5 °C/min. Biocomposites were prepared by mixing of chars with bisphenol-F type epoxy resin in various wt%. Biocomposite properties were determined by measuring electrical conductivity, surface hardness, Young’s modulus and tensile strength of the composites. The best electrical conductivity results were obtained with HDPE-OP char. For HDPE-OP char and LDPE-OP char, compared to neat epoxy, the tensile strength values of the composites increased by 102% and 78%, respectively, at 10% char dose. The hardness measurements showed similar results to the tensile tests, since there is a correlation between the hardness and the tensile strength.

Keywords: biocomposite, char, olive pomace, pyrolysis

Procedia PDF Downloads 228
7403 Design of a Phemt Buffer Amplifier in Mm-Wave Band around 60 GHz

Authors: Maryam Abata, Moulhime El Bekkali, Said Mazer, Catherine Algani, Mahmoud Mehdi

Abstract:

One major problem of most electronic systems operating in the millimeter wave band is the signal generation with a high purity and a stable carrier frequency. This problem is overcome by using the combination of a signal with a low frequency local oscillator (LO) and several stages of frequency multipliers. The use of these frequency multipliers to create millimeter-wave signals is an attractive alternative to direct generation signal. Therefore, the isolation problem of the local oscillator from the other stages is always present, which leads to have various mechanisms that can disturb the oscillator performance, thus a buffer amplifier is often included in oscillator outputs. In this paper, we present the study and design of a buffer amplifier in the mm-wave band using a 0.15μm pHEMT from UMS foundry. This amplifier will be used as a part of a frequency quadrupler at 60 GHz.

Keywords: Mm-wave band, local oscillator, frequency quadrupler, buffer amplifier

Procedia PDF Downloads 510
7402 Application of Refractometric Methodology for Simultaneous Determination of Alcohol and Residual Sugar Concentrations during Alcoholic Fermentation Bioprocess of Date Juice

Authors: Boukhiar Aissa, Halladj Fatima, Iguergaziz Nadia, Lamrani yasmina, Benamara Salem

Abstract:

Determining the alcohol content in alcoholic fermentation bioprocess is of great importance. In fact, it is a key indicator for monitoring this bioprocess. Several methodologies (chemical, spectrophotometric, chromatographic) are used to the determination of this parameter. However, these techniques are very long and they require: rigorous preparations, sometimes dangerous chemical reagents and/or expensive equipment. In the present study, the date juice is used as the substrate of alcoholic fermentation. The extracted juice undergoes an alcoholic fermentation by Saccharomyces cerevisiae. The study of the possible use of refractometry as a sole means for the in situ control of alcoholic fermentation revealed a good correlation (R2=0.98) between initial and final °Brix: °Brixf=0.377×°Brixi. In addition, the relationship between Δ°Brix and alcoholic content of the final product (A,%) has been determined: Δ°Brix/A=1.1. The obtained results allowed us to establish iso-responses abacus, which can be used for the determination of alcohol and residual sugar content, with a mean relative error (MRE) of 5.35%.

Keywords: alcoholic fermentation, date juice, refractometry, residual sugar

Procedia PDF Downloads 312
7401 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method

Authors: N. Fusun Oyman Serteller

Abstract:

In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples.  Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.

Keywords: finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations

Procedia PDF Downloads 116
7400 Rogue Waves Arising on the Standing Periodic Wave in the High-Order Ablowitz-Ladik Equation

Authors: Yanpei Zhen

Abstract:

The nonlinear Schrödinger (NLS) equation models wave dynamics in many physical problems related to fluids, plasmas, and optics. The standing periodic waves are known to be modulationally unstable, and rogue waves (localized perturbations in space and time) have been observed on their backgrounds in numerical experiments. The exact solutions for rogue waves arising on the periodic standing waves have been obtained analytically. It is natural to ask if the rogue waves persist on the standing periodic waves in the integrable discretizations of the integrable NLS equation. We study the standing periodic waves in the semidiscrete integrable system modeled by the high-order Ablowitz-Ladik (AL) equation. The standing periodic wave of the high-order AL equation is expressed by the Jacobi cnoidal elliptic function. The exact solutions are obtained by using the separation of variables and one-fold Darboux transformation. Since the cnoidal wave is modulationally unstable, the rogue waves are generated on the periodic background.

Keywords: Darboux transformation, periodic wave, Rogue wave, separating the variables

Procedia PDF Downloads 154
7399 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study

Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui

Abstract:

In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.

Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas

Procedia PDF Downloads 317
7398 Wear Resistance and Mechanical Performance of Ultra-High Molecular Weight Polyethylene Influenced by Temperature Change

Authors: Juan Carlos Baena, Zhongxiao Peng

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) is extensively used in industrial and biomedical fields. The slippery nature of UHMWPE makes this material suitable for surface bearing applications, however, the operational conditions limit the lubrication efficiency, inducing boundary and mixed lubrication in the tribological system. The lack of lubrication in a tribological system intensifies friction, contact stress and consequently, operating temperature. With temperature increase, the material’s mechanical properties are affected, and the lifespan of the component is reduced. The understanding of how mechanical properties and wear performance of UHMWPE change when the temperature is increased has not been clearly identified. The understanding of the wear and mechanical performance of UHMWPE at different temperature is important to predict and further improve the lifespan of these components. This study evaluates the effects of temperature variation in a range of 20 °C to 60 °C on the hardness and the wear resistance of UHMWPE. A reduction of the hardness and wear resistance was observed with the increase in temperature. The variation of the wear rate increased 94.8% when the temperature changed from 20 °C to 50 °C. Although hardness is regarded to be an indicator of the material wear resistance, this study found that wear resistance decreased more rapidly than hardness with the temperature increase, evidencing a low material stability of this component in a short temperature interval. The reduction of the hardness was reflected by the plastic deformation and abrasion intensity, resulting in a significant wear rate increase.

Keywords: hardness, surface bearing, tribological system, UHMWPE, wear

Procedia PDF Downloads 240
7397 Cement Bond Characteristics of Artificially Fabricated Sandstones

Authors: Ashirgul Kozhagulova, Ainash Shabdirova, Galym Tokazhanov, Minh Nguyen

Abstract:

The synthetic rocks have been advantageous over the natural rocks in terms of availability and the consistent studying the impact of a particular parameter. The artificial rocks can be fabricated using variety of techniques such as mixing sand and Portland cement or gypsum, firing the mixture of sand and fine powder of borosilicate glass or by in-situ precipitation of calcite solution. In this study, sodium silicate solution has been used as the cementing agent for the quartz sand. The molded soft cylindrical sandstone samples are placed in the gas-tight pressure vessel, where the hardening of the material takes place as the chemical reaction between carbon dioxide and the silicate solution progresses. The vessel allows uniform disperse of carbon dioxide and control over the ambient gas pressure. Current paper shows how the bonding material is initially distributed in the intergranular space and the surface of the sand particles by the usage of Electron Microscopy and the Energy Dispersive Spectroscopy. During the study, the strength of the cement bond as a function of temperature is observed. The impact of cementing agent dosage on the micro and macro characteristics of the sandstone is investigated. The analysis of the cement bond at micro level helps to trace the changes to particles bonding damage after a potential yielding. Shearing behavior and compressional response have been examined resulting in the estimation of the shearing resistance and cohesion force of the sandstone. These are considered to be main input values to the mathematical prediction models of sand production from weak clastic oil reservoir formations.

Keywords: artificial sanstone, cement bond, microstructure, SEM, triaxial shearing

Procedia PDF Downloads 143
7396 Characterization Study of Aluminium 6061 Hybrid Composite

Authors: U. Achutha Kini, S. S. Sharma, K. Jagannath, P. R. Prabhu, M. C. Gowri Shankar

Abstract:

Aluminium matrix composites with alumina reinforcements give superior mechanical & physical properties. Their applications in several fields like automobile, aerospace, defense, sports, electronics, bio-medical and other industrial purposes are becoming essential for the last several decades. In the present work, fabrication of hybrid composite was done by Stir casting technique using Al 6061 as a matrix with alumina and silicon carbide (SiC) as reinforcement materials. The weight percentage of alumina is varied from 2 to 4% and the silicon carbide weight percentage is maintained constant at 2%. Hardness and wear tests are performed in the as cast and heat treated conditions. Age hardening treatment was performed on the specimen with solutionizing at 550°C, aging at two temperatures (150 and 200°C) for different time durations. Hardness distribution curves are drawn and peak hardness values are recorded. Hardness increase was very sensitive with respect to the decrease in aging temperature. There was an improvement in wear resistance of the peak aged material when aged at lower temperature. Also increase in weight percent of alumina, increases wear resistance at lower temperature but opposite behavior was seen when aged at higher temperature.

Keywords: hybrid composite, hardness test, wear test, heat treatment, pin on disc wear testing machine

Procedia PDF Downloads 302
7395 Quantification of Factors Contributing to Wave-In-Deck on Fixed Jacket Platforms

Authors: C. Y. Ng, A. M. Johan, A. E. Kajuputra

Abstract:

Wave-in-deck phenomenon for fixed jacket platforms at shallow water condition has been reported as a notable risk to the workability and reliability of the platform. Reduction in reservoir pressure, due to the extraction of hydrocarbon for an extended period of time, has caused the occurrence of seabed subsidence. Platform experiencing subsidence promotes reduction of air gaps, which eventually allows the waves to attack the bottom decks. The impact of the wave-in-deck generates additional loads to the structure and therefore increases the values of the moment arms. Higher moment arms trigger instability in terms of overturning, eventually decreases the reserve strength ratio (RSR) values of the structure. The mechanics of wave-in-decks, however, is still not well understood and have not been fully incorporated into the design codes and standards. Hence, it is necessary to revisit the current design codes and standards for platform design optimization. The aim of this study is to evaluate the effects of RSR due to wave-in-deck on four-legged jacket platforms in Malaysia. Base shear values with regards to calibration and modifications of wave characteristics were obtained using SESAM GeniE. Correspondingly, pushover analysis is conducted using USFOS to retrieve the RSR. The effects of the contributing factors i.e. the wave height, wave period and water depth with regards to the RSR and base shear values were analyzed and discussed. This research proposal is important in optimizing the design life of the existing and aging offshore structures. Outcomes of this research are expected to provide a proper evaluation of the wave-in-deck mechanics and in return contribute to the current mitigation strategies in managing the issue.

Keywords: wave-in-deck loads, wave effects, water depth, fixed jacket platforms

Procedia PDF Downloads 407
7394 Time-Evolving Wave Packet in Phase Space

Authors: Mitsuyoshi Tomiya, Kentaro Kawamura, Shoichi Sakamoto

Abstract:

In chaotic billiard systems, scar-like localization has been found on time-evolving wave packet. We may call it the “dynamical scar” to separate it to the original scar in stationary states. It also comes out along the vicinity of classical unstable periodic orbits, when the wave packets are launched along the orbits, against the hypothesis that the waves become homogenous all around the billiard. Then time-evolving wave packets are investigated numerically in phase space. The Wigner function is adopted to detect the wave packets in phase space. The 2-dimensional Poincaré sections of the 4-dimensional phase space are introduced to clarify the dynamical behavior of the wave packets. The Poincaré sections of the coordinate (x or y) and the momentum (Px or Py) can visualize the dynamical behavior of the wave packets, including the behavior in the momentum degree also. For example, in “dynamical scar” states, a bit larger momentum component comes first, and then the a bit smaller and smaller components follow next. The sections made in the momentum space (Px or Py) elucidates specific trajectories that have larger contribution to the “dynamical scar” states. It is the fixed point observation of the momentum degrees at a specific fixed point(x0, y0) in the phase space. The accumulation are also calculated to search the “dynamical scar” in the Poincare sections. It is found the scars as bright spots in momentum degrees of the phase space.

Keywords: chaotic billiard, Poincaré section, scar, wave packet

Procedia PDF Downloads 420
7393 Tsunami Wave Height and Flow Velocity Calculations Based on Density Measurements of Boulders: Case Studies from Anegada and Pakarang Cape

Authors: Zakiul Fuady, Michaela Spiske

Abstract:

Inundation events, such as storms and tsunamis can leave onshore sedimentary evidence like sand deposits or large boulders. These deposits store indirect information on the related inundation parameters (e.g., flow velocity, flow depth, wave height). One tool to reveal these parameters are inverse models that use the physical characteristics of the deposits to refer to the magnitude of inundation. This study used boulders of the 2004 Indian Ocean Tsunami from Thailand (Pakarang Cape) and form a historical tsunami event that inundated the outer British Virgin Islands (Anegada). For the largest boulder found in Pakarang Cape with a volume of 26.48 m³ the required tsunami wave height is 0.44 m and storm wave height are 1.75 m (for a bulk density of 1.74 g/cm³. In Pakarang Cape the highest tsunami wave height is 0.45 m and storm wave height are 1.8 m for transporting a 20.07 m³ boulder. On Anegada, the largest boulder with a diameter of 2.7 m is the asingle coral head (species Diploria sp.) with a bulk density of 1.61 g/cm³, and requires a minimum tsunami wave height of 0.31 m and storm wave height of 1.25 m. The highest required tsunami wave height on Anegada is 2.12 m for a boulder with a bulk density of 2.46 g/cm³ (volume 0.0819 m³) and the highest storm wave height is 5.48 m (volume 0.216 m³) from the same bulk density and the coral type is limestone. Generally, the higher the bulk density, volume, and weight of the boulders, the higher the minimum tsunami and storm wave heights required to initiate transport. It requires 4.05 m/s flow velocity by Nott’s equation (2003) and 3.57 m/s by Nandasena et al. (2011) to transport the largest boulder in Pakarang Cape, whereas on Anegada, it requires 3.41 m/s to transport a boulder with diameter 2.7 m for both equations. Thus, boulder equations need to be handled with caution because they make many assumptions and simplifications. Second, the physical boulder parameters, such as density and volume need to be determined carefully to minimize any errors.

Keywords: tsunami wave height, storm wave height, flow velocity, boulders, Anegada, Pakarang Cape

Procedia PDF Downloads 214
7392 Nonstationary Waves Excited by the Rigid Cylinder in Elastic Medium

Authors: Tukeaban Hasanova, Jamila Imamalieva

Abstract:

By the operational method, the problem on two-dimensional wave propagation in elastic medium excited by the round cylinder is solved. An analytical solution responding to instantaneous application of speed to the inclusion at its subsequent change is constructed. The two-dimensional problem on wave propagation in an elastic medium is considered.

Keywords: cylinder, inclusion, wave, elastic medium, speed

Procedia PDF Downloads 139
7391 Modeling of Dam Break Flood Wave Propagation Using HEC-RAS 2D and GIS: A Case Study of Taksebt Dam in Algeria

Authors: Abdelghani Leghouchi

Abstract:

This study aims to predict the consequences associated with the propagation of the flood wave that may occur after the failure of the Taksebt dam and suggest an efficient emergency action plan (EAP) for mitigation purposes. To achieve the objectives of this study, the hydrodynamic model HEC-RAS 2D was used for the flood routing of the dam break wave, which gave an estimate of the hydraulic characteristics downstream the Taksebt dam. Geospatial analysis of the simulation results conducted in a Geographic information system (GIS) environment showed that many residential areas are considered to be in danger in case of the Taksebt dam break event. Based on the obtained results, an emergency actions plan was suggested to moderate the causalities in the downstream area at risk. Overall, the present study showed that the integration of 2D hydraulic modeling and GIS provides great capabilities in providing realistic view of the dam break wave propagation that enhances assessing the associated risks and proposing appropriate mitigation measures.

Keywords: taksebt dam, dam break, wave propagation time, HEC-RAS 2D

Procedia PDF Downloads 73
7390 Optimization of the Self-Recognition Direct Digital Radiology Technology by Applying the Density Detector Sensors

Authors: M. Dabirinezhad, M. Bayat Pour, A. Dabirinejad

Abstract:

In 2020, the technology was introduced to solve some of the deficiencies of direct digital radiology. SDDR is an invention that is capable of capturing dental images without human intervention, and it was invented by the authors of this paper. Adjusting the radiology wave dose is a part of the dentists, radiologists, and dental nurses’ tasks during the radiology photography process. In this paper, an improvement will be added to enable SDDR to set the suitable radiology wave dose according to the density and age of the patients automatically. The separate sensors will be included in the sensors’ package to use the ultrasonic wave to detect the density of the teeth and change the wave dose. It facilitates the process of dental photography in terms of time and enhances the accuracy of choosing the correct wave dose for each patient separately. Since the radiology waves are well known to trigger off other diseases such as cancer, choosing the most suitable wave dose can be helpful to decrease the side effect of that for human health. In other words, it decreases the exposure time for the patients. On the other hand, due to saving time, less energy will be consumed, and saving energy can be beneficial to decrease the environmental impact as well.

Keywords: dental direct digital imaging, environmental impacts, SDDR technology, wave dose

Procedia PDF Downloads 165
7389 Modulational Instability of Ion-Acoustic Wave in Electron-Positron-Ion Plasmas with Two-Electron Temperature Distributions

Authors: Jitendra Kumar Chawla, Mukesh Kumar Mishra

Abstract:

The nonlinear amplitude modulation of ion-acoustic wave is studied in the presence of two-electron temperature distribution in unmagnetized electron-positron-ion plasmas. The Krylov-Bogoliubov-Mitropolosky (KBM) perturbation method is used to derive the nonlinear Schrödinger equation. The dispersive and nonlinear coefficients are obtained which depend on the temperature and concentration of the hot and cold electron species as well as the positron density and temperature. The modulationally unstable regions are studied numerically for a wide range of wave number. The effects of the temperature and concentration of the hot and cold electron on the modulational stability are investigated in detail.

Keywords: modulational instability, ion acoustic wave, KBM method

Procedia PDF Downloads 629
7388 About Some Results of the Determination of Alcohol in Moroccan Gasoline-Alcohol Mixtures

Authors: Mahacine Amrani

Abstract:

A simple and rapid method for the determination of alcohol in gasoline-alcohol mixtures using density measurements is described. The method can determine a minimum of 1% of alcohol by volume. The precision of the method is ± 3%.The method is more useful for field test in the quality assessment of alcohol blended fuels.

Keywords: gasoline-alcohol, mixture, alcohol determination, density, measurement, Morocco

Procedia PDF Downloads 282
7387 Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions

Authors: Alexandra Leukauf, Alexander Schirrer, Emir Talic

Abstract:

Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain.

Keywords: absorbing boundary conditions, boundary control, Fourier Galerkin approach, modal approach, wave equation

Procedia PDF Downloads 371
7386 Determination of Bisphenol A and Uric Acid by Modified Single-Walled Carbon Nanotube with Magnesium Layered Hydroxide 3-(4-Methoxyphenyl)Propionic Acid Nanocomposite

Authors: Illyas Md Isa, Maryam Musfirah Che Sobry, Mohamad Syahrizal Ahmad, Nurashikin Abd Azis

Abstract:

A single-walled carbon nanotube (SWCNT) that has been modified with magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite was proposed for the determination of uric acid and bisphenol A by square wave voltammetry. The results obtained denote that MLH-MPP nanocomposites enhance the sensitivity of the voltammetry detection responses. The best performance is shown by the modified carbon nanotube paste electrode (CNTPE) with the composition of single-walled carbon nanotube: magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite at 100:15 (% w/w). The linear range where the sensor works well is within the concentration 1.0 10-7 – 1.0 10-4 and 3.0 10-7 – 1.0 10-4 for uric acid and bisphenol A respectively with the limit of detection of 1.0 10-7 M for both organics. The interferences of uric acid and bisphenol A with other organic were studied and most of them did not interfere. The results shown for each experimental parameter on the proposed CNTPE showed that it has high sensitivity, good selectivity, repeatability and reproducibility. Therefore, the modified CNTPE can be used for the determination of uric acid and bisphenol A in real samples such as blood, plastic bottles and foods.

Keywords: bisphenol A, magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite, Nanocomposite, uric acid

Procedia PDF Downloads 185
7385 Three-Dimensional Positioning Method of Indoor Personnel Based on Millimeter Wave Radar Sensor

Authors: Chao Wang, Zuxue Xia, Wenhai Xia, Rui Wang, Jiayuan Hu, Rui Cheng

Abstract:

Aiming at the application of indoor personnel positioning under smog conditions, this paper proposes a 3D positioning method based on the IWR1443 millimeter wave radar sensor. The problem that millimeter-wave radar cannot effectively form contours in 3D point cloud imaging is solved. The results show that the method can effectively achieve indoor positioning and scene construction, and the maximum positioning error of the system is 0.130m.

Keywords: indoor positioning, millimeter wave radar, IWR1443 sensor, point cloud imaging

Procedia PDF Downloads 70
7384 Effect of Postweld Soaking Temperature on Mechanical Properties of AISI 1018 Steel Plate Welded in Aqueous Environment

Authors: Yahaya Taiwo, Adedayo M. Segun

Abstract:

This study investigated the effect of postweld soaking temperature on mechanical properties of AISI 1018 steel plate welded in aqueous environment. Pairs of 90 x 70 x 12 mm, AISI 1018 steel plates were welded with weld zone beyond distance 10 mm from weld centerline immersed in a water jacket at 25°C. The welded specimens were tempered at temperature of 200, 300, 400, 500 and 600°C for 1.5 hours. Tensile, hardness and toughness tests at distances 15, 30, 45 and 60 mm from the weld centreline with micro structural evaluation were carried out. The results show that the aqueous environment as-weld sample exhibited higher hardness and tensile strength values of 45.3 HV and 448.12 N/mm2 respectively while the hardness and tensile strength of aqueous environment postweld heat treated samples were 44.9 HV and 378.98 N/mm2. This revealed 0.82% and 15.4% reduction in hardness and strength respectively. The metallographic tests showed that the postweld heat treated AISI 1018 steel micro structure contained tempered martensite with ferritic structure and precipitation of carbides. Postweld heat treatment produced materials of lower hardness and improved toughness.

Keywords: air weld samples, aqueous environment weld samples, soaking temperature, water jacket

Procedia PDF Downloads 312
7383 Hardness map of Human Tarsals, Meta Tarsals and Phalanges of Toes

Authors: Irfan Anjum Manarvi, Zahid Ali kaimkhani

Abstract:

Predicting location of the fracture in human bones has been a keen area of research for the past few decades. A variety of tests for hardness, deformation, and strain field measurement have been conducted in the past; but considered insufficient due to various limitations. Researchers, therefore, have proposed further studies due to inaccuracies in measurement methods, testing machines, and experimental errors. Advancement and availability of hardware, measuring instrumentation, and testing machines can now provide remedies to these limitations. The human foot is a critical part of the body exposed to various forces throughout its life. A number of products are developed for using it for protection and care, which many times do not provide sufficient protection and may itself become a source of stress due to non-consideration of the delicacy of bones in the feet. A continuous strain or overloading on feet may occur resulting to discomfort and even fracture. Mechanical properties of Tarsals, Metatarsals, and phalanges are, therefore, the primary area of consideration for all such design applications. Hardness is one of the mechanical properties which are considered very important to establish the mechanical resistance behavior of a material against applied loads. Past researchers have worked in the areas of investigating mechanical properties of these bones. However, their results were based on a limited number of experiments and taking average values of hardness due to either limitation of samples or testing instruments. Therefore, they proposed further studies in this area. The present research has been carried out to develop a hardness map of the human foot by measuring micro hardness at various locations of these bones. Results are compiled in the form of distance from a reference point on a bone and the hardness values for each surface. The number of test results is far more than previous studies and are spread over a typical bone to give a complete hardness map of these bones. These results could also be used to establish other properties such as stress and strain distribution in the bones. Also, industrial engineers could use it for design and development of various accessories for human feet health care and comfort and further research in the same areas.

Keywords: tarsals, metatarsals, phalanges, hardness testing, biomechanics of human foot

Procedia PDF Downloads 392
7382 Experimental Evaluation of Electrocoagulation for Hardness Removal of Bore Well Water

Authors: Pooja Kumbhare

Abstract:

Water is an important resource for the survival of life. The inadequate availability of surface water makes people depend on ground water for fulfilling their needs. However, ground water is generally too hard to satisfy the requirements for domestic as well as industrial applications. Removal of hardness involves various techniques such as lime soda process, ion exchange, reverse osmosis, nano-filtration, distillation, and, evaporation, etc. These techniques have individual problems such as high annual operating cost, sediment formation on membrane, sludge disposal problem, etc. Electrocoagulation (EC) is being explored as modern and cost-effective technology to cope up with the growing demand of high water quality at the consumer end. In general, earlier studies on electrocoagulation for hardness removal are found to deploy batch processes. As batch processes are always inappropriate to deal with large volume of water to be treated, it is essential to develop continuous flow EC process. So, in the present study, an attempt is made to investigate continuous flow EC process for decreasing excessive hardness of bore-well water. The experimental study has been conducted using 12 aluminum electrodes (25cm*10cm, 1cm thick) provided in EC reactor with volume of 8 L. Bore well water sample, collected from a local bore-well (i.e. at – Vishrambag, Sangli; Maharashtra) having average initial hardness of 680 mg/l (Range: 650 – 700 mg/l), was used for the study. Continuous flow electrocoagulation experiments were carried out by varying operating parameters specifically reaction time (Range: 10 – 60 min), voltage (Range: 5 – 20 V), current (Range: 1 – 5A). Based on the experimental study, it is found that hardness removal to the desired extent could be achieved even for continuous flow EC reactor, so the use of it is found promising.

Keywords: hardness, continuous flow EC process, aluminum electrode, optimal operating parameters

Procedia PDF Downloads 158
7381 Structural Health Monitoring of the 9-Story Torre Central Building Using Recorded Data and Wave Method

Authors: Tzong-Ying Hao, Mohammad T. Rahmani

Abstract:

The Torre Central building is a 9-story shear wall structure located in Santiago, Chile, and has been instrumented since 2009. Events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded, and thus the building can serve as a full-scale benchmark to evaluate the structural health monitoring method developed. The first part of this article presents an analysis of inter-story drifts, and of changes in the first system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) as baseline indicators of the occurrence of damage. During 2010 Chile earthquake the system frequencies were detected decreasing approximately 24% in the EW and 27% in NS motions. Near the end of shaking, an increase of about 17% in the EW motion was detected. The structural health monitoring (SHM) method based on changes in wave traveling time (wave method) within a layered shear beam model of structure is presented in the second part of this article. If structural damage occurs the velocity of wave propagated through the structure changes. The wave method measures the velocities of shear wave propagation from the impulse responses generated by recorded data at various locations inside the building. Our analysis and results show that the detected changes in wave velocities are consistent with the observed damages. On this basis, the wave method is proven for actual implementation in structural health monitoring systems.

Keywords: Chile earthquake, damage detection, earthquake response, impulse response, layered shear beam, structural health monitoring, Torre Central building, wave method, wave travel time

Procedia PDF Downloads 344
7380 Microstructure and Hardness Changes on T91 Weld Joint after Heating at 560°C

Authors: Suraya Mohamad Nadzir, Badrol Ahmad, Norlia Berahim

Abstract:

T91 steel has been used as construction material for superheater tubes in sub-critical and super critical boiler. This steel was developed with higher creep strength property as compared to conventional low alloy steel. However, this steel is also susceptible to materials degradation due to its sensitivity to heat treatment especially Post Weld Heat Treatment (PWHT) after weld repair process. Review of PWHT process shows that the holding temperature may different from one batch to other batch of samples depending on the material composition. This issue was reviewed by many researchers and one of the potential solutions is the development of weld repair process without PWHT. This process is possible with the use of temper bead welding technique. However, study has shown the hardness value across the weld joint with exception of PWHT is much higher compare to recommended hardness value. Based on the above findings, a study to evaluate the microstructure and hardness changes of T91 weld joint after heating at 560°C at varying duration was carried out. This study was carried out to evaluate the possibility of self-tempering process during in-service period. In this study, the T91 weld joint was heat-up in air furnace at 560°C for duration of 50 and 150 hours. The heating process was controlled with heating rate of 200°C/hours, and cooling rate about 100°C/hours. Following this process, samples were prepared for the microstructure examination and hardness evaluation. Results have shown full tempered martensite structure and acceptance hardness value was achieved after 50 hours heating. This result shows that the thin component such as T91 superheater tubes is able to self-tempering during service hour.

Keywords: T91, weld-joint, tempered martensite, self-tempering

Procedia PDF Downloads 350
7379 Effect of Heat Treatment on the Hardness and Abrasiveness of Almandine and Pyrope Garnet for Water-Cutting of Marble

Authors: Mahmoud Rabh

Abstract:

Garnet has been used for decades as an abrasive in water jet cutting and sand blasting because of its superior physical properties. When added to use in water-cutting process of marble. A standard commercial sample of the mineral was tested in terms of the hardness and abrasiveness properties. The sample was sized to 4 fractions having the size of < 60 um, > 60 < 100 um, > 100 < 180 um > 1280 < 250 and 250 um designated the symbols, FF, MF, MC and C respectively. Each sample was separately heated in controlled conditions at temperatures up to 1000 °C at a heating rate of 10°C/min in an electrically heated chamber furnace. Soaking time at the maximum temperature was up to 6 h. Hardness and abrasiveness properties of the heat treated samples were tested to cut marble having a thickness of 25 mm. Results revealed that H/A of the natural garnet mineral increased by heating at temperatures up to 600°C and exhibited pronounced decrease with higher temperatures up to 1000 °C. Results were explained in the light of a structural irreversible dislocation (SD) of the crystals of garnet almandine Fe2+3Al2Si3O12 and pyrope Mg3Al2Si3O12. Characterization of the mineral was carried out with the help of XRD, SEM and FT-IR measurements.

Keywords: garnet abrasive, heat treatment, water jet cutting, hardness abrasiveness

Procedia PDF Downloads 303
7378 Impact of Curvatures in the Dike Line on Wave Run-up and Wave Overtopping, ConDike-Project

Authors: Malte Schilling, Mahmoud M. Rabah, Sven Liebisch

Abstract:

Wave run-up and overtopping are the relevant parameters for the dimensioning of the crest height of dikes. Various experimental as well as numerical studies have investigated these parameters under different boundary conditions (e.g. wave conditions, structure type). Particularly for the dike design in Europe, a common approach is formulated where wave and structure properties are parameterized. However, this approach assumes equal run-up heights and overtopping discharges along the longitudinal axis. However, convex dikes have a heterogeneous crest by definition. Hence, local differences in a convex dike line are expected to cause wave-structure interactions different to a straight dike. This study aims to assess both run-up and overtopping at convexly curved dikes. To cast light on the relevance of curved dikes for the design approach mentioned above, physical model tests were conducted in a 3D wave basin of the Ludwig-Franzius-Institute Hannover. A dike of a slope of 1:6 (height over length) was tested under both regular waves and TMA wave spectra. Significant wave heights ranged from 7 to 10 cm and peak periods from 1.06 to 1.79 s. Both run-up and overtopping was assessed behind the curved and straight sections of the dike. Both measurements were compared to a dike with a straight line. It was observed that convex curvatures in the longitudinal dike line cause a redirection of incident waves leading to a concentration around the center point. Measurements prove that both run-up heights and overtopping rates are higher than on the straight dike. It can be concluded that deviations from a straight longitudinal dike line have an impact on design parameters and imply uncertainties within the design approach in force. Therefore, it is recommended to consider these influencing factors for such cases.

Keywords: convex dike, longitudinal curvature, overtopping, run-up

Procedia PDF Downloads 272
7377 Orbit Determination Modeling with Graphical Demonstration

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

In this paper, there is an implementation, verification, and graphical demonstration of a software application, which can be used swiftly over different preliminary orbit determination methods. A passive orbit determination method is used in this study to determine the location of a satellite or a flying body. It is named a passive orbit determination because it depends on observation without the use of any aids (radio and laser) installed on satellite. In order to understand how these methods work and how their output is accurate when compared with available verification data, the built models help in knowing the different inputs used with each method. Output from the different orbit determination methods (Gibbs, Lambert, and Gauss) will be compared with each other and verified by the data obtained from Satellite Tool Kit (STK) application. A modified model including all of the orbit determination methods using the same input will be introduced to investigate different models output (orbital parameters) for the same input (azimuth, elevation, and time). Simulation software is implemented using MATLAB. A Graphical User Interface (GUI) application named OrDet is produced using the GUI of MATLAB. It includes all the available used inputs and it outputs the current Classical Orbital Elements (COE) of satellite under observation. Produced COE are then used to propagate for a complete revolution and plotted on a 3-D view. Modified model which uses an adapter to allow same input parameters, passes these parameters to the preliminary orbit determination methods under study. Result from all orbit determination methods yield exactly the same COE output, which shows the equality of concept in determination of satellite’s location, but with different numerical methods.

Keywords: orbit determination, STK, Matlab-GUI, satellite tracking

Procedia PDF Downloads 243