Search results for: computer- supported collaborative learning
8370 COVID-19’s Impact on the Use of Media, Educational Performance, and Learning in Children and Adolescents with ADHD Who Engaged in Virtual Learning
Authors: Christina Largent, Tazley Hobbs
Abstract:
Objective: A literature review was performed to examine the existing research on COVID-19 lockdown as it relates to ADHD child/adolescent individuals, media use, and impact on educational performance/learning. It was surmised that with the COVID-19 shut-down and transition to remote learning, a less structured learning environment, increased screen time, in addition to potential difficulty accessing school resources would impair ADHD individuals’ performance and learning. A resulting increase in the number of youths diagnosed and treated for ADHD would be expected. As of yet, there has been little to no published data on the incidence of ADHD as it relates to COVID-19 outside of reports from several nonprofit agencies such as CHADD (Children and Adults with Attention-Deficit/Hyperactivity Disorder ), who reported an increased number of calls to their helpline, The New York based Child Mind Institute, who reported an increased number of appointments to discuss medications, and research released from Athenahealth showing an increase in the number of patients receiving new diagnosis of ADHD and new prescriptions for ADHD medications. Methods: A literature search for articles published between 2020 and 2021 from Pubmed, Google Scholar, PsychInfo, was performed. Search phrases and keywords included “covid, adhd, child, impact, remote learning, media, screen”. Results: Studies primarily utilized parental reports, with very few from the perspective of the ADHD individuals themselves. Most findings thus far show that with the COVID-19 quarantine and transition to online learning, ADHD individuals’ experienced decreased ability to keep focused or adhere to the daily routine, as well as increased inattention-related problems, such as careless mistakes or lack of completion in homework, which in turn translated into overall more difficulty with remote learning. To add further injury, one study showed (just on evaluation of two different sites within the US) that school based services for these individuals decreased with the shift to online-learning. Increased screen time, television, social media, and gaming were noted amongst ADHD individuals. One study further differentiated the degree of digital media, identifying individuals with “problematic “ or “non-problematic” use. ADHD children with problematic digital media use suffered from more severe core symptoms of ADHD, negative emotions, executive function deficits, damage to family environment, pressure from life events, and a lower motivation to learn. Conclusions and Future Considerations: Studies found not only was online learning difficult for ADHD individuals but it, in addition to greater use of digital media, was associated with worsening ADHD symptoms impairing schoolwork, in addition to secondary findings of worsening mood and behavior. Currently, data on the number of new ADHD cases, in addition to data on the prescription and usage of stimulants during COVID-19, has not been well documented or studied; this would be well-warranted out of concern for over diagnosing or over-prescribing our youth. It would also be well-worth studying how reversible or long-lasting these negative impacts may be.Keywords: COVID-19, remote learning, media use, ADHD, child, adolescent
Procedia PDF Downloads 1288369 Quality Analysis of Vegetables Through Image Processing
Authors: Abdul Khalique Baloch, Ali Okatan
Abstract:
The quality analysis of food and vegetable from image is hot topic now a day, where researchers make them better then pervious findings through different technique and methods. In this research we have review the literature, and find gape from them, and suggest better proposed approach, design the algorithm, developed a software to measure the quality from images, where accuracy of image show better results, and compare the results with Perouse work done so for. The Application we uses an open-source dataset and python language with tensor flow lite framework. In this research we focus to sort food and vegetable from image, in the images, the application can sorts and make them grading after process the images, it could create less errors them human base sorting errors by manual grading. Digital pictures datasets were created. The collected images arranged by classes. The classification accuracy of the system was about 94%. As fruits and vegetables play main role in day-to-day life, the quality of fruits and vegetables is necessary in evaluating agricultural produce, the customer always buy good quality fruits and vegetables. This document is about quality detection of fruit and vegetables using images. Most of customers suffering due to unhealthy foods and vegetables by suppliers, so there is no proper quality measurement level followed by hotel managements. it have developed software to measure the quality of the fruits and vegetables by using images, it will tell you how is your fruits and vegetables are fresh or rotten. Some algorithms reviewed in this thesis including digital images, ResNet, VGG16, CNN and Transfer Learning grading feature extraction. This application used an open source dataset of images and language used python, and designs a framework of system.Keywords: deep learning, computer vision, image processing, rotten fruit detection, fruits quality criteria, vegetables quality criteria
Procedia PDF Downloads 728368 Active Development of Tacit Knowledge: Knowledge Management, High Impact Practices and Experiential Learning
Authors: John Zanetich
Abstract:
Due to their positive associations with student learning and retention, certain undergraduate opportunities are designated ‘high-impact.’ High-Impact Practices (HIPs) such as, learning communities, community based projects, research, internships, study abroad and culminating senior experience, share several traits bin common: they demand considerable time and effort, learning occurs outside of the classroom, and they require meaningful interactions between faculty and students, they encourage collaboration with diverse others, and they provide frequent and substantive feedback. As a result of experiential learning in these practices, participation in these practices can be life changing. High impact learning helps individuals locate tacit knowledge, and build mental models that support the accumulation of knowledge. On-going learning from experience and knowledge conversion provides the individual with a way to implicitly organize knowledge and share knowledge over a lifetime. Knowledge conversion is a knowledge management component which focuses on the explication of the tacit knowledge that exists in the minds of students and that knowledge which is embedded in the process and relationships of the classroom educational experience. Knowledge conversion is required when working with tacit knowledge and the demand for a learner to align deeply held beliefs with the cognitive dissonance created by new information. Knowledge conversion and tacit knowledge result from the fact that an individual's way of knowing, that is, their core belief structure, is considered generalized and tacit instead of explicit and specific. As a phenomenon, tacit knowledge is not readily available to the learner for explicit description unless evoked by an external source. The development of knowledge–related capabilities such as Aggressive Development of Tacit Knowledge (ADTK) can be used in experiential educational programs to enhance knowledge, foster behavioral change, improve decision making, and overall performance. ADTK allows the student in HIPs to use their existing knowledge in a way that allows them to evaluate and make any necessary modifications to their core construct of reality in order to amalgamate new information. Based on the Lewin/Schein Change Theory, the learner will reach for tacit knowledge as a stabilizing mechanism when they are challenged by new information that puts them slightly off balance. As in word association drills, the important concept is the first thought. The reactionary outpouring to an experience is the programmed or tacit memory and knowledge of their core belief structure. ADTK is a way to help teachers design their own methods and activities to unfreeze, create new learning, and then refreeze the core constructs upon which future learning in a subject area is built. This paper will explore the use of ADTK as a technique for knowledge conversion in the classroom in general and in HIP programs specifically. It will focus on knowledge conversion in curriculum development and propose the use of one-time educational experiences, multi-session experiences and sequential program experiences focusing on tacit knowledge in educational programs.Keywords: tacit knowledge, knowledge management, college programs, experiential learning
Procedia PDF Downloads 2678367 Active Features Determination: A Unified Framework
Authors: Meenal Badki
Abstract:
We address the issue of active feature determination, where the objective is to determine the set of examples on which additional data (such as lab tests) needs to be gathered, given a large number of examples with some features (such as demographics) and some examples with all the features (such as the complete Electronic Health Record). We note that certain features may be more costly, unique, or laborious to gather. Our proposal is a general active learning approach that is independent of classifiers and similarity metrics. It allows us to identify examples that differ from the full data set and obtain all the features for the examples that match. Our comprehensive evaluation shows the efficacy of this approach, which is driven by four authentic clinical tasks.Keywords: feature determination, classification, active learning, sample-efficiency
Procedia PDF Downloads 808366 The Exercise of Choice by Children and Young People in the British Public Care System
Authors: Siobhan Laird
Abstract:
Under article 12 of the Convention on the Rights of the Child, which extends human rights in their application to those under the age of 18 years, children must be consulted ‘in all matters affecting the child’. The Office of the Children’s Commissioner for England is responsible for improving the welfare of children and young people by ensuring that their Convention rights are respected and realised and their views taken seriously. In 2014 the Children’s Commissioner engaged a team of researchers at the Centre for Social Work, University of Nottingham to develop and roll out an online survey to gather information from children and young people about their exercise of choice within the public care system. Approximately 3,000 children responded to this survey, which comprised both closed and open-ended questions. SPSS was used to analyse the numerical data and a thematic analysis of textual data was conducted on answers to open-ended questions. Findings revealed that children exercised considerable choice over personal space and their spare time, but had much less choice in relation to contact with their birth families, where they lived, or the timings of moves from one placement into another. The majority of children described how they were supported to express their opinions and believed that these were taken seriously. However, a significant number reported problems and explained how specific behaviours by professionals and carers made it difficult for them to express their opinion or to feel that they had influenced decisions which affected them. In open-ended questions eliciting information about their experiences, children and young people were asked to describe how they could be better supported to make choices and what changes would assist for these to be better acknowledged and acted upon by professionals and carers. This paper concludes by presenting the ideas and suggestions of children and young people for improving the public care system in Britain in relation to their exercise of choice.Keywords: children, choice, participation, public care
Procedia PDF Downloads 2818365 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions
Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly
Abstract:
Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability
Procedia PDF Downloads 958364 Machine Learning Based Gender Identification of Authors of Entry Programs
Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee
Abstract:
Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning
Procedia PDF Downloads 3258363 On or Off-Line: Dilemmas in Using Online Teaching-Learning in In-Service Teacher Education
Authors: Orly Sela
Abstract:
The lecture discusses a Language Teaching program in a Teacher Education College in northern Israel. An on-line course was added to the program in order to keep on-campus attendance at a minimum, thus allowing the students to keep their full-time jobs in school. In addition, the use of educational technology to allow students to study anytime anywhere, in keeping with 21st-century innovative teaching-learning practices, was also an issue, as was the wish for this course to serve as a model which the students could then possibly use in their K-12 teaching. On the other hand, there were strong considerations against including an online course in the program. The students in the program were mostly Israeli-Arab married women with young children, living in a traditional society which places a strong emphasis on the place of the woman as a wife, mother, and home-maker. In addition, as teachers, they used much of their free time on school-related tasks. Having careers at the same time as studying was ground-breaking for these women, and using their time at home for studying rather than taking care of their families may have been simply too much to ask of them. At the end of the course, feedback was collected through an online questionnaire including both open and closed questions. The data collected shows that the students believed in online teaching-learning in principle, but had trouble implementing it in practice. This evidence raised the question of whether or not such a course should be included in a graduate program for mature, professional students, particular women with families living in a traditional society. This issue is not relevant to Israel alone, but also to academic institutions worldwide serving such populations. The lecture discusses this issue, sharing the researcher’s conclusions with the audience. Based on the evidence offered, it is the researcher’s conclusion that online education should, indeed, be offered to such audiences. However, the courses should be designed with the students’ special needs in mind, with emphasis placed on initial planning and course organization based on acknowledgment of the teaching context; modeling of online teaching/learning suited for in-service teacher education, and special attention paid to social-constructivist aspects of learning.Keywords: course design, in-service teacher-education, mature students, online teaching/learning
Procedia PDF Downloads 2358362 The Use of Social Media and Its Impact on the Learning Behavior of ESL University Students for Sustainable Education in Pakistan
Authors: Abdullah Mukhtar, Shehroz Mukhtar, Amina Mukhtar, Choudhry Shahid, Hafiz Raza Razzaq, Saif Ur Rahman
Abstract:
The aim of this study is to find out the negative and positive impacts of social media platforms on the attitude toward learning and the educational environment of the student community. Social Media platforms have become a source of collaboration with one another throughout the globe, making it a small world. This study performs a focalized investigation of the adverse and constructive factors that have a strong impact not only on psychological adjustments but also on the academic performance of peers. This study is quantitative research adopting a random sampling method in which the participants were the students at the university. The researcher distributed 1000 questionnaires among the university students from different departments and asked them to fill in the data on the Lickert Scale. The participants are from the age group of 18-24 years. The study applies user and gratification theory in order to examine the behavior of students practicing social media in their academic and personal lives. The findings of the study reveal that the use of social media platforms in the Pakistani context has less positive impact as compared to negative impacts on the behavior of students towards learning. The research suggests that usage of online social media platforms should be taught to students; awareness must the created among the users of social media by means of seminars, workshops and by media itself to overcome the negative impacts of social media, leading towards sustainable education in Pakistan.Keywords: social media, positive impacts, negative impacts, sustainable education, learning behaviour
Procedia PDF Downloads 658361 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning
Authors: Kwaku Damoah
Abstract:
This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.
Procedia PDF Downloads 748360 A Study on the Correlation Analysis between the Pre-Sale Competition Rate and the Apartment Unit Plan Factor through Machine Learning
Authors: Seongjun Kim, Jinwooung Kim, Sung-Ah Kim
Abstract:
The development of information and communication technology also affects human cognition and thinking, especially in the field of design, new techniques are being tried. In architecture, new design methodologies such as machine learning or data-driven design are being applied. In particular, these methodologies are used in analyzing the factors related to the value of real estate or analyzing the feasibility in the early planning stage of the apartment housing. However, since the value of apartment buildings is often determined by external factors such as location and traffic conditions, rather than the interior elements of buildings, data is rarely used in the design process. Therefore, although the technical conditions are provided, the internal elements of the apartment are difficult to apply the data-driven design in the design process of the apartment. As a result, the designers of apartment housing were forced to rely on designer experience or modular design alternatives rather than data-driven design at the design stage, resulting in a uniform arrangement of space in the apartment house. The purpose of this study is to propose a methodology to support the designers to design the apartment unit plan with high consumer preference by deriving the correlation and importance of the floor plan elements of the apartment preferred by the consumers through the machine learning and reflecting this information from the early design process. The data on the pre-sale competition rate and the elements of the floor plan are collected as data, and the correlation between pre-sale competition rate and independent variables is analyzed through machine learning. This analytical model can be used to review the apartment unit plan produced by the designer and to assist the designer. Therefore, it is possible to make a floor plan of apartment housing with high preference because it is possible to feedback apartment unit plan by using trained model when it is used in floor plan design of apartment housing.Keywords: apartment unit plan, data-driven design, design methodology, machine learning
Procedia PDF Downloads 2698359 Learners’ Preferences in Selecting Language Learning Institute (A Study in Iran)
Authors: Hoora Dehghani, Meisam Shahbazi, Reza Zare
Abstract:
During the previous decade, a significant evolution has occurred in the number of private educational centers and, accordingly, the increase in the number of providers and students of these centers around the world. The number of language teaching institutes in Iran that are considered private educational sectors is also growing exponentially as the request for learning foreign languages has extremely increased in recent years. This fact caused competition among the institutions in improving better services tailored to the students’ demands to win the competition. Along with the growth in the industry of education, higher education institutes should apply the marketing-related concepts and view students as customers because students’ outlooks are similar to consumers with education. Studying the influential factors in the selection of an institute has multiple benefits. Firstly, it acknowledges the institutions of the students’ choice factors. Secondly, the institutions use the obtained information to improve their marketing methods. It also helps institutions know students’ outlooks that can be applied to expand the student know-how. Moreover, it provides practical evidence for educational centers to plan useful amenities and programs, and use efficient policies to cater to the market, and also helps them execute the methods that increase students’ feeling of contentment and assurance. Thus, this study explored the influencing factors in the selection of a language learning institute by language learners and examined and compared the importance among the varying age groups and genders. In the first phase of the study, the researchers selected 15 language learners as representative cases within the specified age ranges and genders purposefully and interviewed them to explore the comprising elements in their language institute selection process and analyzed the results qualitatively. In the second phase, the researchers identified elements as specified items of a questionnaire, and 1000 English learners across varying educational contexts rated them. The TOPSIS method was used to analyze the data quantitatively by representing the level of importance of the items for the participants generally and specifically in each subcategory; genders and age groups. The results indicated that the educational quality, teaching method, duration of training course, establishing need-oriented courses, and easy access were the most important elements. On the other hand, offering training in different languages, the specialized education of only one language, the uniform and appropriate appearance of office staff, having native professors to the language of instruction, applying Computer or online tests instead of the usual paper tests respectively as the least important choice factors in selecting a language institute. Besides, some comparisons among different groups’ ratings of choice factors were made, which revealed the differences among different groups' priorities in choosing a language institute.Keywords: choice factors, EFL institute selection, english learning, need analysis, TOPSIS
Procedia PDF Downloads 1688358 Teaching Writing in the Virtual Classroom: Challenges and the Way Forward
Authors: Upeksha Jayasuriya
Abstract:
The sudden transition from onsite to online teaching/learning due to the COVID-19 pandemic called for a need to incorporate feasible as well as effective methods of online teaching in most developing countries like Sri Lanka. The English as a Second Language (ESL) classroom faces specific challenges in this adaptation, and teaching writing can be identified as the most challenging task compared to teaching the other three skills. This study was therefore carried out to explore the challenges of teaching writing online and to provide effective means of overcoming them while taking into consideration the attitudes of students and teachers with regard to learning/teaching English writing via online platforms. A survey questionnaire was distributed (electronically) among 60 students from the University of Colombo, the University of Kelaniya, and The Open University in order to find out the challenges faced by students, while in-depth interviews were conducted with 12 lecturers from the mentioned universities. The findings reveal that the inability to observe students’ writing and to receive real-time feedback discourage students from engaging in writing activities when taught online. It was also discovered that both students and teachers increasingly prefer Google Slides over other platforms such as Padlet, Linoit, and Jam Board as it boosts learner autonomy and student-teacher interaction, which in turn allows real-time formative feedback, observation of student work, and assessment. Accordingly, it can be recommended that teaching writing online can be better facilitated by using interactive platforms such as Google Slides, for it promotes active learning and student engagement in the ESL class.Keywords: ESL, teaching writing, online teaching, active learning, student engagement
Procedia PDF Downloads 948357 Driving What’s Next: The De La Salle Lipa Social Innovation in Quality Education Initiatives
Authors: Dante Jose R. Amisola, Glenford M. Prospero
Abstract:
'Driving What’s Next' is a strong campaign of the new administration of De La Salle Lipa in promoting social innovation in quality education. The new leadership directs social innovation in quality education in the institutional directions and initiatives to address real-world challenges with real-world solutions. This research under study aims to qualify the commitment of the institution to extend the Lasallian quality human and Christian education to all, as expressed in the Institution’s new mission-vision statement. The Classic Grounded Theory methodology is employed in the process of generating concepts in reference to the documents, a series of meetings, focus group discussions and other related activities that account for the conceptualization and formulation of the new mission-vision along with the new education innovation framework. Notably, Driving What’s Next is the emergent theory that encapsulates the commitment of giving quality human and Christian education to all. It directs the new leadership in driving social innovation in quality education initiatives. Correspondingly, Driving What’s Next is continually resolved through four interrelated strategies also termed as the institution's four strategic directions, namely: (1) driving social innovation in quality education, (2) embracing our shared humanity and championing social inclusion and justice initiatives, (3) creating sustainable futures and (4) engaging diverse stakeholders in our shared mission. Significantly, the four strategic directions capture and integrate the 17 UN sustainable development goals, making the innovative curriculum locally and globally relevant. To conclude, the main concern of the new administration and how it is continually resolved, provide meaningful and fun learning experiences and promote a new way of learning in the light of the 21st century skills among the members of the academic community including stakeholders and extended communities at large, which are defined as: learning together and by association (collaboration), learning through engagement (communication), learning by design (creativity) and learning with social impact (critical thinking).Keywords: DLSL four strategic directions , DLSL Lipa mission-vision, driving what's next, social innovation in quality education
Procedia PDF Downloads 2198356 Fabricating Method for Complex 3D Microfluidic Channel Using Soluble Wax Mold
Authors: Kyunghun Kang, Sangwoo Oh, Yongha Hwang
Abstract:
PDMS (Polydimethylsiloxane)-based microfluidic device has been recently applied to area of biomedical research, tissue engineering, and diagnostics because PDMS is low cost, nontoxic, optically transparent, gas-permeable, and especially biocompatible. Generally, PDMS microfluidic devices are fabricated by conventional soft lithography. Microfabrication requires expensive cleanroom facilities and a lot of time; however, only two-dimensional or simple three-dimensional structures can be fabricated. In this study, we introduce fabricating method for complex three-dimensional microfluidic channels using soluble wax mold. Using the 3D printing technique, we firstly fabricated three-dimensional mold which consists of soluble wax material. The PDMS pre-polymer is cast around, followed by PDMS casting and curing. The three-dimensional casting mold was removed from PDMS by chemically dissolved with methanol and acetone. In this work, two preliminary experiments were carried out. Firstly, the solubility of several waxes was tested using various solvents, such as acetone, methanol, hexane, and IPA. We found the combination between wax and solvent which dissolves the wax. Next, side effects of the solvent were investigated during the curing process of PDMS pre-polymer. While some solvents let PDMS drastically swell, methanol and acetone let PDMS swell only 2% and 6%, respectively. Thus, methanol and acetone can be used to dissolve wax in PDMS without any serious impact. Based on the preliminary tests, three-dimensional PDMS microfluidic channels was fabricated using the mold which was printed out using 3D printer. With the proposed fabricating technique, PDMS-based microfluidic devices have advantages of fast prototyping, low cost, optically transparence, as well as having complex three-dimensional geometry. Acknowledgements: This research was supported by Supported by a Korea University Grant and Basic Science Research Program through the National Research Foundation of Korea(NRF).Keywords: microfluidic channel, polydimethylsiloxane, 3D printing, casting
Procedia PDF Downloads 2838355 The Correlation between Self-Regulated Learning Strategies and Reading Proficiency
Authors: Nguyen Thu Ha, Vu Viet Phuong, Do Thi Tieu Yen, Nguyen Thi Thanh Ha
Abstract:
This semi-experimental research investigated the correlation between 42 English as a foreign language (EFL) sophomores' self-regulated learning strategies (SRL) use and their reading comprehension in the Vietnamese context. The analysis from TOEIC reading tests with SPSS 25.0 indicated that there are substantial differences between the post-test reading scores between the experimental group and the control group; therefore, SRL impacts the reading comprehension of EFL participants. Contrary to the alternative hypothesis, teaching learners SRL approaches had a statistically significant influence on reading comprehension. The findings may aid educators in teaching reading comprehension as an essential skill and in using SRL to improve reading comprehension and achievement and enhance reading comprehension aids for language students and instructors. They should equip educators with a variety of instructional strategies which assist academics in preparing learners for lifetime language study and independence. Moreover, the results might encourage educators, administrators, and policymakers to capitalize on the effects of teaching SRL strategies by providing EFL teachers with preparation programs and experiences that help them improve their teaching methods and strategies, especially when teaching reading comprehension.Keywords: correlation, reading proficiency, self-regulated learning strategies, SRL, TOEIC reading comprehension
Procedia PDF Downloads 998354 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning
Authors: M. Devaki, K. B. Jayanthi
Abstract:
The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.Keywords: water body, Deep learning, satellite images, convolution neural network
Procedia PDF Downloads 938353 MIMIC: A Multi Input Micro-Influencers Classifier
Authors: Simone Leonardi, Luca Ardito
Abstract:
Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media
Procedia PDF Downloads 1878352 Designing Effective Serious Games for Learning and Conceptualization Their Structure
Authors: Zahara Abdulhussan Al-Awadai
Abstract:
Currently, serious games play a significant role in education, sparking an increasing interest in using games for purposes beyond mere entertainment. In this research, we investigate the main requirements and aspects of designing and developing effective serious games for learning and developing a conceptual model to describe the structure of serious games with a focus on both aspects of serious games. The main contributions of this approach are to facilitate the design and development of serious games in a flexible and easy-to-use way and also to support the cooperative work between the multidisciplinary developer team.Keywords: game development, game design, requirements, serious games, serious game model.
Procedia PDF Downloads 688351 Assessing Distance Education Practices: Teachers Experience and Perceptions
Authors: Mohammed Amraouy, Mostafa Bellafkih, Abdellah Bennane, Aziza Benomar
Abstract:
Distance education has become popular due to their ability to provide learning from almost anywhere and anytime. COVID-19 forced educational institutions to urgently introduce distance education to ensure pedagogical continuity, so all stakeholders were invited to adapt to this new paradigm. In order to identify strengths and weaknesses, the research focuses on the need to create an effective mechanism for evaluating distance education. The aims of this research were to explore and evaluate the use of digital media in general and official platforms in particular in distance education practices. To this end, we have developed and validated a questionnaire before administering it to a sample of 431 teachers in Morocco. Teachers reported lower knowledge and skills in the didactic use of ICT in the distance education process. In addition, although age and educative experience of the teachers continue to modulate the level of instrumental skills. Therefore, resources (digital resources and infrastructure) and the teachers’ ICT training present serious limitations, which require a training more focused on the distance educational paradigm and educational environments that allow teachers to create educational activities able to promote and facilitate the distance learning process.Keywords: distance education, e-learning, teachers’ perceptions, assessment
Procedia PDF Downloads 1418350 Exploring Enabling Effects of Organizational Climate on Academicians’ Emotional Intelligence and Learning Outcomes: A Case from Chinese Higher Education
Authors: Zahid Shafait, Jiayu Huang
Abstract:
Purpose: This study is based on a trait-based theory of emotional intelligence. This study intends to explore the enabling effect of organizational climate, i.e., affiliation, innovation, and fairness, on the emotional intelligence of teachers in Chinese higher education institutes. This study, additionally, intends to investigate the direct impact of teachers’ emotional intelligence on their learning outcomes, i.e., cognitive, social, self-growth outcomes and satisfaction with the university experience. Design/methodology/approach: This study utilized quantitative research techniques to scrutinize the data. Moreover, partial least squares structural equation modeling, i.e., PLS-SEM, was used to assess the hypothetical relationships to conclude their statistical significance. Findings: Results confirmed the supposed associations, i.e., the organizational climate has an enabling effect on emotional intelligence. Likewise, emotional intelligence was concluded to have a direct and positive association with learning outcomes in higher education. Practical implications: This study has investigated abandoned research that is enabling the effects of organizational climate on teachers’ emotional intelligence in Chinese higher education. Organizational climate enables emotionally intelligent teachers to learn efficiently and, at the same time, augments their satisfaction and productivity within an institution. Originality/value: This study investigated the enabling effects of organizational climate on teachers’ emotional intelligence in Chinese higher education that is original in investigated country and sector.Keywords: organizational climate, emotional intelligence, learning outcomes, higher education
Procedia PDF Downloads 808349 Magnitude of Green Computing in Trending IT World
Authors: Raghul Vignesh Kumar, M. Vadivel
Abstract:
With the recent years many industries and companies have turned their attention in realizing how going 'green' can benefit public relations, lower cost, and reduce global emissions from industrial manufacturing. Green Computing has become an originative way on how technology and ecology converge together. It is a growing import subject that creates an urgent need to train next generation computer scientists or practitioners to think ‘green’. However, green computing has not yet been well taught in computer science or computer engineering courses as a subject. In this modern IT world it’s impossible for an organization or common man to work without hardware like servers, desktop, IT devices, smartphones etc. But it is also important to consider the harmful impact of those devices and steps to achieve energy saving and environmental protection. This paper presents the magnitude of green computing and steps to be followed to go green.Keywords: green computing, carbon-dioxide, greenhouse gas, energy saving, environmental protection agency
Procedia PDF Downloads 4238348 Using Mixed Methods in Studying Classroom Social Network Dynamics
Authors: Nashrawan Naser Taha, Andrew M. Cox
Abstract:
In a multi-cultural learning context, where ties are weak and dynamic, combining qualitative with quantitative research methods may be more effective. Such a combination may also allow us to answer different types of question, such as about people’s perception of the network. In this study the use of observation, interviews and photos were explored as ways of enhancing data from social network questionnaires. Integrating all of these methods was found to enhance the quality of data collected and its accuracy, also providing a richer story of the network dynamics and the factors that shaped these changes over time.Keywords: mixed methods, social network analysis, multi-cultural learning, social network dynamics
Procedia PDF Downloads 5158347 The Role of Social Workers in Improving Teaching Quality and Reducing Disparities in Public Schools in Nepal
Authors: Badri Nath Sharma
Abstract:
School enrollment in Nepal is lower for high school students with marginalized groups such as Dalits experiencing the highest dropout rates. Contributing factors include low learning outcomes compounded by poor teaching quality, economic instability, and social challenges such as early marriage, absentee caregivers, and family substance abuse. Addressing these systemic inequities requires coordinated, community-driven interventions. This study highlights the pivotal role of social workers in improving teaching quality, fostering stakeholder engagement, and promoting equitable educational outcomes in Devdaha municipality, Nepal. Social workers have been instrumental in forming and facilitating diverse groups, including "mentor teacher groups" (MTGs) and child clubs. These MTGs provide peer mentoring and pedagogical support for teachers, while child clubs empower students to actively participate in school governance and mentoring peers. Social workers are also organizing tailored workshops and training sessions for teachers, students, and school management committees, equipping stakeholders to engage meaningfully in the educational process. In collaboration with the Soiya Women’s Organization and Skoleliv i Nepal, social workers are facilitating the development of an online platform to centralize teaching resources and ensure long-term sustainability. Early results indicate that this multi-faceted approach is yielding positive outcomes. Teachers report greater confidence and effectiveness in the classroom, students are more actively engaged, and families are beginning to strengthen their ties with schools. This intervention underscores the critical role of social workers in building collaborative networks, improving education quality, and addressing the unique challenges faced by marginalized students, with promising potential for replication across Nepal.Keywords: public schools, Nepal, teaching, disparities
Procedia PDF Downloads 68346 Recommendation Systems for Cereal Cultivation using Advanced Casual Inference Modeling
Authors: Md Yeasin, Ranjit Kumar Paul
Abstract:
In recent years, recommendation systems have become indispensable tools for agricultural system. The accurate and timely recommendations can significantly impact crop yield and overall productivity. Causal inference modeling aims to establish cause-and-effect relationships by identifying the impact of variables or factors on outcomes, enabling more accurate and reliable recommendations. New advancements in causal inference models have been found in the literature. With the advent of the modern era, deep learning and machine learning models have emerged as efficient tools for modeling. This study proposed an innovative approach to enhance recommendation systems-based machine learning based casual inference model. By considering the causal effect and opportunity cost of covariates, the proposed system can provide more reliable and actionable recommendations for cereal farmers. To validate the effectiveness of the proposed approach, experiments are conducted using cereal cultivation data of eastern India. Comparative evaluations are performed against existing correlation-based recommendation systems, demonstrating the superiority of the advanced causal inference modeling approach in terms of recommendation accuracy and impact on crop yield. Overall, it empowers farmers with personalized recommendations tailored to their specific circumstances, leading to optimized decision-making and increased crop productivity.Keywords: agriculture, casual inference, machine learning, recommendation system
Procedia PDF Downloads 858345 Potentiality of a Community of Practice between Public Schools and the Private Sector for Integrating Sustainable Development into the School Curriculum
Authors: Aiydh Aljeddani, Fran Martin
Abstract:
The critical time in which we live requires rethinking of many potential ways in order to make the concept of sustainability and its principles an integral part of our daily life. One of these potential approaches is how to attract community institutions, such as the private sector, to participate effectively in the sustainability industry by supporting public schools to fulfill their duties. A collaborative community of practice can support this purpose and can provide a flexible framework, which allows the members of the community to participate effectively. This study, conducted in Saudi Arabia, aimed to understand the process of a collaborative community of practice of involving the private sector as a member of this community to integrate the sustainability concept in school activities and projects. This study employed a qualitative methodology to understand this authentic and complex phenomenon. A case study approach, ethnography and some elements of action research were followed in this study. The methods of unstructured interviews, artifacts, observation, and teachers’ field notes were used to collect the data. The participants were three secondary teachers, twelve chief executive officers, and one school administrative officer. Certain contextual conditions, as shown by the data, should be taken into consideration when policy makers and school administrations in Saudi Arabia desire to integrate sustainability into school activities. The first of these was the acknowledgement of the valuable role of the members’ personality, efforts, abilities, and experiences, which played vital roles in integrating sustainability. Second, institutional culture, which was not expected to emerge as an important factor in this study, has a significant role in the integration of sustainability. Credibility among the members of the community towards the integration of the sustainability concept and its principles through school activities is another important condition. Fourth, some chief executive officers’ understanding of Corporate Social Responsibility (CSR) towards contribution to sustainability agenda was shallow and limited and this could impede the successful integration of sustainability. Fifth, a shared understanding between the members of the community about integrating sustainability was a vital condition in the integration process. The study also revealed that the integration of sustainability could not be an ongoing process if implemented in isolation of the other community institutions such as the private sector. The study finally offers a number of recommendations to improve on the current practices and suggests areas for further studies.Keywords: community of practice, public schools, private sector, sustainable development
Procedia PDF Downloads 2128344 Integrating Wearable Devices in Real-Time Computer Applications of Petrochemical Systems
Authors: Paul B Stone, Subhashini Ganapathy, Mary E. Fendley, Layla Akilan
Abstract:
As notifications become more common through mobile devices, it is important to understand the impact of wearable devices on the improved user experience of man-machine interfaces. This study examined the use of a wearable device for a real-time system using a computer-simulated petrochemical system. The key research question was to determine how using the information provided by the wearable device can improve human performance through measures of situational awareness and decision making. Results indicate that there was a reduction in response time when using the watch, and there was no difference in situational awareness. Perception of using the watch was positive, with 83% of users finding value in using the watch and receiving haptic feedback.Keywords: computer applications, haptic feedback, petrochemical systems, situational awareness, wearable technology
Procedia PDF Downloads 2058343 Integration of Technology into Nursing Education: A Collaboration between College of Nursing and University Research Center
Authors: Lori Lioce, Gary Maddux, Norven Goddard, Ishella Fogle, Bernard Schroer
Abstract:
This paper presents the integration of technologies into nursing education. The collaborative effort includes the College of Nursing (CoN) at the University of Alabama in Huntsville (UAH) and the UAH Systems Management and Production Center (SMAP). The faculty at the CoN conducts needs assessments to identify education and training requirements. A team of CoN faculty and SMAP engineers then prioritize these requirements and establish improvement/development teams. The development teams consist of nurses to evaluate the models and to provide feedback and of undergraduate engineering students and their senior staff mentors from SMAP. The SMAP engineering staff develops and creates the physical models using 3D printing, silicone molds and specialized molding mixtures and techniques. The collaboration has focused on developing teaching and training, or clinical, simulators. In addition, the onset of the Covid-19 pandemic has intensified this relationship, as 3D modeling shifted to supplied personal protection equipment (PPE) to local health care providers. A secondary collaboration has been introducing students to clinical benchmarking through the UAH Center for Management and Economic Research. As a result of these successful collaborations the Model Exchange & Development of Nursing & Engineering Technology (MEDNET) has been established. MEDNET seeks to extend and expand the linkage between engineering and nursing to K-12 schools, technical schools and medical facilities in the region to the resources available from the CoN and SMAP. As an example, stereolithography (STL) files of the 3D printed models, along with the specifications to fabricate models, are available on the MEDNET website. Ten 3D printed models have been developed and are currently in use by the CoN. The following additional training simulators are currently under development:1) suture pads, 2) gelatin wound models and 3) printed wound tattoos. Specification sheets have been written for these simulations that describe the use, fabrication procedures and parts list. These specifications are available for viewing and download on MEDNET. Included in this paper are 1) descriptions of CoN, SMAP and MEDNET, 2) collaborative process used in product improvement/development, 3) 3D printed models of training and teaching simulators, 4) training simulators under development with specification sheets, 5) family care practice benchmarking, 6) integrating the simulators into the nursing curriculum, 7) utilizing MEDNET as a pandemic response, and 8) conclusions and lessons learned.Keywords: 3D printing, nursing education, simulation, trainers
Procedia PDF Downloads 1248342 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 1248341 Applying Serious Game Design Frameworks to Existing Games for Integration of Custom Learning Objectives
Authors: Jonathan D. Moore, Mark G. Reith, David S. Long
Abstract:
Serious games (SGs) have been shown to be an effective teaching tool in many contexts. Because of the success of SGs, several design frameworks have been created to expedite the process of making original serious games to teach specific learning objectives (LOs). Even with these frameworks, the time required to create a custom SG from conception to implementation can range from months to years. Furthermore, it is even more difficult to design a game framework that allows an instructor to create customized game variants supporting multiple LOs within the same field. This paper proposes a refactoring methodology to apply the theoretical principles from well-established design frameworks to a pre-existing serious game. The expected result is a generalized game that can be quickly customized to teach LOs not originally targeted by the game. This methodology begins by describing the general components in a game, then uses a combination of two SG design frameworks to extract the teaching elements present in the game. The identified teaching elements are then used as the theoretical basis to determine the range of LOs that can be taught by the game. This paper evaluates the proposed methodology by presenting a case study of refactoring the serious game Battlespace Next (BSN) to teach joint military capabilities. The range of LOs that can be taught by the generalized BSN are identified, and examples of creating custom LOs are given. Survey results from users of the generalized game are also provided. Lastly, the expected impact of this work is discussed and a road map for future work and evaluation is presented.Keywords: serious games, learning objectives, game design, learning theory, game framework
Procedia PDF Downloads 120