Search results for: Bjerksund and Stensland approximations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 90

Search results for: Bjerksund and Stensland approximations

90 Numerical Methods versus Bjerksund and Stensland Approximations for American Options Pricing

Authors: Marasovic Branka, Aljinovic Zdravka, Poklepovic Tea

Abstract:

Numerical methods like binomial and trinomial trees and finite difference methods can be used to price a wide range of options contracts for which there are no known analytical solutions. American options are the most famous of that kind of options. Besides numerical methods, American options can be valued with the approximation formulas, like Bjerksund-Stensland formulas from 1993 and 2002. When the value of American option is approximated by Bjerksund-Stensland formulas, the computer time spent to carry out that calculation is very short. The computer time spent using numerical methods can vary from less than one second to several minutes or even hours. However to be able to conduct a comparative analysis of numerical methods and Bjerksund-Stensland formulas, we will limit computer calculation time of numerical method to less than one second. Therefore, we ask the question: Which method will be most accurate at nearly the same computer calculation time?

Keywords: Bjerksund and Stensland approximations, computational analysis, finance, options pricing, numerical methods

Procedia PDF Downloads 455
89 Formulating Rough Approximations in Information Tables with Possibilistic Information

Authors: Michinori Nakata, Hiroshi Sakai

Abstract:

A rough set, which consists of lower and upper approximations, is formulated in information tables containing possibilistic information. First, lower and upper approximations on the basis of possible world semantics in the same way as Lipski did in the field of incomplete databases are shown in order to clarify fundamentals of rough sets under possibilistic information. Possibility and necessity measures are used, as is done in possibilistic databases. As a result, each object has certain and possible membership degrees to lower and upper approximations, which degrees are the lower and upper bounds. Therefore, the degree that the object belongs to lower and upper approximations is expressed by an interval value. And the complementary property linked with the lower and upper approximations holds, as is valid under complete information. Second, the approach based on indiscernibility relations, which is proposed by Dubois and Prade, are extended in three cases. The first case is that objects used to approximate a set of objects are characterized by possibilistic information. The second case is that objects used to approximate a set of objects with possibilistic information are characterized by complete information. The third case is that objects that are characterized by possibilistic information approximate a set of objects with possibilistic information. The extended approach create the same results as the approach based on possible world semantics. This justifies our extension.

Keywords: rough sets, possibilistic information, possible world semantics, indiscernibility relations, lower approximations, upper approximations

Procedia PDF Downloads 321
88 High Accuracy Analytic Approximation for Special Functions Applied to Bessel Functions J₀(x) and Its Zeros

Authors: Fernando Maass, Pablo Martin, Jorge Olivares

Abstract:

The Bessel function J₀(x) is very important in Electrodynamics and Physics, as well as its zeros. In this work, a method to obtain high accuracy approximation is presented through an application to that function. In most of the applications of this function, the values of the zeros are very important. In this work, analytic approximations for this function have been obtained valid for all positive values of the variable x, which have high accuracy for the function as well as for the zeros. The approximation is determined by the simultaneous used of the power series and asymptotic expansion. The structure of the approximation is a combination of two rational functions with elementary functions as trigonometric and fractional powers. Here us in Pade method, rational functions are used, but now there combined with elementary functions us fractional powers hyperbolic or trigonometric functions, and others. The reason of this is that now power series of the exact function are used, but together with the asymptotic expansion, which usually includes fractional powers trigonometric functions and other type of elementary functions. The approximation must be a bridge between both expansions, and this can not be accomplished using only with rational functions. In the simplest approximation using 4 parameters the maximum absolute error is less than 0.006 at x ∼ 4.9. In this case also the maximum relative error for the zeros is less than 0.003 which is for the second zero, but that value decreases rapidly for the other zeros. The same kind of behaviour happens for the relative error of the maximum and minimum of the functions. Approximations with higher accuracy and more parameters will be also shown. All the approximations are valid for any positive value of x, and they can be calculated easily.

Keywords: analytic approximations, asymptotic approximations, Bessel functions, quasirational approximations

Procedia PDF Downloads 250
87 High Accuracy Analytic Approximations for Modified Bessel Functions I₀(x)

Authors: Pablo Martin, Jorge Olivares, Fernando Maass

Abstract:

A method to obtain analytic approximations for special function of interest in engineering and physics is described here. Each approximate function will be valid for every positive value of the variable and accuracy will be high and increasing with the number of parameters to determine. The general technique will be shown through an application to the modified Bessel function of order zero, I₀(x). The form and the calculation of the parameters are performed with the simultaneous use of the power series and asymptotic expansion. As in Padé method rational functions are used, but now they are combined with other elementary functions as; fractional powers, hyperbolic, trigonometric and exponential functions, and others. The elementary function is determined, considering that the approximate function should be a bridge between the power series and the asymptotic expansion. In the case of the I₀(x) function two analytic approximations have been already determined. The simplest one is (1+x²/4)⁻¹/⁴(1+0.24273x²) cosh(x)/(1+0.43023x²). The parameters of I₀(x) were determined using the leading term of the asymptotic expansion and two coefficients of the power series, and the maximum relative error is 0.05. In a second case, two terms of the asymptotic expansion were used and 4 of the power series and the maximum relative error is 0.001 at x≈9.5. Approximations with much higher accuracy will be also shown. In conclusion a new technique is described to obtain analytic approximations to some functions of interest in sciences, such that they have a high accuracy, they are valid for every positive value of the variable, they can be integrated and differentiated as the usual, functions, and furthermore they can be calculated easily even with a regular pocket calculator.

Keywords: analytic approximations, mathematical-physics applications, quasi-rational functions, special functions

Procedia PDF Downloads 249
86 Nano Generalized Topology

Authors: M. Y. Bakeir

Abstract:

Rough set theory is a recent approach for reasoning about data. It has achieved a large amount of applications in various real-life fields. The main idea of rough sets corresponds to the lower and upper set approximations. These two approximations are exactly the interior and the closure of the set with respect to a certain topology on a collection U of imprecise data acquired from any real-life field. The base of the topology is formed by equivalence classes of an equivalence relation E defined on U using the available information about data. The theory of generalized topology was studied by Cs´asz´ar. It is well known that generalized topology in the sense of Cs´asz´ar is a generalization of the topology on a set. On the other hand, many important collections of sets related with the topology on a set form a generalized topology. The notion of Nano topology was introduced by Lellis Thivagar, which was defined in terms of approximations and boundary region of a subset of an universe using an equivalence relation on it. The purpose of this paper is to introduce a new generalized topology in terms of rough set called nano generalized topology

Keywords: rough sets, topological space, generalized topology, nano topology

Procedia PDF Downloads 427
85 Integrated Nested Laplace Approximations For Quantile Regression

Authors: Kajingulu Malandala, Ranganai Edmore

Abstract:

The asymmetric Laplace distribution (ADL) is commonly used as the likelihood function of the Bayesian quantile regression, and it offers different families of likelihood method for quantile regression. Notwithstanding their popularity and practicality, ADL is not smooth and thus making it difficult to maximize its likelihood. Furthermore, Bayesian inference is time consuming and the selection of likelihood may mislead the inference, as the Bayes theorem does not automatically establish the posterior inference. Furthermore, ADL does not account for greater skewness and Kurtosis. This paper develops a new aspect of quantile regression approach for count data based on inverse of the cumulative density function of the Poisson, binomial and Delaporte distributions using the integrated nested Laplace Approximations. Our result validates the benefit of using the integrated nested Laplace Approximations and support the approach for count data.

Keywords: quantile regression, Delaporte distribution, count data, integrated nested Laplace approximation

Procedia PDF Downloads 161
84 Nonparametric Copula Approximations

Authors: Serge Provost, Yishan Zang

Abstract:

Copulas are currently utilized in finance, reliability theory, machine learning, signal processing, geodesy, hydrology and biostatistics, among several other fields of scientific investigation. It follows from Sklar's theorem that the joint distribution function of a multidimensional random vector can be expressed in terms of its associated copula and marginals. Since marginal distributions can easily be determined by making use of a variety of techniques, we address the problem of securing the distribution of the copula. This will be done by using several approaches. For example, we will obtain bivariate least-squares approximations of the empirical copulas, modify the kernel density estimation technique and propose a criterion for selecting appropriate bandwidths, differentiate linearized empirical copulas, secure Bernstein polynomial approximations of suitable degrees, and apply a corollary to Sklar's result. Illustrative examples involving actual observations will be presented. The proposed methodologies will as well be applied to a sample generated from a known copula distribution in order to validate their effectiveness.

Keywords: copulas, Bernstein polynomial approximation, least-squares polynomial approximation, kernel density estimation, density approximation

Procedia PDF Downloads 72
83 Wavelet Method for Numerical Solution of Fourth Order Wave Equation

Authors: A. H. Choudhury

Abstract:

In this paper, a highly accurate numerical method for the solution of one-dimensional fourth-order wave equation is derived. This hyperbolic problem is solved by using semidiscrete approximations. The space direction is discretized by wavelet-Galerkin method, and the time variable is discretized by using Newmark schemes.

Keywords: hyperbolic problem, semidiscrete approximations, stability, Wavelet-Galerkin Method

Procedia PDF Downloads 314
82 Numerical Analysis of a Reaction Diffusion System of Lambda-Omega Type

Authors: Hassan J. Al Salman, Ahmed A. Al Ghafli

Abstract:

In this study, we consider a nonlinear in time finite element approximation of a reaction diffusion system of lambda-omega type. We use a fixed-point theorem to prove existence of the approximations at each time level. Then, we derive some essential stability estimates and discuss the uniqueness of the approximations. In addition, we employ Nochetto mathematical framework to prove an optimal error bound in time for d= 1, 2 and 3 space dimensions. Finally, we present some numerical experiments to verify the obtained theoretical results.

Keywords: reaction diffusion system, finite element approximation, stability estimates, error bound

Procedia PDF Downloads 428
81 Mathematical and Numerical Analysis of a Reaction Diffusion System of Lambda-Omega Type

Authors: Hassan Al Salman, Ahmed Al Ghafli

Abstract:

In this study we consider a nonlinear in time finite element approximation of a reaction diffusion system of lambda-omega type. We use a fixed point theorem to prove existence of the approximations. Then, we derive some essential stability estimates and discuss the uniqueness of the approximations. Also, we prove an optimal error bound in time for d=1, 2 and 3 space dimensions. Finally, we present some numerical experiments to verify the theoretical results.

Keywords: reaction diffusion system, finite element approximation, fixed point theorem, an optimal error bound

Procedia PDF Downloads 531
80 The Construction of the Semigroup Which Is Chernoff Equivalent to Statistical Mixture of Quantizations for the Case of the Harmonic Oscillator

Authors: Leonid Borisov, Yuri Orlov

Abstract:

We obtain explicit formulas of finitely multiple approximations of the equilibrium density matrix for the case of the harmonic oscillator using Chernoff's theorem and the notion of semigroup which is Chernoff equivalent to average semigroup. Also we found explicit formulas for the corresponding approximate Wigner functions and average values of the observable. We consider a superposition of τ -quantizations representing a wide class of linear quantizations. We show that the convergence of the approximations of the average values of the observable is not uniform with respect to the Gibbs parameter. This does not allow to represent approximate expression as the sum of the exact limits and small deviations evenly throughout the temperature range with a given order of approximation.

Keywords: Chernoff theorem, Feynman formulas, finitely multiple approximation, harmonic oscillator, Wigner function

Procedia PDF Downloads 439
79 Numerical Solution of Portfolio Selecting Semi-Infinite Problem

Authors: Alina Fedossova, Jose Jorge Sierra Molina

Abstract:

SIP problems are part of non-classical optimization. There are problems in which the number of variables is finite, and the number of constraints is infinite. These are semi-infinite programming problems. Most algorithms for semi-infinite programming problems reduce the semi-infinite problem to a finite one and solve it by classical methods of linear or nonlinear programming. Typically, any of the constraints or the objective function is nonlinear, so the problem often involves nonlinear programming. An investment portfolio is a set of instruments used to reach the specific purposes of investors. The risk of the entire portfolio may be less than the risks of individual investment of portfolio. For example, we could make an investment of M euros in N shares for a specified period. Let yi> 0, the return on money invested in stock i for each dollar since the end of the period (i = 1, ..., N). The logical goal here is to determine the amount xi to be invested in stock i, i = 1, ..., N, such that we maximize the period at the end of ytx value, where x = (x1, ..., xn) and y = (y1, ..., yn). For us the optimal portfolio means the best portfolio in the ratio "risk-return" to the investor portfolio that meets your goals and risk ways. Therefore, investment goals and risk appetite are the factors that influence the choice of appropriate portfolio of assets. The investment returns are uncertain. Thus we have a semi-infinite programming problem. We solve a semi-infinite optimization problem of portfolio selection using the outer approximations methods. This approach can be considered as a developed Eaves-Zangwill method applying the multi-start technique in all of the iterations for the search of relevant constraints' parameters. The stochastic outer approximations method, successfully applied previously for robotics problems, Chebyshev approximation problems, air pollution and others, is based on the optimal criteria of quasi-optimal functions. As a result we obtain mathematical model and the optimal investment portfolio when yields are not clear from the beginning. Finally, we apply this algorithm to a specific case of a Colombian bank.

Keywords: outer approximation methods, portfolio problem, semi-infinite programming, numerial solution

Procedia PDF Downloads 309
78 Method of Successive Approximations for Modeling of Distributed Systems

Authors: A. Torokhti

Abstract:

A new method of mathematical modeling of the distributed nonlinear system is developed. The system is represented by a combination of the set of spatially distributed sensors and the fusion center. Its mathematical model is obtained from the iterative procedure that converges to the model which is optimal in the sense of minimizing an associated cost function.

Keywords: mathematical modeling, non-linear system, spatially distributed sensors, fusion center

Procedia PDF Downloads 380
77 Using the Bootstrap for Problems Statistics

Authors: Brahim Boukabcha, Amar Rebbouh

Abstract:

The bootstrap method based on the idea of exploiting all the information provided by the initial sample, allows us to study the properties of estimators. In this article we will present a theoretical study on the different methods of bootstrapping and using the technique of re-sampling in statistics inference to calculate the standard error of means of an estimator and determining a confidence interval for an estimated parameter. We apply these methods tested in the regression models and Pareto model, giving the best approximations.

Keywords: bootstrap, error standard, bias, jackknife, mean, median, variance, confidence interval, regression models

Procedia PDF Downloads 379
76 A Simplified Distribution for Nonlinear Seas

Authors: M. A. Tayfun, M. A. Alkhalidi

Abstract:

The exact theoretical expression describing the probability distribution of nonlinear sea-surface elevations derived from the second-order narrowband model has a cumbersome form that requires numerical computations, not well-disposed to theoretical or practical applications. Here, the same narrowband model is re-examined to develop a simpler closed-form approximation suitable for theoretical and practical applications. The salient features of the approximate form are explored, and its relative validity is verified with comparisons to other readily available approximations, and oceanic data.

Keywords: ocean waves, probability distributions, second-order nonlinearities, skewness coefficient, wave steepness

Procedia PDF Downloads 431
75 Parameter Estimation via Metamodeling

Authors: Sergio Haram Sarmiento, Arcady Ponosov

Abstract:

Based on appropriate multivariate statistical methodology, we suggest a generic framework for efficient parameter estimation for ordinary differential equations and the corresponding nonlinear models. In this framework classical linear regression strategies is refined into a nonlinear regression by a locally linear modelling technique (known as metamodelling). The approach identifies those latent variables of the given model that accumulate most information about it among all approximations of the same dimension. The method is applied to several benchmark problems, in particular, to the so-called ”power-law systems”, being non-linear differential equations typically used in Biochemical System Theory.

Keywords: principal component analysis, generalized law of mass action, parameter estimation, metamodels

Procedia PDF Downloads 516
74 Finite Sample Inferences for Weak Instrument Models

Authors: Gubhinder Kundhi, Paul Rilstone

Abstract:

It is well established that Instrumental Variable (IV) estimators in the presence of weak instruments can be poorly behaved, in particular, be quite biased in finite samples. Finite sample approximations to the distributions of these estimators are obtained using Edgeworth and Saddlepoint expansions. Departures from normality of the distributions of these estimators are analyzed using higher order analytical corrections in these expansions. In a Monte-Carlo experiment, the performance of these expansions is compared to the first order approximation and other methods commonly used in finite samples such as the bootstrap.

Keywords: bootstrap, Instrumental Variable, Edgeworth expansions, Saddlepoint expansions

Procedia PDF Downloads 309
73 Evaluation of Research in the Field of Energy Efficiency and MCA Methods Using Publications Databases

Authors: Juan Sepúlveda

Abstract:

Energy is a fundamental component in sustainability, the access and use of this resource is related with economic growth, social improvements, and environmental impacts. In this sense, energy efficiency has been studied as a factor that enhances the positive impacts of energy in communities; however, the implementation of efficiency requires strong policy and strategies that usually rely on individual measures focused in independent dimensions. In this paper, the problem of energy efficiency as a multi-objective problem is studied, using scientometric analysis to discover trends and patterns that allow to identify the main variables and study approximations related with a further development of models to integrate energy efficiency and MCA into policy making for small communities.

Keywords: energy efficiency, MCA, scientometric, trends

Procedia PDF Downloads 369
72 Modeling and Simulation of a CMOS-Based Analog Function Generator

Authors: Madina Hamiane

Abstract:

Modelling and simulation of an analogy function generator is presented based on a polynomial expansion model. The proposed function generator model is based on a 10th order polynomial approximation of any of the required functions. The polynomial approximations of these functions can then be implemented using basic CMOS circuit blocks. In this paper, a circuit model is proposed that can simultaneously generate many different mathematical functions. The circuit model is designed and simulated with HSPICE and its performance is demonstrated through the simulation of a number of non-linear functions.

Keywords: modelling and simulation, analog function generator, polynomial approximation, CMOS transistors

Procedia PDF Downloads 458
71 A Novel Method for Solving Nonlinear Whitham–Broer–Kaup Equation System

Authors: Ayda Nikkar, Roghayye Ahmadiasl

Abstract:

In this letter, a new analytical method called homotopy perturbation method, which does not need small parameter in the equation is implemented for solving the nonlinear Whitham–Broer–Kaup (WBK) partial differential equation. In this method, a homotopy is introduced to be constructed for the equation. The initial approximations can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of exact solution has led us to significant consequences. The results reveal that the HPM is very effective, convenient and quite accurate to systems of nonlinear equations. It is predicted that the HPM can be found widely applicable in engineering.

Keywords: homotopy perturbation method, Whitham–Broer–Kaup (WBK) equation, Modified Boussinesq, Approximate Long Wave

Procedia PDF Downloads 309
70 Fast and Accurate Finite-Difference Method Solving Multicomponent Smoluchowski Coagulation Equation

Authors: Alexander P. Smirnov, Sergey A. Matveev, Dmitry A. Zheltkov, Eugene E. Tyrtyshnikov

Abstract:

We propose a new computational technique for multidimensional (multicomponent) Smoluchowski coagulation equation. Using low-rank approximations in Tensor Train format of both the solution and the coagulation kernel, we accelerate the classical finite-difference Runge-Kutta scheme keeping its level of accuracy. The complexity of the taken finite-difference scheme is reduced from O(N^2d) to O(d^2 N log N ), where N is the number of grid nodes and d is a dimensionality of the problem. The efficiency and the accuracy of the new method are demonstrated on concrete problem with known analytical solution.

Keywords: tensor train decomposition, multicomponent Smoluchowski equation, runge-kutta scheme, convolution

Procedia PDF Downloads 430
69 Analytical Approximations of the Differential Elastic Scattering Cross-Sections for Slow Electrons and Positrons Transport in Solids: A Comparative Study

Authors: A. Bentabet, A. Aydin, N. Fenineche

Abstract:

In this work, we try to determine the best analytical approximation of differential cross sections, used generally in Monte Carlo simulation, to study the electron/positron slowing down in solid targets in the energy range up to 10 keV. Actually, our comparative study was carried out on the angular distribution of the scattering angle, the elastic total and the first transport cross sections which are the essential quantities used generally in the electron/positron transport study by using both stochastic and deterministic methods. Indeed, the obtained results using the relativistic partial wave expansion method and the backscattering coefficient experimental data are used as criteria to evaluate the used model.

Keywords: differential cross-section, backscattering coefficient, Rutherford cross-section, Vicanek and Urbassek theory

Procedia PDF Downloads 563
68 Analytical Solutions for Corotational Maxwell Model Fluid Arising in Wire Coating inside a Canonical Die

Authors: Muhammad Sohail Khan, Rehan Ali Shah

Abstract:

The present paper applies the optimal homotopy perturbation method (OHPM) and the optimal homotopy asymptotic method (OHAM) introduced recently to obtain analytic approximations of the non-linear equations modeling the flow of polymer in case of wire coating of a corotational Maxwell fluid. Expression for the velocity field is obtained in non-dimensional form. Comparison of the results obtained by the two methods at different values of non-dimensional parameter l10, reveal that the OHPM is more effective and easy to use. The OHPM solution can be improved even working in the same order of approximation depends on the choices of the auxiliary functions.

Keywords: corotational Maxwell model, optimal homotopy asymptotic method, optimal homotopy perturbation method, wire coating die

Procedia PDF Downloads 335
67 An Ab Initio Study of Delafossite Transparent Conductive Oxides Cu(In, Ga)O2 and Absorbers Films Cu(In, Ga)S2 in Solar-Cell

Authors: Mokdad Sakhri, Youcef Bouhadda

Abstract:

Thin film chalcopyrite technology is thus nowadays a solid candidate for photovoltaic cells. The currently used window layer for the solar cell Cu(In,Ga)S2 is our interest point in this work. For this purpose, we have performed a first-principles study of structural, electronic and optical properties for both delafossite transparent conductive oxides Cu (In, Ga)O2 and absorbers films Cu(In,Ga)S2. The calculations have been carried out within the local density functional (LDA) and generalized gradient approximations (GGA) combined with the hubbard potential using norm-conserving pseudopotentials and a plane-wave basis with ABINIT code. We have found the energy gap is :1.6, 2.53, 3.6, 3.8 eV for CuInS2, CuGaS2, CuInO2 and CuGaO2 respectively. The results are in good agreement with experimental results.

Keywords: ABINIT code, DFT, electronic and optical properties, solar-cell absorbers, delafossite transparent conductive oxides

Procedia PDF Downloads 567
66 Adaptive Data Approximations Codec (ADAC) for AI/ML-based Cyber-Physical Systems

Authors: Yong-Kyu Jung

Abstract:

The fast growth in information technology has led to de-mands to access/process data. CPSs heavily depend on the time of hardware/software operations and communication over the network (i.e., real-time/parallel operations in CPSs (e.g., autonomous vehicles). Since data processing is an im-portant means to overcome the issue confronting data management, reducing the gap between the technological-growth and the data-complexity and channel-bandwidth. An adaptive perpetual data approximation method is intro-duced to manage the actual entropy of the digital spectrum. An ADAC implemented as an accelerator and/or apps for servers/smart-connected devices adaptively rescales digital contents (avg.62.8%), data processing/access time/energy, encryption/decryption overheads in AI/ML applications (facial ID/recognition).

Keywords: adaptive codec, AI, ML, HPC, cyber-physical, cybersecurity

Procedia PDF Downloads 77
65 First-Principles Study of Xnmg3 (X=P, As, Sb, Bi) Antiperovskite Compounds

Authors: Kadda Amara, Mohammed Elkeurti, Mostefa Zemouli, Yassine Benallou

Abstract:

In this work, we present a study of the structural, elastic and electronic properties of the cubic antiperovskites XNMg3 (X=P, As, Sb and Bi) using the full-potential augmented plane wave plus local orbital (FP-LAPW+lo) within the Generalized Gradient Approximation based on PBEsol, Perdew 2008 functional. We determined the lattice parameters, the bulk modulus B and their pressure derivative B'. In addition, the elastic properties such as elastic constants (C11, C12 and C44), the shear modulus G, the Young modulus E, the Poisson's ratio ν and the B/G ratio are also given. For the band structure, density of states and charge density the exchange and correlation effects were treated by the Tran-Blaha modified Becke-Johnson potential to prevent the shortcoming of the underestimation of the energy gaps in both LDA and GGA approximations. The obtained results are compared to available experimental data and to other theoretical calculations.

Keywords: XNMg3 compounds, GGA-PBEsol, TB-mBJ, elastic properties, electronic properties

Procedia PDF Downloads 408
64 Bee Products Development and Innovation

Authors: Hasan Vural

Abstract:

In this study, innovation subject is explained firstly. Later the basic concepts of innovation and new food products development in marketing of bee products are investigated. Examples of the application of research results will be presented. Subject will be discussed benefiting from scientific studies based on literature review. Innovation is widely recognised as important to commercial success in the food industry, as both a major source of competitive advantage and the creation of a company’s future. However, the new product development process is described as being fraught with failures, with only approximately 10% of new products remaining on the market within a year of commercialisation. In addition, for every new food product that does reach commercialisation, there are likely to be many concepts that are rejected during the new food product development process. No roadmap exactly describes a route to a goal: exhortations to follow ‘10 Steps to a successful Product’ or use ‘Smith’s Method to Do Successful Products’ are, therefore, all approximations. Roadmaps do not describe the actual journey, only the general direction.

Keywords: innovation, agrofood product development, beekeeping products, honey marketing

Procedia PDF Downloads 411
63 3D Object Model Reconstruction Based on Polywogs Wavelet Network Parametrization

Authors: Mohamed Othmani, Yassine Khlifi

Abstract:

This paper presents a technique for compact three dimensional (3D) object model reconstruction using wavelet networks. It consists to transform an input surface vertices into signals,and uses wavelet network parameters for signal approximations. To prove this, we use a wavelet network architecture founded on several mother wavelet families. POLYnomials WindOwed with Gaussians (POLYWOG) wavelet families are used to maximize the probability to select the best wavelets which ensure the good generalization of the network. To achieve a better reconstruction, the network is trained several iterations to optimize the wavelet network parameters until the error criterion is small enough. Experimental results will shown that our proposed technique can effectively reconstruct an irregular 3D object models when using the optimized wavelet network parameters. We will prove that an accurateness reconstruction depends on the best choice of the mother wavelets.

Keywords: 3d object, optimization, parametrization, polywog wavelets, reconstruction, wavelet networks

Procedia PDF Downloads 283
62 Pair Interaction in Transition-Metal Nanoparticles

Authors: Nikolay E. Dubinin

Abstract:

Pair-interaction approximations allow to consider a different states of condensed matter from a single position. At the same time, description of an effective pair interaction in transition metal is a hard task since the d-electron contribution to the potential energy in this case is non-pairwise in principle. There are a number of models for transition-metal effective pair potentials. Here we use the Wills-Harrison (WH) approach to calculate pair potentials for Fe, Co, and Ni in crystalline, liquid, and nano states. Last is especially interesting since nano particles of pure transition metals immobilized on the dielectric matrices are widely used in different fields of advanced technologies: as carriers and transmitters of information, as an effective catalytic materials, etc. It is found that the minimum of the pair potential is deeper and oscillations are stronger in nano crystalline state in comparison with the liquid and crystalline states for all metals under consideration.

Keywords: effective pair potential, nanocrystalline state, transition metal, Wills-Harrison approach

Procedia PDF Downloads 383
61 Effect of Mangrove Forests in Coastal Flood and Erosion

Authors: Majid Samiee Zenoozian

Abstract:

This paper studies the susceptibility of local settlements in the gulf of Oman mangrove forest zone to flooding and progressesconsiderate of acuities and reactions to historical and present coastal flooding.it is indirect thaterosionsproduced in coastal zones by the change of mangrove undergrowthsubsequent from the enduring influence of persons since the late 19th century. Confronted with the increasing impact of climate change on climate ambitiousalarms such as flooding and biodiversity damage, handling the relationship between mangroves and their atmosphere has become authoritative for their defense. Coastal flood dangers are increasing quickly. We offer high resolution approximations of the financial value of mangroves forests for flood risk discount. We progress a probabilistic, process-based estimate of the properties of mangroves on avoidanceharms to people and property. More significantly, it also establishes how the incessantsqualor of this significant ecosystem has the potential to unfavorably influence the future cyclone persuadeddangers in the area.

Keywords: mangrove forest, coastal, flood, erosion

Procedia PDF Downloads 115