Search results for: Higgs physics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 504

Search results for: Higgs physics

384 Properties of Modified Dry Masonry Mixtures for Effective Masonry Units

Authors: Vyacheslav S. Semenov, Tamara A. Rozovskaya

Abstract:

The paper is devoted to the problem of the development of dry light-weight mixtures with hollow ceramics microspheres (CMS) for masonry works. For the one-layer fencing structures including effective masonry units, the use of “warm” masonry mortars is necessary. The used light-weight masonry mortars do not provide the brand strength and thermal uniformity of the fencing structures because of high average density. The CMS are effective light-weight aggregate for such mortars. The influence of the dosage of CMS on the physics-and-mechanics parameters and the technological properties of the masonry mortars were studied. The optimal mixture compositions have been obtained and their main properties have been determined. The influence of an air-entraining admixture and redispersible polymer powders on the average density and physics-and-mechanics parameters of the masonry mortars were studied. The optimal compositions of light-weight dry masonry mixtures with CMS have been suggested.

Keywords: dry mortar mixtures, light-weight dry mixtures, hollow ceramics microspheres, masonry mortars, “warm” mortars, air-entraining admixture, redispersible polymer powders

Procedia PDF Downloads 475
383 Status Report of the GERDA Phase II Startup

Authors: Valerio D’Andrea

Abstract:

The GERmanium Detector Array (GERDA) experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, searches for 0νββ of 76Ge. Germanium diodes enriched to ∼ 86 % in the double beta emitter 76Ge(enrGe) are exposed being both source and detectors of 0νββ decay. Neutrinoless double beta decay is considered a powerful probe to address still open issues in the neutrino sector of the (beyond) Standard Model of particle Physics. Since 2013, just after the completion of the first part of its experimental program (Phase I), the GERDA setup has been upgraded to perform its next step in the 0νββ searches (Phase II). Phase II aims to reach a sensitivity to the 0νββ decay half-life larger than 1026 yr in about 3 years of physics data taking. This exposing a detector mass of about 35 kg of enrGe and with a background index of about 10^−3 cts/(keV·kg·yr). One of the main new implementations is the liquid argon scintillation light read-out, to veto those events that only partially deposit their energy both in Ge and in the surrounding LAr. In this paper, the GERDA Phase II expected goals, the upgrade work and few selected features from the 2015 commissioning and 2016 calibration runs will be presented. The main Phase I achievements will be also reviewed.

Keywords: gerda, double beta decay, LNGS, germanium

Procedia PDF Downloads 343
382 Applying the Crystal Model Approach on Light Nuclei for Calculating Radii and Density Distribution

Authors: A. Amar

Abstract:

A new model, namely the crystal model, has been modified to calculate the radius and density distribution of light nuclei up to ⁸Be. The crystal model has been modified according to solid-state physics, which uses the analogy between nucleon distribution and atoms distribution in the crystal. The model has analytical analysis to calculate the radius where the density distribution of light nuclei has obtained from analogy of crystal lattice. The distribution of nucleons over crystal has been discussed in a general form. The equation that has been used to calculate binding energy was taken from the solid-state model of repulsive and attractive force. The numbers of the protons were taken to control repulsive force, where the atomic number was responsible for the attractive force. The parameter has been calculated from the crystal model was found to be proportional to the radius of the nucleus. The density distribution of light nuclei was taken as a summation of two clusters distribution as in ⁶Li=alpha+deuteron configuration. A test has been done on the data obtained for radius and density distribution using double folding for d+⁶,⁷Li with M3Y nucleon-nucleon interaction. Good agreement has been obtained for both the radius and density distribution of light nuclei. The model failed to calculate the radius of ⁹Be, so modifications should be done to overcome discrepancy.

Keywords: nuclear physics, nuclear lattice, study nucleus as crystal, light nuclei till to ⁸Be

Procedia PDF Downloads 142
381 Experiment-Based Teaching Method for the Varying Frictional Coefficient

Authors: Mihaly Homostrei, Tamas Simon, Dorottya Schnider

Abstract:

The topic of oscillation in physics is one of the key ideas which is usually taught based on the concept of harmonic oscillation. It can be an interesting activity to deal with a frictional oscillator in advanced high school classes or in university courses. Its mechanics are investigated in this research, which shows that the motion of the frictional oscillator is more complicated than a simple harmonic oscillator. The physics of the applied model in this study seems to be interesting and useful for undergraduate students. The study presents a well-known physical system, which is mostly discussed theoretically in high school and at the university. The ideal frictional oscillator is normally used as an example of harmonic oscillatory motion, as its theory relies on the constant coefficient of sliding friction. The structure of the system is simple: a rod with a homogeneous mass distribution is placed on two rotating identical cylinders placed at the same height so that they are horizontally aligned, and they rotate at the same angular velocity, however in opposite directions. Based on this setup, one could easily show that the equation of motion describes a harmonic oscillation considering the magnitudes of the normal forces in the system as the function of the position and the frictional forces with a constant coefficient of frictions are related to them. Therefore, the whole description of the model relies on simple Newtonian mechanics, which is available for students even in high school. On the other hand, the phenomenon of the described frictional oscillator does not seem to be so straightforward after all; experiments show that the simple harmonic oscillation cannot be observed in all cases, and the system performs a much more complex movement, whereby the rod adjusts itself to a non-harmonic oscillation with a nonzero stable amplitude after an unconventional damping effect. The stable amplitude, in this case, means that the position function of the rod converges to a harmonic oscillation with a constant amplitude. This leads to the idea of a more complex model which can describe the motion of the rod in a more accurate way. The main difference to the original equation of motion is the concept that the frictional coefficient varies with the relative velocity. This dependence on the velocity was investigated in many different research articles as well; however, this specific problem could demonstrate the key concept of the varying friction coefficient and its importance in an interesting and demonstrative way. The position function of the rod is described by a more complicated and non-trivial, yet more precise equation than the usual harmonic oscillation description of the movement. The study discusses the structure of the measurements related to the frictional oscillator, the qualitative and quantitative derivation of the theory, and the comparison of the final theoretical function as well as the measured position-function in time. The project provides useful materials and knowledge for undergraduate students and a new perspective in university physics education.

Keywords: friction, frictional coefficient, non-harmonic oscillator, physics education

Procedia PDF Downloads 171
380 Non-Singular Gravitational Collapse of a Homogeneous Scalar Field in Deformed Phase Space

Authors: Amir Hadi Ziaie

Abstract:

In the present work, we revisit the collapse process of a spherically symmetric homogeneous scalar field (in FRW background) minimally coupled to gravity, when the phase-space deformations are taken into account. Such a deformation is mathematically introduced as a particular type of noncommutativity between the canonical momenta of the scale factor and of the scalar field. In the absence of such deformation, the collapse culminates in a spacetime singularity. However, when the phase-space is deformed, we find that the singularity is removed by a non-singular bounce, beyond which the collapsing cloud re-expands to infinity. More precisely, for negative values of the deformation parameter, we identify the appearance of a negative pressure, which decelerates the collapse to finally avoid the singularity formation. While in the un-deformed case, the horizon curve monotonically decreases to finally cover the singularity, in the deformed case the horizon has a minimum value that this value depends on deformation parameter and initial configuration of the collapse. Such a setting predicts a threshold mass for black hole formation in stellar collapse and manifests the role of non-commutative geometry in physics and especially in stellar collapse and supernova explosion.

Keywords: gravitational collapse, non-commutative geometry, spacetime singularity, black hole physics

Procedia PDF Downloads 316
379 Pharmaceutical Applications of Newton's Second Law and Disc Inertia

Authors: Nicholas Jensen

Abstract:

As the effort to create new drugs to treat rare conditions cost-effectively intensifies, there is a need to ensure maximum efficiency in the manufacturing process. This includes the creation of ultracompact treatment forms, which can best be achieved via applications of fundamental laws of physics. This paper reports an experiment exploring the relationship between the forms of Newton's 2ⁿᵈ Law appropriate to linear motion and to transversal architraves. The moment of inertia of three discs was determined by experiments and compared with previous data derived from a theoretical relationship. The method used was to attach the discs to a moment arm. Comparing the results with those obtained from previous experiments, it is found to be consistent with the first law of thermodynamics. It was further found that Newton's 2ⁿᵈ law violates the second law of thermodynamics. The purpose of this experiment was to explore the relationship between the forms of Newton's 2nd Law appropriate to linear motion and to apply torque to a twisting force, which is determined by position vector r and force vector F. Substituting equation alpha in place of beta; angular acceleration is a linear acceleration divided by radius r of the moment arm. The nevrological analogy of Newton's 2nd Law states that these findings can contribute to a fuller understanding of thermodynamics in relation to viscosity. Implications for the pharmaceutical industry will be seen to be fruitful from these findings.

Keywords: Newtonian physics, inertia, viscosity, pharmaceutical applications

Procedia PDF Downloads 90
378 Dielectric Spectroscopy Investigation of Hydrophobic Silica Aerogel

Authors: Deniz Bozoglu, Deniz Deger, Kemal Ulutas, Sahin Yakut

Abstract:

In recent years, silica aerogels have attracted great attention due to their outstanding properties, and their wide variety of potential applications such as microelectronics, nuclear and high-energy physics, optics and acoustics, superconductivity, space-physics. Hydrophobic silica aerogels were successfully synthesized in one-step by surface modification at ambient pressure. FT-IR result confirmed that Si-OH groups were successfully converted into hydrophobic and non-polar Si-CH3 groups by surface modification using trimethylchloro silane (TMCS) as co-precursor. Using Alpha-A High-Resolution Dielectric, Conductivity and Impedance Analyzer, AC conductivity of samples were examined at temperature range 293-423 K and measured over frequency range between 1-106 Hz. The characteristic relaxation time decreases with increasing temperature. The AC conductivity follows σ_AC (ω)=σ_t-σ_DC=Aω^s relation at frequencies higher than 10 Hz, and the dominant conduction mechanism is found to obey the Correlated Barrier Hopping (CBH) mechanism. At frequencies lower than 10 Hz, the electrical conduction is found to be in accordance with DC conduction mechanism. The activation energies obtained from AC conductivity results and it was observed two relaxation regions.

Keywords: aerogel, synthesis, dielectric constant, dielectric loss, relaxation time

Procedia PDF Downloads 169
377 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning

Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag

Abstract:

The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.

Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling

Procedia PDF Downloads 49
376 Evaluation of the Sustainability of Greek Vernacular Architecture in Different Climate Zones: Architectural Typology and Building Physics

Authors: Christina Kalogirou

Abstract:

Investigating the integration of bioclimatic design into vernacular architecture could lead to interesting results regarding the preservation of cultural heritage while enhancing the energy efficiency of historic buildings. Furthermore, these recognized principles and systems of bioclimatic design in vernacular settlements could be applied to modern architecture and thus to new buildings in such areas. This study introduces an approach to categorizing distinct technologies and design principles of bioclimatic design based on a thoughtful approach to various climatic zones and environment in Greece (mountainous areas, islands and lowlands). For this purpose, various types of dwellings are evaluated for their response to climate, regarding the layout of the buildings (orientation, floor plans’ shape, semi-open spaces), the site planning, the openings (size, position, protection), the building envelope (walls: construction materials-thickness, roof construction detailing) and the migratory living pattern according to seasonal needs. As a result, various passive design principles (that could be adapted to current architectural practice in such areas, in order to optimize the relationship between site, building, climate and energy efficiency) are proposed.

Keywords: bioclimatic design, buildings physics, climatic zones, energy efficiency, vernacular architecture

Procedia PDF Downloads 352
375 An Exploration of Gender Differences in Academic Writing in Science

Authors: Gayani Ranawake, Kate Wilson

Abstract:

Underrepresentation of women in academia, particularly in science, has been discussed by many scholars for decades. The causes of this underrepresentation are debated to this day. Publication is an important aspect of success in academia, and publication and citation rates are significant metrics in performance review, promotion, and employment. It has been established that men’s and women’s language use in general, both spoken and written, is different. However, no one, to our knowledge, has looked at whether men’s and women’s writing in science is different. If there are significant differences in the writing of men and women, then these differences may affect women’s ability to succeed in science. This study is part of a larger project to explore whether differences can be recognized in the academic science writing of men and women. Mono authored articles from high ranking physics, biology and psychology journals by men and women authors were compared in terms of readability statistics. In particular, the abstract and introduction sections were compared, as these are the first sections encountered by a reviewer, and so may have an important effect on their impression of the work. The Flesch Reading Ease, the percentage of passive sentences and the Flesch-Kincaid Reading Grade Level were calculated for each section of each article, along with counts of numbers of sentences, words per sentence and sentences per paragraph. Significance of differences was tested using the Behrens statistic. It was found that for both physics and biology papers there were no significant differences in the complexity or verbosity of the writing of men and women authors. However, there was a significant difference between the two disciplines, with physics articles being generally more readable (higher readability score) while also more passive (higher number of passive sentences). In contrast, the psychology articles showed a difference between men and women authors which may be significant. The average readability for introductions in women’s articles was 28 which was higher than for men’s articles, which was 19 (higher values indicate more readable). Women’s articles in psychology also had a greater proportion of passive sentences. It can be concluded that, at least in the more traditional sciences, men and women have adopted similar ways of writing, and that disciplinary differences are greater than gender differences. This may not be the case in psychology, which many consider to be more closely aligned with the humanities. Whether the lack of differences is because women have adapted to a masculine way of writing, or whether the genre itself is gender neutral needs further investigation.

Keywords: academic writing, gender differences, readability, science

Procedia PDF Downloads 164
374 The Structural and Electrical Properties of Cadmium Implanted Silicon Diodes at Room Temperature

Authors: J. O. Bodunrin, S. J. Moloi

Abstract:

This study reports on the x-ray crystallography (XRD) structure of cadmium-implanted p-type silicon, the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of unimplanted and cadmium-implanted silicon-based diodes. Cadmium was implanted at the energy of 160 KeV to the fluence of 10¹⁵ ion/cm². The results obtained indicate that the diodes were well fabricated, and the introduction of cadmium results in a change in behavior of the diodes from normal exponential to ohmic I-V behavior. The C-V measurements, on the other hand, show that the measured capacitance increased after cadmium doping due to the injected charge carriers. The doping density of the p-Si material and the device's Schottky barrier height was extracted, and the doping density of the undoped p-Si material increased after cadmium doping while the Schottky barrier height reduced. In general, the results obtained here are similar to those obtained on the diodes fabricated on radiation-hard material, indicating that cadmium is a promising metal dopant to improve the radiation hardness of silicon. Thus, this study would assist in adding possible options to improve the radiation hardness of silicon to be used in high energy physics experiments.

Keywords: cadmium, capacitance-voltage, current-voltage, high energy physics experiment, x-ray crystallography, XRD

Procedia PDF Downloads 111
373 Simulation of Single-Track Laser Melting on IN718 using Material Point Method

Authors: S. Kadiyala, M. Berzins, D. Juba, W. Keyrouz

Abstract:

This paper describes the Material Point Method (MPM) for simulating a single-track laser melting process on an IN718 solid plate. MPM, known for simulating challenging multiphysics problems, is used to model the intricate thermal, mechanical, and fluid interactions during the laser sintering process. This study analyzes the formation of single tracks, exploring the impact of varying laser parameters such as speed, power, and spot diameter on the melt pool and track formation. The focus is on MPM’s ability to accurately simulate and capture the transient thermo-mechanical and phase change phenomena, which are critical in predicting the cooling rates before and after solidification of the laser track and the final melt pool geometry. The simulation results are rigorously compared with experimental data (AMB2022 benchmarks), demonstrating the effectiveness of MPM in replicating the physical processes in laser sintering. This research highlights the potential of MPM in advancing the understanding and simulation of melt pool physics in metal additive manufacturing, paving the way for optimized process parameters and improved material performance.

Keywords: dditive manufacturing simulation, material point method, phase change, melt pool physics

Procedia PDF Downloads 36
372 Purity Monitor Studies in Medium Liquid Argon TPC

Authors: I. Badhrees

Abstract:

This paper is an attempt to describe some of the results that had been found through a journey of study in the field of particle physics. This study consists of two parts, one about the measurement of the cross section of the decay of the Z particle in two electrons, and the other deals with the measurement of the cross section of the multi-photon absorption process using a beam of laser in the Liquid Argon Time Projection Chamber. The first part of the paper concerns the results based on the analysis of a data sample containing 8120 ee candidates to reconstruct the mass of the Z particle for each event where each event has an ee pair with PT(e) > 20GeV, and η(e) < 2.5. Monte Carlo templates of the reconstructed Z particle were produced as a function of the Z mass scale. The distribution of the reconstructed Z mass in the data was compared to the Monte Carlo templates, where the total cross section is calculated to be equal to 1432 pb. The second part concerns the Liquid Argon Time Projection Chamber, LAr TPC, the results of the interaction of the UV Laser, Nd-YAG with λ= 266mm, with LAr and through the study of the multi-photon ionization process as a part of the R&D at Bern University. The main result of this study was the cross section of the process of the multi-photon ionization process of the LAr, σe = 1.24±0.10stat±0.30sys.10 -56cm4.

Keywords: ATLAS, CERN, KACST, LArTPC, particle physics

Procedia PDF Downloads 318
371 The MoEDAL-MAPP* Experiment - Expanding the Discovery Horizon of the Large Hadron Collider

Authors: James Pinfold

Abstract:

The MoEDAL (Monopole and Exotics Detector at the LHC) experiment deployed at IP8 on the Large Hadron Collider ring was the first dedicated search experiment to take data at the Large Hadron Collider (LHC) in 2010. It was designed to search for Highly Ionizing Particle (HIP) avatars of new physics such as magnetic monopoles, dyons, Q-balls, multiply charged particles, massive, slowly moving charged particles and long-lived massive charge SUSY particles. We shall report on our search at LHC’s Run-2 for Magnetic monopoles and dyons produced in p-p and photon-fusion. In more detail, we will report our most recent result in this arena: the search for magnetic monopoles via the Schwinger Mechanism in Pb-Pb collisions. The MoEDAL detector, originally the first dedicated search detector at the LHC, is being reinstalled for LHC’s Run-3 to continue the search for electrically and magnetically charged HIPs with enhanced instantaneous luminosity, detector efficiency and a factor of ten lower thresholds for HIPs. As part of this effort, we will search for massive l long-lived, singly and multiply charged particles from various scenarios for which MoEDAL has a competitive sensitivity. An upgrade to MoEDAL, the MoEDAL Apparatus for Penetrating Particles (MAPP), is now the LHC’s newest detector. The MAPP detector, positioned in UA83, expands the physics reach of MoEDAL to include sensitivity to feebly-charged particles with charge, or effective charge, as low as 10-3 e (where e is the electron charge). Also, In conjunction with MoEDAL’s trapping detector, the MAPP detector gives us a unique sensitivity to extremely long-lived charged particles. MAPP also has some sensitivity to long-lived neutral particles. The addition of an Outrigger detector for MAPP-1 to increase its acceptance for more massive milli-charged particles is currently in the Technical Proposal stage. Additionally, we will briefly report on the plans for the MAPP-2 upgrade to the MoEDAL-MAPP experiment for the High Luminosity LHC (HL-LHC). This experiment phase is designed to maximize MoEDAL-MAPP’s sensitivity to very long-lived neutral messengers of physics beyond the Standard Model. We envisage this detector being deployed in the UGC1 gallery near IP8.

Keywords: LHC, beyond the standard model, dedicated search experiment, highly ionizing particles, long-lived particles, milli-charged particles

Procedia PDF Downloads 41
370 Amplitude Versus Offset (AVO) Modeling as a Tool for Seismic Reservoir Characterization of the Semliki Basin

Authors: Hillary Mwongyera

Abstract:

The Semliki basin has become a frontier for petroleum exploration in recent years. Exploration efforts have resulted into extensive seismic data acquisition and drilling of three wells namely; Turaco 1, Turaco 2 and Turaco 3. A petrophysical analysis of the Turaco 1 well was carried out to identify two reservoir zones on which AVO modeling was performed. A combination of seismic modeling and rock physics modeling was applied during reservoir characterization and monitoring to determine variations of seismic responses with amplitude characteristics. AVO intercept gradient analysis applied on AVO synthetic CDP gathers classified AVO anomalies associated with both reservoir zones as Class 1 AVO anomalies. Fluid replacement modeling was carried out on both reservoir zones using homogeneous mixing and patchy saturation patterns to determine effects of fluid substitution on rock property interactions. For both homogeneous mixing and saturation patterns, density (ρ) showed an increasing trend with increasing brine substitution while Shear wave velocity (Vs) decreased with increasing brine substitution. A study of compressional wave velocity (Vp) with increasing brine substitution for both homogeneous mixing and patchy saturation gave quite interesting results. During patchy saturation, Vp increased with increasing brine substitution. During homogeneous mixing however, Vp showed a slightly decreasing trend with increasing brine substitution but increased tremendously towards and at full brine saturation. A sensitivity analysis carried out showed that density was a very sensitive rock property responding to brine saturation except at full brine saturation during homogeneous mixing where Vp showed greater sensitivity with brine saturation. Rock physics modeling was performed to predict diagnostics of reservoir quality using an inverse deterministic approach which showed low shale content and a high degree of shale stiffness within reservoir zones.

Keywords: Amplitude Versus Offset (AVO), fluid replacement modelling, reservoir characterization, AVO attributes, rock physics modelling, reservoir monitoring

Procedia PDF Downloads 504
369 Learning Physics Concepts through Language Syntagmatic Paradigmatic Relations

Authors: C. E. Laburu, M. A. Barros, A. F. Zompero, O. H. M. Silva

Abstract:

The work presents a teaching strategy that employs syntagmatic and paradigmatic linguistic relations in order to monitor the understanding of physics students’ concepts. Syntagmatic and paradigmatic relations are theoretical elements of semiotics studies and our research circumstances and justified them within the research program of multi-modal representations. Among the multi-modal representations to learning scientific knowledge, the scope of action of syntagmatic and paradigmatic relations belongs to the discursive writing form. The use of such relations has the purpose to seek innovate didactic work with discourse representation in the write form before translate to another different representational form. The research was conducted with a sample of first year high school students. The students were asked to produce syntagmatic and paradigmatic of Newton’ first law statement. This statement was delivered in paper for each student that should individually write the relations. The student’s records were collected for analysis. It was possible observed in one student used here as example that their monemes replaced and rearrangements produced by, respectively, syntagmatic and paradigmatic relations, kept the original meaning of the law. In paradigmatic production he specified relevant significant units of the linguistic signs, the monemas, which constitute the first articulation and each word substituted kept equivalence to the original meaning of original monema. Also, it was noted a number of diverse and many monemas were chosen, with balanced combination of grammatical (grammatical monema is what changes the meaning of a word, in certain positions of the syntagma, along with a relatively small number of other monemes. It is the smallest linguistic unit that has grammatical meaning) and lexical (lexical monema is what belongs to unlimited inventories; is the monema endowed with lexical meaning) monemas. In syntagmatic production, monemas ordinations were syntactically coherent, being linked with semantic conservation and preserved number. In general, the results showed that the written representation mode based on linguistic relations paradigmatic and syntagmatic qualifies itself to be used in the classroom as a potential identifier and accompanist of meanings acquired from students in the process of scientific inquiry.

Keywords: semiotics, language, high school, physics teaching

Procedia PDF Downloads 106
368 Advanced Technologies for Detector Readout in Particle Physics

Authors: Y. Venturini, C. Tintori

Abstract:

Given the continuous demand for improved readout performances in particle and dark matter physics, CAEN SpA is pushing on the development of advanced technologies for detector readout. We present the Digitizers 2.0, the result of the success of the previous Digitizers generation, combined with expanded capabilities and a renovation of the user experience introducing the open FPGA. The first product of the family is the VX2740 (64 ch, 125 MS/s, 16 bit) for advanced waveform recording and Digital Pulse Processing, fitting with the special requirements of Dark Matter and Neutrino experiments. In parallel, CAEN is developing the FERS-5200 platform, a Front-End Readout System designed to read out large multi-detector arrays, such as SiPMs, multi-anode PMTs, silicon strip detectors, wire chambers, GEM, gas tubes, and others. This is a highly-scalable distributed platform, based on small Front-End cards synchronized and read out by a concentrator board, allowing to build extremely large experimental setup. We plan to develop a complete family of cost-effective Front-End cards tailored to specific detectors and applications. The first one available is the A5202, a 64-channel unit for SiPM readout based on CITIROC ASIC by Weeroc.

Keywords: dark matter, digitizers, front-end electronics, open FPGA, SiPM

Procedia PDF Downloads 97
367 Wave-Assisted Flapping Foil Propulsion: Flow Physics and Scaling Laws From Fluid-Structure Interaction Simulations

Authors: Rajat Mittal, Harshal Raut, Jung Hee Seo

Abstract:

Wave-assisted propulsion (WAP) systems convert wave energy into thrust using elastically mounted hydrofoils. We employ sharp-interface immersed boundary simulations to examine the effect of two key parameters on the flow physics, the fluid-structure interaction, as well as thrust performance of these systems - the stiffness of the torsional spring and the location of the rotational center. The variation in spring stiffness leads to different amplitude of pitch motion, phase difference with respect to heaving motion and thrust coefficient and we show the utility of ‘maps’ of energy exchange between the flow and the hydrofoil system, as a way to understand and predict this behavior. The Force Partitioning Method (FPM) is used to decompose the pressure forces into individual components and understand the mechanism behind increase in thrust. Next, a scaling law is presented for the thrust coefficient generated by heaving and pitching foil. The parameters within the scaling law are calculated based on direct-numerical simulations based parametric study utilized to generate the energy maps. The predictions of the proposed scaling law are then compared with those of a similar model from the literature, showing a noticeable improvement in the prediction of the thrust coefficient.

Keywords: propulsion, flapping foils, hydrodynamics, wave power

Procedia PDF Downloads 23
366 Modeling Slow Crack Growth under Thermal and Chemical Effects for Fitness Predictions of High-Density Polyethylene Material

Authors: Luis Marquez, Ge Zhu, Vikas Srivastava

Abstract:

High-density polyethylene (HDPE) is one of the most commonly used thermoplastic polymer materials for water and gas pipelines. Slow crack growth failure is a well-known phenomenon in high-density polyethylene material and causes brittle failure well below the yield point with no obvious sign. The failure of transportation pipelines can cause catastrophic environmental and economic consequences. Using the non-destructive testing method to predict slow crack growth failure behavior is the primary preventative measurement employed by the pipeline industry but is often costly and time-consuming. Phenomenological slow crack growth models are useful to predict the slow crack growth behavior in the polymer material due to their ability to evaluate slow crack growth under different temperature and loading conditions. We developed a quantitative method to assess the slow crack growth behavior in the high-density polyethylene pipeline material under different thermal conditions based on existing physics-based phenomenological models. We are also working on developing an experimental protocol and quantitative model that can address slow crack growth behavior under different chemical exposure conditions to improve the safety, reliability, and resilience of HDPE-based pipeline infrastructure.

Keywords: mechanics of materials, physics-based modeling, civil engineering, fracture mechanics

Procedia PDF Downloads 171
365 Moderating Effects of Future Career Interest in Science and Gender on Students' Achievement in Basic Science in Oyo State, Nigeria

Authors: Segun Jacob Ogunkunle

Abstract:

The study examined the moderating effects of future career interest in science and gender on achievement in basic science of students taught in a simulated laboratory and enriched laboratory guide material environments. It adopted the pretest-posttest control group quasi experimental design with a 3x2x2 factorial matrix. A total of 277 (130 males, 147 females; ± 17 years) junior secondary three students randomly selected from six purposively selected secondary schools based on availability of functional computer and physics laboratories participated in the study. Data were collected using achievement test in basic science (r=0.87) and future career interest in science (r=0.99) while analysis of covariance and estimated marginal means were used to test three hypotheses at 0.05 level of significance. The findings of the study show that future career interest in science had significant effect on students’ achievement in basic science whereas gender did not. The interaction effect of future career interest in science and gender on students’ achievement in basic science was not significant. It is therefore recommended that prior knowledge of students’ future career interest in science could be used to improve participation in basic science practical in order to enhance achievement in biology, chemistry, and physics at the post-basic education level in Nigeria.

Keywords: future career interest in science, basic science, simulated laboratory, enriched laboratory guide materials, achievement in science

Procedia PDF Downloads 127
364 Object-Based Flow Physics for Aerodynamic Modelling in Real-Time Environments

Authors: William J. Crowther, Conor Marsh

Abstract:

Object-based flow simulation allows fast computation of arbitrarily complex aerodynamic models made up of simple objects with limited flow interactions. The proposed approach is universally applicable to objects made from arbitrarily scaled ellipsoid primitives at arbitrary aerodynamic attitude and angular rate. The use of a component-based aerodynamic modelling approach increases efficiency by allowing selective inclusion of different physics models at run-time and allows extensibility through the development of new models. Insight into the numerical stability of the model under first order fixed-time step integration schemes is provided by stability analysis of the drag component. The compute cost of model components and functions is evaluated and compared against numerical benchmarks. Model static outputs are verified against theoretical expectations and dynamic behaviour using falling plate data from the literature. The model is applied to a range of case studies to demonstrate the efficacy of its application in extensibility, ease of use, and low computational cost. Dynamically complex multi-body systems can be implemented in a transparent and efficient manner, and we successfully demonstrate large scenes with hundreds of objects interacting with diverse flow fields.

Keywords: aerodynamics, real-time simulation, low-order model, flight dynamics

Procedia PDF Downloads 64
363 Feedback Matrix Approach for Relativistic Runaway Electron Avalanches Dynamics in Complex Electric Field Structures

Authors: Egor Stadnichuk

Abstract:

Relativistic runaway electron avalanches (RREA) are a widely accepted source of thunderstorm gamma-radiation. In regions with huge electric field strength, RREA can multiply via relativistic feedback. The relativistic feedback is caused both by positron production and by runaway electron bremsstrahlung gamma-rays reversal. In complex multilayer thunderstorm electric field structures, an additional reactor feedback mechanism appears due to gamma-ray exchange between separate strong electric field regions with different electric field directions. The study of this reactor mechanism in conjunction with the relativistic feedback with Monte Carlo simulations or by direct solution of the kinetic Boltzmann equation requires a significant amount of computational time. In this work, a theoretical approach to study feedback mechanisms in RREA physics is developed. It is based on the matrix of feedback operators construction. With the feedback matrix, the problem of the dynamics of avalanches in complex electric structures is reduced to the problem of finding eigenvectors and eigenvalues. A method of matrix elements calculation is proposed. The proposed concept was used to study the dynamics of RREAs in multilayer thunderclouds.

Keywords: terrestrial Gamma-ray flashes, thunderstorm ground enhancement, relativistic runaway electron avalanches, gamma-rays, high-energy atmospheric physics, TGF, TGE, thunderstorm, relativistic feedback, reactor feedback, reactor model

Procedia PDF Downloads 140
362 Analysis of Basic Science Curriculum as Correlates of Secondary School Students' Achievement in Science Test in Oyo State

Authors: Olubiyi Johnson Ezekiel

Abstract:

Basic science curriculum is an on-going effort towards developing the potential of manner to produce individuals in a holistic and integrated person, who are intellectually, spiritually, emotionally and physically balanced and harmonious. The main focus of this study is to determine the relationship between students’ achievement in junior school certificate examination (JSCE) and senior school basic science achievement test (SSBSAT) on the basis of all the components of basic science. The study employed the descriptive research of the survey type and utilized junior school certificate examination and senior school basic science achievement test(r = .87) scores as instruments. The data collected were subjected to Pearson product moment correlation, Spearman rank correlation, regression analysis and analysis of variance. The result of the finding revealed that the mean effects of the achievement in all the components of basic science on SSBSAT are significantly different from zero. Based on the results of the findings, it was concluded that the relationship between students’ achievement in JSCE and SSBSAT was weak and to achieve a unit increase in the students’ achievement in the SSBSAT when other subjects are held constant, we have to increase the learning of: -physics by 0.081 units; -chemistry by 0.072 units; -biology by 0.025 units and general knowledge by 0.097 units. It was recommended among others, that general knowledge aspect of basic science should be included in either physics or chemistry aspect of basic science.

Keywords: basic science curriculum, students’ achievement, science test, secondary school students

Procedia PDF Downloads 407
361 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System

Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu

Abstract:

Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.

Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model

Procedia PDF Downloads 82
360 High Accuracy Analytic Approximations for Modified Bessel Functions I₀(x)

Authors: Pablo Martin, Jorge Olivares, Fernando Maass

Abstract:

A method to obtain analytic approximations for special function of interest in engineering and physics is described here. Each approximate function will be valid for every positive value of the variable and accuracy will be high and increasing with the number of parameters to determine. The general technique will be shown through an application to the modified Bessel function of order zero, I₀(x). The form and the calculation of the parameters are performed with the simultaneous use of the power series and asymptotic expansion. As in Padé method rational functions are used, but now they are combined with other elementary functions as; fractional powers, hyperbolic, trigonometric and exponential functions, and others. The elementary function is determined, considering that the approximate function should be a bridge between the power series and the asymptotic expansion. In the case of the I₀(x) function two analytic approximations have been already determined. The simplest one is (1+x²/4)⁻¹/⁴(1+0.24273x²) cosh(x)/(1+0.43023x²). The parameters of I₀(x) were determined using the leading term of the asymptotic expansion and two coefficients of the power series, and the maximum relative error is 0.05. In a second case, two terms of the asymptotic expansion were used and 4 of the power series and the maximum relative error is 0.001 at x≈9.5. Approximations with much higher accuracy will be also shown. In conclusion a new technique is described to obtain analytic approximations to some functions of interest in sciences, such that they have a high accuracy, they are valid for every positive value of the variable, they can be integrated and differentiated as the usual, functions, and furthermore they can be calculated easily even with a regular pocket calculator.

Keywords: analytic approximations, mathematical-physics applications, quasi-rational functions, special functions

Procedia PDF Downloads 224
359 Experimental Activity on the Photovoltaic Effect

Authors: Salomão Manuel Francisco, Manuel António Salgueiro Da Silva, Bento Filipe Barreiras Pinto Cavadas, Teresa Monteiro Seixas

Abstract:

In bachelor's degrees in Physics Education framework in Angola, and to a certain extent, within the community of Portuguese language countries (CPLP), teaching methodologies rely heavily on theoretical memorization and mathematical demonstrations. This approach often discourages students, particularly the female population, as the reliance on theoretical mathematical demonstrations generates the perception of Physics as an arduous, challenging discipline. To address this challenge and recognize the value of practical application as an evaluative criterion of material truth, we propose a practical activity in Environmental Physics that will be shared with Angolan higher education teachers, who will receive full scaffolding and support from the authors. These teachers, adopting and developing similar activities in a classroom setting, will contribute to the environmental education framework as well. Additionally, this work aligns with different goals of UNESCO's 2030 agenda, namely, specifically, goals 4, 5, 7, 11, 13, and 17. The experimental activity developed in this work is centered around the demonstration of the photovoltaic effect and its application for renewable energy production. The first objective of the activity is to study the variation of electrical power supplied by a photovoltaic system (PV) to an electrical circuit as the angle of light incidence changes. Students can observe that the power supplied to the circuit is greater when light rays fall perpendicularly on the PV. However, as the angle of incidence increases, resulting in a larger area covered by the light rays, the power supplied to the circuit decreases due to lower irradiance. The second objective is to demonstrate that the power output can be maximized by adjusting the circuit load resistance at each irradiance value. In these two parts of the activity, students can analyze experimental data taking into account the irradiance law and the equivalent circuit description of a PV cell. Through detailed data analysis, students are also expected to assess the effects of temperature on PV efficiency degradation and the efficiency enhancement provided by light concentration mechanisms. As a third objective, students can explore how the color of incident light affects the PV output power, considering the quantum nature of light and its interaction with the PV system.

Keywords: experiments, irradiation law, physic teaching, photovoltaic effect

Procedia PDF Downloads 55
358 Examining the Skills of Establishing Number and Space Relations of Science Students with the 'Integrative Perception Test'

Authors: Ni̇sa Yeni̇kalayci, Türkan Aybi̇ke Akarca

Abstract:

The ability of correlation the number and space relations, one of the basic scientific process skills, is being used in the transformation of a two-dimensional object into a three-dimensional image or in the expression of symmetry axes of the object. With this research, it is aimed to determine the ability of science students to establish number and space relations. The research was carried out with a total of 90 students studying in the first semester of the Science Education program of a state university located in the Turkey’s Black Sea Region in the fall semester of 2017-2018 academic year. An ‘Integrative Perception Test (IPT)’ was designed by the researchers to collect the data. Within the scope of IPT, the courses and workbooks specific to the field of science were scanned and the ones without symmetrical structure from the visual items belonging to the ‘Physics - Chemistry – Biology’ sub-fields were selected and listed. During the application, it was expected that students would imagine and draw images of the missing half of the visual items that were given incomplete in the first place. The data obtained from the test in which there are 30 images or pictures in total (f Physics = 10, f Chemistry = 10, f Biology = 10) were analyzed descriptively based on the drawings created by the students as ‘complete (2 points), incomplete/wrong (1 point), empty (0 point)’. For the teaching of new concepts in small aged groups, images or pictures showing symmetrical structures and similar applications can also be used.

Keywords: integrative perception, number and space relations, science education, scientific process skills

Procedia PDF Downloads 127
357 Real-Time Generative Architecture for Mesh and Texture

Authors: Xi Liu, Fan Yuan

Abstract:

In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.

Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics

Procedia PDF Downloads 36
356 The Theory of the Mystery: Unifying the Quantum and Cosmic Worlds

Authors: Md. Najiur Rahman

Abstract:

This hypothesis reveals a profound and symmetrical connection that goes beyond the boundaries of quantum physics and cosmology, revolutionizing our understanding of the fundamental building blocks of the cosmos, given its name ‘The Theory of the Mystery’. This theory has an elegantly simple equation, “R = ∆r / √∆m” which establishes a beautiful and well-crafted relationship between the radius (R) of an elementary particle or galaxy, the relative change in radius (∆r), and the mass difference (∆m) between related entities. It is fascinating to note that this formula presents a super synchronization, one which involves the convergence of every basic particle and any single celestial entity into perfect alignment with its respective mass and radius. In addition, we have a Supporting equation that defines the mass-radius connection of an entity by the equation: R=√m/N, where N is an empirically established constant, determined to be approximately 42.86 kg/m, representing the proportionality between mass and radius. It provides precise predictions, collects empirical evidence, and explores the far-reaching consequences of theories such as General Relativity. This elegant symmetry reveals a fundamental principle that underpins the cosmos: each component, whether small or large, follows a precise mass-radius relationship to exert gravity by a universal law. This hypothesis represents a transformative process towards a unified theory of physics, and the pursuit of experimental verification will show that each particle and galaxy is bound by gravity and plays a unique but harmonious role in shaping the universe. It promises to reveal the great symphony of the mighty cosmos. The predictive power of our hypothesis invites the exploration of entities at the farthest reaches of the cosmos, providing a bridge between the known and the unknown.

Keywords: unified theory, quantum gravity, mass-radius relationship, dark matter, uniform gravity

Procedia PDF Downloads 33
355 Predictions of Thermo-Hydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings, abbreviated as GFBs, are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional, abbreviated as 3D, fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.

Keywords: fluid-structure interaction, multi-physics simulations, gas foil bearing, oil-free, transient thermo-hydrodynamic

Procedia PDF Downloads 140