Search results for: student network
4258 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils
Authors: Muqdad Al-Juboori, Bithin Datta
Abstract:
Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis
Procedia PDF Downloads 2224257 An Examination of the Benefits of Disciplinary Classroom Support of Word Study, Vocabulary and Comprehension for Adolescent Students
Authors: Amanda Watson
Abstract:
The goal of this project is to create the conditions wherein every teacher, especially subjectarea experts, sees themselves as a teacher of language and vocabulary. Assessment and observational data suggest that students are not getting the support they need in vocabulary and reading comprehension, and secondary teachers do not currently have the confidence or expertise to provide this support. This study seeks to examine the impact of 10-20 minutes of daily, targeted instruction around orthography and vocabulary on student competence with the navigation of complex vocabulary and comprehension of subject-specific concepts and texts. The first phase of the pilot included 6 participating classroom teachers of grades 9 and 10 English (95 students in total) who administered an initial reading comprehension assessment. The results of this assessment indicated that the vast majority of students were reading below grade level. Teachers were then provided with a slide deck of complete lessons on orthography, vocabulary (etymology, roots and affixes) and reading comprehension strategies. For five weeks, teachers delivered lessons with their students, implementing the recommended evidence-based teaching strategies. Students and teachers completed surveys to provide feedback on the value and impact of the method. The results confirmed that this was new learning for the students and that the teaching strategies improved engagement. The lessons succeeded in providing equitable access to challenge by simultaneously offering theoretical learning to proficient readers, and exposure and practice to weaker readers. A second reading comprehension was administered after 5 weeks of daily instruction. Average scores increased by 41%, and almost every student experienced progress. The first phase was not long enough to measure the impact of the method on vocabulary acquisition or reading comprehension of subject-specific texts, however. The project will use the results of the first phase to design the second phase, and new teaching and learning strategies will be added. The goals of the second phases are to increase motivation, and to grow the daily practice beyond English class and into science and / or math. This team will continue to document a continuation of the daily lessons, Commented [E1]: Please do not use rhetorical questions in the abstract. measure the impact of the strategies, and address questions about the correlation between daily practice and improvements in the skills students need for vocabulary acquisition and disciplinary reading comprehension.Keywords: adolescent, comprehension, orthography, reading, vocabulary, etymology, word study, disciplinary, teaching strategies
Procedia PDF Downloads 744256 An Evaluative Microbiological Risk Assessment of Drinking Water Supply in the Carpathian Region: Identification of Occurrent Hazardous Bacteria with Quantitative Microbial Risk Assessment Method
Authors: Anikó Kaluzsa
Abstract:
The article's author aims to introduce and analyze those microbiological safety hazards which indicate the presence of secondary contamination in the water supply system. Since drinking water belongs to primary foods and is the basic condition of life, special attention should be paid on its quality. There are such indicators among the microbiological features can be found in water, which are clear evidence of the presence of water contamination, and based on this there is no need to perform other diagnostics, because they prove properly the contamination of the given water supply section. Laboratory analysis can help - both technologically and temporally – to identify contamination, but it does matter how long takes the removal and if the disinfection process takes place in time. The identification of the factors that often occur in the same places or the chance of their occurrence is greater than the average, facilitates our work. The pathogen microbiological risk assessment by the help of several features determines the most likely occurring microbiological features in the Carpathian basin. From among all the microbiological indicators, that are recommended targets for routine inspection by the World Health Organization, there is a paramount importance of the appearance of Escherichia coli in the water network, as its presence indicates the potential ubietiy of enteric pathogens or other contaminants in the water network. In addition, the author presents the steps of microbiological risk assessment analyzing those pathogenic micro-organisms registered to be the most critical.Keywords: drinking water, E. coli, microbiological indicators, risk assessment, water safety plan
Procedia PDF Downloads 3304255 Duality of Leagility and Governance: A New Normal Demand Network Management Paradigm under Pandemic
Authors: Jacky Hau
Abstract:
The prevalence of emerging technologies disrupts various industries as well as consumer behavior. Data collection has been in the fingertip and inherited through enabled Internet-of-things (IOT) devices. Big data analytics (BDA) becomes possible and allows real-time demand network management (DNM) through leagile supply chain. To enhance further on its resilience and predictability, governance is going to be examined to promote supply chain transparency and trust in an efficient manner. Leagility combines lean thinking and agile techniques in supply chain management. It aims at reducing costs and waste, as well as maintaining responsiveness to any volatile consumer demand by means of adjusting the decoupling point where the product flow changes from push to pull. Leagility would only be successful when collaborative planning, forecasting, and replenishment (CPFR) process or alike is in place throughout the supply chain business entities. Governance and procurement of the supply chain, however, is crucial and challenging for the execution of CPFR as every entity has to walk-the-talk generously for the sake of overall benefits of supply chain performance, not to mention the complexity of exercising the polices at both of within across various supply chain business entities on account of organizational behavior and mutual trust. Empirical survey results showed that the effective timespan on demand forecasting had been drastically shortening in the magnitude of months to weeks planning horizon, thus agility shall come first and preferably following by lean approach in a timely manner.Keywords: governance, leagility, procure-to-pay, source-to-contract
Procedia PDF Downloads 1104254 State Estimator Performance Enhancement: Methods For Identifying Errors In Modelling And Telemetry
Authors: M Ananthakrishnan, Sunil K Patil, Koti Naveen, Inuganti Hemanth Kumar
Abstract:
State estimation output of EMS forms the base case for all other advanced applications used in real time by a power system operator. Ensuring tuning of state estimator is a repeated process and cannot be left once a good solution is obtained. This paper attempts to demonstrate methods to improve state estimator solution by identifying incorrect modelling and telemetry inputs to the application. In this work, identification of database topology modelling error by plotting static network using node-to-node connection details is demonstrated with examples. Analytical methods to identify wrong transmission parameters, incorrect limits and mistakes in pseudo load and generator modelling are explained with various cases observed. Further, methods used for active and reactive power tuning using bus summation display, reactive power absorption summary, and transformer tap correction are also described. In a large power system, verifying all network static data and modelling parameter on regular basis is difficult .The proposed tuning methods can be easily used by operators to quickly identify errors to obtain the best possible state estimation performance. This, in turn, can lead to improved decision-support capabilities, ultimately enhancing the safety and reliability of the power grid.Keywords: active power tuning, database modelling, reactive power, state estimator
Procedia PDF Downloads 54253 Video Analytics on Pedagogy Using Big Data
Authors: Jamuna Loganath
Abstract:
Education is the key to the development of any individual’s personality. Today’s students will be tomorrow’s citizens of the global society. The education of the student is the edifice on which his/her future will be built. Schools therefore should provide an all-round development of students so as to foster a healthy society. The behaviors and the attitude of the students in school play an essential role for the success of the education process. Frequent reports of misbehaviors such as clowning, harassing classmates, verbal insults are becoming common in schools today. If this issue is left unattended, it may develop a negative attitude and increase the delinquent behavior. So, the need of the hour is to find a solution to this problem. To solve this issue, it is important to monitor the students’ behaviors in school and give necessary feedback and mentor them to develop a positive attitude and help them to become a successful grownup. Nevertheless, measuring students’ behavior and attitude is extremely challenging. None of the present technology has proven to be effective in this measurement process because actions, reactions, interactions, response of the students are rarely used in the course of the data due to complexity. The purpose of this proposal is to recommend an effective supervising system after carrying out a feasibility study by measuring the behavior of the Students. This can be achieved by equipping schools with CCTV cameras. These CCTV cameras installed in various schools of the world capture the facial expressions and interactions of the students inside and outside their classroom. The real time raw videos captured from the CCTV can be uploaded to the cloud with the help of a network. The video feeds get scooped into various nodes in the same rack or on the different racks in the same cluster in Hadoop HDFS. The video feeds are converted into small frames and analyzed using various Pattern recognition algorithms and MapReduce algorithm. Then, the video frames are compared with the bench marking database (good behavior). When misbehavior is detected, an alert message can be sent to the counseling department which helps them in mentoring the students. This will help in improving the effectiveness of the education process. As Video feeds come from multiple geographical areas (schools from different parts of the world), BIG DATA helps in real time analysis as it analyzes computationally to reveal patterns, trends, and associations, especially relating to human behavior and interactions. It also analyzes data that can’t be analyzed by traditional software applications such as RDBMS, OODBMS. It has also proven successful in handling human reactions with ease. Therefore, BIG DATA could certainly play a vital role in handling this issue. Thus, effectiveness of the education process can be enhanced with the help of video analytics using the latest BIG DATA technology.Keywords: big data, cloud, CCTV, education process
Procedia PDF Downloads 2394252 Music and Movies: Story about a Suicide
Authors: Karen V. Lee
Abstract:
The background and significance of this study involves an autoethnographic story that shares research results about how music and movies influence the suicide of a new music teacher working in a public school. The performative narrative duet demonstrates how music and movies highlight social issues when the new teacher cannot cope with allegations surrounding professional issues. Both university advisors are drawn into deep reflection about the wider political issues that arise around the transition from the student-teacher internship process to the teaching career with the stark reality of teaching profession in the 21st century. This performance of story and music creates a transformative composition of reading, hearing, feeling while provoking visceral and emotional responses. Sometimes, young teachers are forced to take a leave of absence to reflect upon their practice with adolescents. In this extreme circumstance, the outcome was suicide. The qualitative research method involves an autoethnographic story as the author is methodologist, theoretician, and participant. Sub-themes surround film, music education and how movie resources have influenced his tragic misguided decision regarding social, emotional, physical, spiritual, and practical strategies to cope with the allegations. Major findings from this story demonstrate how lived experiences can resonate the importance of providing more education and resources to new teachers. The research provides substantive contribution, aesthetic merit, as the impact of movies and music influences the suicide. The reflexive account of storied sensory experiences situated in culture settings becomes a way to describe and seek verisimilitude by evoking lifelike and believable feelings from others. Sadly, the circumstance surrounding the story involving the allegations of a teacher sexually harassing a student is not uncommon in society. However, the young teacher never received counseling to cope with the allegations but instead was influenced by music and movies and opted for suicide. In conclusion, stories share the implications for film and media studies as music and movies can encourage a moral mission to empower individuals with despair and emotional impairment to embrace professional support to assist with emotional and legal challenges encountered in the field of teaching. It is from media studies that education and awareness surrounding suicide can disseminate information about the tragic outcome.Keywords: music, movies, suicide, narrative, autoethnography
Procedia PDF Downloads 2304251 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem
Authors: Feng Yang
Abstract:
Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics
Procedia PDF Downloads 1494250 Influence of Principal's Professionalism on Overall Development of the Institution
Authors: Hamesh Babu Nanvala, Madhuri Malhal Rao
Abstract:
The overall development of the Institution is dependent on the approach and attitude of the principal. Influence of principal’s professionalism on overall development of the Institution is the aim of this paper. Professionalism means conducting oneself with responsibility, integrity, accountability and excellence. The predominant characteristic of professionalism is the temperament of oneself to work in the public interest. By summarizing the observations based on authors’ experience regarding professionalism of principals towards the development of their respective institutions and correlating these observations with the findings in the literature and opinion of other principals and staff, the authors conceived a conceptual approach with its attributes by practicing suggested approach principals that can achieve overall development of their institutions.Keywords: achiever, development, institution, principal, professionalism, student, teacher
Procedia PDF Downloads 2884249 A Network Economic Analysis of Friendship, Cultural Activity, and Homophily
Authors: Siming Xie
Abstract:
In social networks, the term homophily refers to the tendency of agents with similar characteristics to link with one another and is so robustly observed across many contexts and dimensions. The starting point of my research is the observation that the “type” of agents is not a single exogenous variable. Agents, despite their differences in race, religion, and other hard to alter characteristics, may share interests and engage in activities that cut across those predetermined lines. This research aims to capture the interactions of homophily effects in a model where agents have two-dimension characteristics (i.e., race and personal hobbies such as basketball, which one either likes or dislikes) and with biases in meeting opportunities and in favor of same-type friendships. A novel feature of my model is providing a matching process with biased meeting probability on different dimensions, which could help to understand the structuring process in multidimensional networks without missing layer interdependencies. The main contribution of this study is providing a welfare based matching process for agents with multi-dimensional characteristics. In particular, this research shows that the biases in meeting opportunities on one dimension would lead to the emergence of homophily on the other dimension. The objective of this research is to determine the pattern of homophily in network formations, which will shed light on our understanding of segregation and its remedies. By constructing a two-dimension matching process, this study explores a method to describe agents’ homophilous behavior in a social network with multidimension and construct a game in which the minorities and majorities play different strategies in a society. It also shows that the optimal strategy is determined by the relative group size, where society would suffer more from social segregation if the two racial groups have a similar size. The research also has political implications—cultivating the same characteristics among agents helps diminishing social segregation, but only if the minority group is small enough. This research includes both theoretical models and empirical analysis. Providing the friendship formation model, the author first uses MATLAB to perform iteration calculations, then derives corresponding mathematical proof on previous results, and last shows that the model is consistent with empirical evidence from high school friendships. The anonymous data comes from The National Longitudinal Study of Adolescent Health (Add Health).Keywords: homophily, multidimension, social networks, friendships
Procedia PDF Downloads 1704248 From Ride-Hailing App to Diversified and Sustainable Platform Business Model
Authors: Ridwan Dewayanto Rusli
Abstract:
We show how prisoner's dilemma-type competition problems can be mitigated through rapid platform diversification and ecosystem expansion. We analyze a ride-hailing company in Southeast Asia, Gojek, whose network grew to more than 170 million users comprising consumers, partner drivers, merchants, and complementors within a few years and has already achieved higher contribution margins than ride-hailing peers Uber and Lyft. Its ecosystem integrates ride-hailing, food delivery and logistics, merchant solutions, e-commerce, marketplace and advertising, payments, and fintech offerings. The company continues growing its network of complementors and App developers, expanding content and gaining critical mass in consumer data analytics and advertising. We compare the company's growth and diversification trajectory with those of its main international rivals and peers. The company's rapid growth and future potential are analyzed using Cusumano's (2012) Staying Power and Six Principles, Hax and Wilde's (2003) and Hax's (2010) The Delta Model as well as Santos' (2016) home-market advantages frameworks. The recently announced multi-billion-dollar merger with one of Southeast Asia's largest e-commerce majors lends additional support to the above arguments.Keywords: ride-hailing, prisoner's dilemma, platform and ecosystem strategy, digital applications, diversification, home market advantages, e-commerce
Procedia PDF Downloads 924247 Assessing Climate-Induced Species Range Shifts and Their Impacts on the Protected Seascape on Canada’s East Coast Using Species Distribution Models and Future Projections
Authors: Amy L. Irvine, Gabriel Reygondeau, Derek P. Tittensor
Abstract:
Marine protected areas (MPAs) within Canada’s exclusive economic zone help ensure the conservation and sustainability of marine ecosystems and the continued provision of ecosystem services to society (e.g., food, carbon sequestration). With ongoing and accelerating climate change, however, MPAs may become undermined in terms of their effectiveness at fulfilling these outcomes. Many populations of species, especially those at their thermal range limits, may shift to cooler waters or become extirpated due to climate change, resulting in new species compositions and ecological interactions within static MPA boundaries. While Canadian MPA management follows international guidelines for marine conservation, no consistent approach exists for adapting MPA networks to climate change and the resulting altered ecosystem conditions. To fill this gap, projected climate-driven shifts in species distributions on Canada’s east coast were analyzed to identify when native species emigrate and novel species immigrate within the network and how high mitigation and carbon emission scenarios influence these timelines. Indicators of the ecological changes caused by these species' shifts in the biological community were also developed. Overall, our research provides projections of climate change impacts and helps to guide adaptive management responses within the Canadian east coast MPA network.Keywords: climate change, ecosystem modeling, marine protected areas, management
Procedia PDF Downloads 1004246 Shifting Contexts and Shifting Identities: Campus Race-related Experiences, Racial Identity, and Achievement Motivation among Black College Students during the Transition to College
Authors: Tabbye Chavous, Felecia Webb, Bridget Richardson, Gloryvee Fonseca-Bolorin, Seanna Leath, Robert Sellers
Abstract:
There has been recent renewed attention to Black students’ experiences at predominantly White U.S. universities (PWIs), e.g., the #BBUM (“Being Black at the University of Michigan”), “I too am Harvard” social media campaigns, and subsequent student protest activities nationwide. These campaigns illuminate how many minority students encounter challenges to their racial/ethnic identities as they enter PWI contexts. Students routinely report experiences such as being ignored or treated as a token in classes, receiving messages of low academic expectations by faculty and peers, being questioned about their academic qualifications or belonging, being excluded from academic and social activities, and being racially profiled and harassed in the broader campus community due to race. Researchers have linked such racial marginalization and stigma experiences to student motivation and achievement. One potential mechanism is through the impact of college experiences on students’ identities, given the relevance of the college context for students’ personal identity development, including personal beliefs systems around social identities salient in this context. However, little research examines the impact of the college context on Black students’ racial identities. This study examined change in Black college students’ (N=329) racial identity beliefs over the freshman year at three predominantly White U.S. universities. Using cluster analyses, we identified profile groups reflecting different patterns of stability and change in students’ racial centrality (importance of race to overall self-concept), private regard (personal group affect/group pride), and public regard (perceptions of societal views of Blacks) from beginning of year (Time 1) to end of year (Time 2). Multinomial logit regression analyses indicated that the racial identity change clusters were predicted by pre-college background (racial composition of high school and neighborhood), as well as college-based experiences (racial discrimination, interracial friendships, and perceived campus racial climate). In particular, experiencing campus racial discrimination related to high, stable centrality, and decreases in private regard and public regard. Perceiving racial climates norms of institutional support for intergroup interactions on campus related to maintaining low and decreasing in private and public regard. Multivariate Analyses of Variance results showed change cluster effects on achievement motivation outcomes at the end of students’ academic year. Having high, stable centrality and high private regard related to more positive outcomes overall (academic competence, positive academic affect, academic curiosity and persistence). Students decreasing in private regard and public regard were particularly vulnerable to negative motivation outcomes. Findings support scholarship indicating both stability in racial identity beliefs and the importance of critical context transitions in racial identity development and adjustment outcomes among emerging adults. Findings also are consistent with research suggesting promotive effects of a strong, positive racial identity on student motivation, as well as research linking awareness of racial stigma to decreased academic engagement.Keywords: diversity, motivation, learning, ethnic minority achievement, higher education
Procedia PDF Downloads 5174245 Scoring Approach to Identify High-Risk Corridors for Winter Safety Measures in the Iranian Roads Network
Authors: M. Mokhber, J. Hedayati
Abstract:
From the managerial perspective, it is important to devise an operational plan based on top priorities due to limited resources, diversity of measures and high costs needed to improve safety in infrastructure. Dealing with the high-risk corridors across Iran, this study prioritized the corridors according to statistical data on accidents involving fatalities, injury or damage over three consecutive years. In collaboration with the Iranian Police Department, data were collected and modified. Then, the prioritization criteria were specified based on the expertise opinions and international standards. In this study, the prioritization criteria included accident severity and accident density. Finally, the criteria were standardized and weighted (equal weights) to score each high-risk corridor. The prioritization phase involved the scoring and weighting procedure. The high-risk corridors were divided into twelve groups out of 50. The results of data analysis for a three-year span suggested that the first three groups (150 corridors) along with a quarter of Iranian road network length account for nearly 60% of traffic accidents. In the next step, according to variables including weather conditions particular roads for the purpose of winter safety measures were extracted from the abovementioned categories. According to the results ranking, 9 roads with the overall length of about 1000 Km of high-risk corridors are considered as preferences of safety measures.Keywords: high-risk corridors, HRCs, road safety rating, road scoring, winter safety measures
Procedia PDF Downloads 1754244 Transformation and Integration: Iranian Women Migrants and the Use of Social Media in Australia
Authors: Azadeh Davachi
Abstract:
Although there is a growing interest in Iranian female migration and gender roles, little attention has been paid to how Iranian migrant women in Australia access and sustain social networks, both locally and spatially dispersed over time. Social network theories have much to offer an analysis of migrant’s social ties and interpersonal relationships. Thus, it is important to note that social media are not only new communication channels in a migration network but also that they actively transform the nature of these networks and thereby facilitate migration for migrants. Drawing on that, this article will focus on Iranian women migrants and the use of social media in migration in Australia. Based on the case of main social networks such as Facebook and Instagram; this paper will investigate that how women migrants use these networks to facilitate the process of migration and integration. In addition, with the use of social networks, they could promote their home business and as a result become more engaged economically in Australian society. This paper will focus on three main Iranian pages in Instagram and Facebook, they will contend that compared to men, women are more active in these social networks. Consequently, as this article will discuss with the use of these social media Iranian migrant women can become more engaged and overcome post migration hardships, thus, gender plays a key role in using social media in migrant communities. Based on these findings from these social media pages, this paper will conclude that social media are transforming migration networks and thereby lowering the threshold for migration. It also will be demonstrated that these networks boost Iranian women’s confidence and lead them to become more visible in Iranian migrant communities comparing to men.Keywords: integration, gender, migration, women migrants
Procedia PDF Downloads 1604243 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning
Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim
Abstract:
Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation
Procedia PDF Downloads 934242 Multimodal Deep Learning for Human Activity Recognition
Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja
Abstract:
In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness
Procedia PDF Downloads 1004241 “Those Are the Things that We Need to be Talking About”: The Impact of Learning About the History of Racial Oppression during Ghana Study Abroad
Authors: Katarzyna Olcoń, Rose M. Pulliam, Dorie J. Gilbert
Abstract:
This article examines the impact of learning about the history of racial oppression on U.S. university students who participated in a Ghana study abroad which involved visiting the former slave dungeons. Relying on ethnographic observations, individual interviews, and written journals of 27 students (predominantly White and Latino/a and social work majors), we identified four themes: (1) the suffering and resilience of African and African descent people; (2) ‘it’s still happening today’; (3) ‘you don’t learn about that in school’; and (4) remembrance, equity, and healing.Keywords: racial oppression, anti-racism pedagogy, student learning, social work education, study abroad
Procedia PDF Downloads 1174240 Challenges of School Leadership
Authors: Stefan Ninković
Abstract:
The main purpose of this paper is to examine the different theoretical approaches and relevant empirical evidence and thus, recognize some of the most pressing challenges faced by school leaders. This paper starts from the fact that the new mission of the school is characterized by the need for stronger coordination among students' academic, social and emotional learning. In this sense, school leaders need to focus their commitment, vision and leadership on the issues of students' attitudes, language, cultural and social background, and sexual orientation. More specifically, they should know what a good teaching is for student’s at-risk, students whose first language is not dominant in school, those who’s learning styles are not in accordance with usual teaching styles, or who are stigmatized. There is a rather wide consensus around the fact that the traditionally popular concept of instructional leadership of the school principal is no longer sufficient. However, in a number of "pro-leadership" circles, including certain groups of academic researchers, consultants and practitioners, there is an established tendency of attributing school principal an extraordinary influence towards school achievements. On the other hand, the situation in which all employees in the school are leaders is a utopia par excellence. Although leadership obviously can be efficiently distributed across the school, there are few findings that speak about sources of this distribution and factors making it sustainable. Another idea that is not particularly new, but has only recently gained in importance is related to the fact that the collective capacity of the school is an important resource that often remains under-cultivated. To understand the nature and power of collaborative school cultures, it is necessary to know that these operate in a way that they make their all collective members' tacit knowledge explicit. In this sense, the question is how leaders in schools can shape collaborative culture and create social capital in the school. Pressure exerted on schools to systematically collect and use the data has been accompanied by the need for school leaders to develop new competencies. The role of school leaders is critical in the process of assessing what data are needed and for what purpose. Different types of data are important: test results, data on student’s absenteeism, satisfaction with school, teacher motivation, etc. One of the most important tasks of school leaders are data-driven decision making as well as ensuring transparency of the decision-making process. Finally, the question arises whether the existing models of school leadership are compatible with the current social and economic trends. It is necessary to examine whether and under what conditions schools are in need for forms of leadership that are different from those that currently prevail. Closely related to this issue is also to analyze the adequacy of different approaches to leadership development in the school.Keywords: educational changes, leaders, leadership, school
Procedia PDF Downloads 3354239 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen
Abstract:
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.Keywords: AIS, ANN, ECG, hybrid classifiers, PSO
Procedia PDF Downloads 4424238 Thai Prosody Problems with First-Year Students
Authors: Jiraporn Adchariyaprasit
Abstract:
Thai language is difficult in all four language skills, especially reading. The first year students may have different abilities in reading, so a teacher is required to find out a student’s reading level so that the teacher can help and support them till they can develop and resolve each problem themselves. This research is aimed to study the prosody problem among Thai students and will be focused on first year Thai students in the second semester. A total of 58 students were involved in this study. Four obstacles were found: 1) Interpretation from what they read and write; 2) Incorrectness Pronunciation of Prosody; 3) Incorrectness in Rhythm of the Poem; Incorrectness of the Thai Poem Pronunciation.Keywords: pronunciation, prosody, interpretation, Thai language
Procedia PDF Downloads 3624237 Reduction of the Number of Traffic Accidents by Function of Driver's Anger Detection
Authors: Masahiro Miyaji
Abstract:
When a driver happens to be involved in some traffic congestion or after traffic incidents, the driver may fall in a state of anger. State of anger may encounter decisive risk resulting in severer traffic accidents. Preventive safety function using driver’s psychosomatic state with regard to anger may be one of solutions which would avoid that kind of risks. Identifying driver’s anger state is important to create countermeasures to prevent the risk of traffic accidents. As a first step, this research figured out root cause of traffic incidents by means of using Internet survey. From statistical analysis of the survey, dominant psychosomatic states immediately before traffic incidents were haste, distraction, drowsiness and anger. Then, we replicated anger state of a driver while driving, and then, replicated it by means of using driving simulator on bench test basis. Six types of facial expressions including anger were introduced as alternative characteristics. Kohonen neural network was adopted to classify anger state. Then, we created a methodology to detect anger state of a driver in high accuracy. We presented a driving support safety function. The function adapts driver’s anger state in cooperation with an autonomous driving unit to reduce the number of traffic accidents. Consequently, e evaluated reduction rate of driver’s anger in the traffic accident. To validate the estimation results, we referred the reduction rate of Advanced Safety Vehicle (ASV) as well as Intelligent Transportation Systems (ITS).Keywords: Kohonen neural network, driver’s anger state, reduction of traffic accidents, driver’s state adaptive driving support safety
Procedia PDF Downloads 3574236 Impacts of School-Wide Positive Behavioral Interventions and Supports on Student Academics, Behavior and Mental Health
Authors: Catherine Bradshaw
Abstract:
Educators often report difficulty managing behavior problems and other mental health concerns that students display at school. These concerns also interfere with the learning process and can create distraction for teachers and other students. As such, schools play an important role in both preventing and intervening with students who experience these types of challenges. A number of models have been proposed to serve as a framework for delivering prevention and early intervention services in schools. One such model is called Positive Behavioral Interventions and Supports (PBIS), which has been scaled-up to over 26,000 schools in the U.S. and many other countries worldwide. PBIS aims to improve a range of student outcomes through early detection of and intervention related to behavioral and mental health symptoms. PBIS blends and applies social learning, behavioral, and organizational theories to prevent disruptive behavior and enhance the school’s organizational health. PBIS focuses on creating and sustaining tier 1 (universal), tier 2 (selective), and tier 3 (individual) systems of support. Most schools using PBIS have focused on the core elements of the tier 1 supports, which includes the following critical features. The formation of a PBIS team within the school to lead implementation. Identification and training of a behavioral support ‘coach’, who serves as a on-site technical assistance provider. Many of the individuals identified to serve as a PBIS coach are also trained as a school psychologist or guidance counselor; coaches typically have prior PBIS experience and are trained to conduct functional behavioral assessments. The PBIS team also identifies a set of three to five positive behavioral expectations that are implemented for all students and by all staff school-wide (e.g., ‘be respectful, responsible, and ready to learn’); these expectations are posted in all settings across the school, including in the classroom, cafeteria, playground etc. All school staff define and teach the school-wide behavioral expectations to all students and review them regularly. Finally, PBIS schools develop or adopt a school-wide system to reward or reinforce students who demonstrate those 3-5 positive behavioral expectations. Staff and administrators create an agreed upon system for responding to behavioral violations that include definitions about what constitutes a classroom-managed vs. an office-managed discipline problem. Finally, a formal system is developed to collect, analyze, and use disciplinary data (e.g., office discipline referrals) to inform decision-making. This presentation provides a brief overview of PBIS and reports findings from a series of four U.S. based longitudinal randomized controlled trials (RCTs) documenting the impacts of PBIS on school climate, discipline problems, bullying, and academic achievement. The four RCTs include 80 elementary, 40 middle, and 58 high schools and results indicate a broad range of impacts on multiple student and school-wide outcomes. The session will highlight lessons learned regarding PBIS implementation and scale-up. We also review the ways in which PBIS can help educators and school leaders engage in data-based decision-making and share data with other decision-makers and stakeholders (e.g., students, parents, community members), with the overarching goal of increasing use of evidence-based programs in schools.Keywords: positive behavioral interventions and supports, mental health, randomized trials, school-based prevention
Procedia PDF Downloads 2264235 A Location-based Authentication and Key Management Scheme for Border Surveillance Wireless Sensor Networks
Authors: Walid Abdallah, Noureddine Boudriga
Abstract:
Wireless sensor networks have shown their effectiveness in the deployment of many critical applications especially in the military domain. Border surveillance is one of these applications where a set of wireless sensors are deployed along a country border line to detect illegal intrusion attempts to the national territory and report this to a control center to undergo the necessary measures. Regarding its nature, this wireless sensor network can be the target of many security attacks trying to compromise its normal operation. Particularly, in this application the deployment and location of sensor nodes are of great importance for detecting and tracking intruders. This paper proposes a location-based authentication and key distribution mechanism to secure wireless sensor networks intended for border surveillance where the key establishment is performed using elliptic curve cryptography and identity-based public key scheme. In this scheme, the public key of each sensor node will be authenticated by keys that depend on its position in the monitored area. Before establishing a pairwise key between two nodes, each one of them must verify the neighborhood location of the other node using a message authentication code (MAC) calculated on the corresponding public key and keys derived from encrypted beacon messages broadcast by anchor nodes. We show that our proposed public key authentication and key distribution scheme is more resilient to node capture and node replication attacks than currently available schemes. Also, the achievement of the key distribution between nodes in our scheme generates less communication overhead and hence increases network performances.Keywords: wireless sensor networks, border surveillance, security, key distribution, location-based
Procedia PDF Downloads 6584234 Modelling Biological Treatment of Dye Wastewater in SBR Systems Inoculated with Bacteria by Artificial Neural Network
Authors: Yasaman Sanayei, Alireza Bahiraie
Abstract:
This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR). The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. Employing reactive dye by Sphingomonas paucimobilis bacteria at sequence batch reactor is a novel approach of dye removal. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was a= 0.44. In orderto adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2> 0.99 and a low mean absolute error (MAE). The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics. Note that SBR are normally operated with constant predefined duration of the stages, thus, resulting in low efficient operation. Data obtained from the on-line electronic sensors installed in the SBR and from the control quality laboratory analysis have been used to develop the optimal architecture of two different ANN. The results have shown that the developed models can be used as efficient and cost-effective predictive tools for the system analysed.Keywords: artificial neural network, COD removal, SBR, Sphingomonas paucimobilis
Procedia PDF Downloads 4124233 Reverse Supply Chain Analysis of Lithium-Ion Batteries Considering Economic and Environmental Aspects
Authors: Aravind G., Arshinder Kaur, Pushpavanam S.
Abstract:
There is a strong emphasis on shifting to electric vehicles (EVs) throughout the globe for reducing the impact on global warming following the Paris climate accord. Lithium-ion batteries (LIBs) are predominantly used in EVs, and these can be a significant threat to the environment if not disposed of safely. Lithium is also a valuable resource not widely available. There are several research groups working on developing an efficient recycling process for LIBs. Two routes - pyrometallurgical and hydrometallurgical processes have been proposed for recycling LIBs. In this paper, we focus on life cycle assessment (LCA) as a tool to quantify the environmental impact of these recycling processes. We have defined the boundary of the LCA to include only the recycling phase of the end-of-life (EoL) of the battery life cycle. The analysis is done assuming ideal conditions for the hydrometallurgical and a combined hydrometallurgical and pyrometallurgical process in the inventory analysis. CML-IA method is used for quantifying the impact assessment across eleven indicators. Our results show that cathode, anode, and foil contribute significantly to the impact. The environmental impacts of both hydrometallurgical and combined recycling processes are similar across all the indicators. Further, the results of LCA are used in developing a multi-objective optimization model for the design of lithium-ion battery recycling network. Greenhouse gas emissions and cost are the two parameters minimized for the optimization study.Keywords: life cycle assessment, lithium-ion battery recycling, multi-objective optimization, network design, reverse supply chain
Procedia PDF Downloads 1544232 Denoising Convolutional Neural Network Assisted Electrocardiogram Signal Watermarking for Secure Transmission in E-Healthcare Applications
Authors: Jyoti Rani, Ashima Anand, Shivendra Shivani
Abstract:
In recent years, physiological signals obtained in telemedicine have been stored independently from patient information. In addition, people have increasingly turned to mobile devices for information on health-related topics. Major authentication and security issues may arise from this storing, degrading the reliability of diagnostics. This study introduces an approach to reversible watermarking, which ensures security by utilizing the electrocardiogram (ECG) signal as a carrier for embedding patient information. In the proposed work, Pan-Tompkins++ is employed to convert the 1D ECG signal into a 2D signal. The frequency subbands of a signal are extracted using RDWT(Redundant discrete wavelet transform), and then one of the subbands is subjected to MSVD (Multiresolution singular valued decomposition for masking. Finally, the encrypted watermark is embedded within the signal. The experimental results show that the watermarked signal obtained is indistinguishable from the original signals, ensuring the preservation of all diagnostic information. In addition, the DnCNN (Denoising convolutional neural network) concept is used to denoise the retrieved watermark for improved accuracy. The proposed ECG signal-based watermarking method is supported by experimental results and evaluations of its effectiveness. The results of the robustness tests demonstrate that the watermark is susceptible to the most prevalent watermarking attacks.Keywords: ECG, VMD, watermarking, PanTompkins++, RDWT, DnCNN, MSVD, chaotic encryption, attacks
Procedia PDF Downloads 994231 Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring
Authors: Jean-Francois Rajotte, Martin Sotir, Frank Gouineau
Abstract:
The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution.Keywords: traffic monitoring, deep learning, image annotation, vehicles, roads, artificial intelligence, real-time systems
Procedia PDF Downloads 1984230 Modeling Driving Distraction Considering Psychological-Physical Constraints
Authors: Yixin Zhu, Lishengsa Yue, Jian Sun, Lanyue Tang
Abstract:
Modeling driving distraction in microscopic traffic simulation is crucial for enhancing simulation accuracy. Current driving distraction models are mainly derived from physical motion constraints under distracted states, in which distraction-related error terms are added to existing microscopic driver models. However, the model accuracy is not very satisfying, due to a lack of modeling the cognitive mechanism underlying the distraction. This study models driving distraction based on the Queueing Network Human Processor model (QN-MHP). This study utilizes the queuing structure of the model to perform task invocation and switching for distracted operation and control of the vehicle under driver distraction. Based on the assumption of the QN-MHP model about the cognitive sub-network, server F is a structural bottleneck. The latter information must wait for the previous information to leave server F before it can be processed in server F. Therefore, the waiting time for task switching needs to be calculated. Since the QN-MHP model has different information processing paths for auditory information and visual information, this study divides driving distraction into two types: auditory distraction and visual distraction. For visual distraction, both the visual distraction task and the driving task need to go through the visual perception sub-network, and the stimuli of the two are asynchronous, which is called stimulus on asynchrony (SOA), so when calculating the waiting time for switching tasks, it is necessary to consider it. In the case of auditory distraction, the auditory distraction task and the driving task do not need to compete for the server resources of the perceptual sub-network, and their stimuli can be synchronized without considering the time difference in receiving the stimuli. According to the Theory of Planned Behavior for drivers (TPB), this study uses risk entropy as the decision criterion for driver task switching. A logistic regression model is used with risk entropy as the independent variable to determine whether the driver performs a distraction task, to explain the relationship between perceived risk and distraction. Furthermore, to model a driver’s perception characteristics, a neurophysiological model of visual distraction tasks is incorporated into the QN-MHP, and executes the classical Intelligent Driver Model. The proposed driving distraction model integrates the psychological cognitive process of a driver with the physical motion characteristics, resulting in both high accuracy and interpretability. This paper uses 773 segments of distracted car-following in Shanghai Naturalistic Driving Study data (SH-NDS) to classify the patterns of distracted behavior on different road facilities and obtains three types of distraction patterns: numbness, delay, and aggressiveness. The model was calibrated and verified by simulation. The results indicate that the model can effectively simulate the distracted car-following behavior of different patterns on various roadway facilities, and its performance is better than the traditional IDM model with distraction-related error terms. The proposed model overcomes the limitations of physical-constraints-based models in replicating dangerous driving behaviors, and internal characteristics of an individual. Moreover, the model is demonstrated to effectively generate more dangerous distracted driving scenarios, which can be used to construct high-value automated driving test scenarios.Keywords: computational cognitive model, driving distraction, microscopic traffic simulation, psychological-physical constraints
Procedia PDF Downloads 904229 Client Hacked Server
Authors: Bagul Abhijeet
Abstract:
Background: Client-Server model is the backbone of today’s internet communication. In which normal user can not have control over particular website or server? By using the same processing model one can have unauthorized access to particular server. In this paper, we discussed about application scenario of hacking for simple website or server consist of unauthorized way to access the server database. This application emerges to autonomously take direct access of simple website or server and retrieve all essential information maintain by administrator. In this system, IP address of server given as input to retrieve user-id and password of server. This leads to breaking administrative security of server and acquires the control of server database. Whereas virus helps to escape from server security by crashing the whole server. Objective: To control malicious attack and preventing all government website, and also find out illegal work to do hackers activity. Results: After implementing different hacking as well as non-hacking techniques, this system hacks simple web sites with normal security credentials. It provides access to server database and allow attacker to perform database operations from client machine. Above Figure shows the experimental result of this application upon different servers and provides satisfactory results as required. Conclusion: In this paper, we have presented a to view to hack the server which include some hacking as well as non-hacking methods. These algorithms and methods provide efficient way to hack server database. By breaking the network security allow to introduce new and better security framework. The terms “Hacking” not only consider for its illegal activities but also it should be use for strengthen our global network.Keywords: Hacking, Vulnerabilities, Dummy request, Virus, Server monitoring
Procedia PDF Downloads 250