Search results for: K-nearest neighbors algorithm
803 Improving Seat Comfort by Semi-Active Control of Magnetorheological Damper
Authors: Karel Šebesta, Jiří Žáček, Matuš Salva, Mohammad Housam
Abstract:
Drivers of agricultural vehicles are exposed to continuous vibration caused by driving over rough terrain. The long-term effects of these vibrations could start with a decreased level of vigilance at work and could reach the level of several health problems. Therefore, eliminating the vibration to maximize the comfort of the driver is essential for better/longer performance. One of the modern damping systems, which can deal with this problem is the Semi-active (S/A) suspension system featuring a Magnetorheological (MR) damper. With this damper, the damping level can be adjusted using varying currents through the coil. Adjustments of the damping force can be carried out continuously based on the evaluated data (position and acceleration of seat) by the control algorithm. The advantage of this system is the wide dynamic range and the high speed of force response time. Compared to other S/A or active systems, the MR damper does not need as much electrical power, and the system is much simpler. This paper aims to prove the effectiveness of this damping system used in the tractor seat. The vibration testing stand was designed and manufactured specifically for this type of research, which is used to simulate vibrations with constant amplitude at variable frequency.Keywords: magnetorheological damper, semi-active suspension, seat scissor mechanism, sky-hook
Procedia PDF Downloads 96802 Comparative Study of Deep Reinforcement Learning Algorithm Against Evolutionary Algorithms for Finding the Optimal Values in a Simulated Environment Space
Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt
Abstract:
Traditional optimization methods like evolutionary algorithms are widely used in production processes to find an optimal or near-optimal solution of control parameters based on the simulated environment space of a process. These algorithms are computationally intensive and therefore do not provide the opportunity for real-time optimization. This paper utilizes the Deep Reinforcement Learning (DRL) framework to find an optimal or near-optimal solution for control parameters. A model based on maximum a posteriori policy optimization (Hybrid-MPO) that can handle both numerical and categorical parameters is used as a benchmark for comparison. A comparative study shows that DRL can find optimal solutions of similar quality as compared to evolutionary algorithms while requiring significantly less time making them preferable for real-time optimization. The results are confirmed in a large-scale validation study on datasets from production and other fields. A trained XGBoost model is used as a surrogate for process simulation. Finally, multiple ways to improve the model are discussed.Keywords: reinforcement learning, evolutionary algorithms, production process optimization, real-time optimization, hybrid-MPO
Procedia PDF Downloads 112801 Attribute Analysis of Quick Response Code Payment Users Using Discriminant Non-negative Matrix Factorization
Authors: Hironori Karachi, Haruka Yamashita
Abstract:
Recently, the system of quick response (QR) code is getting popular. Many companies introduce new QR code payment services and the services are competing with each other to increase the number of users. For increasing the number of users, we should grasp the difference of feature of the demographic information, usage information, and value of users between services. In this study, we conduct an analysis of real-world data provided by Nomura Research Institute including the demographic data of users and information of users’ usages of two services; LINE Pay, and PayPay. For analyzing such data and interpret the feature of them, Nonnegative Matrix Factorization (NMF) is widely used; however, in case of the target data, there is a problem of the missing data. EM-algorithm NMF (EMNMF) to complete unknown values for understanding the feature of the given data presented by matrix shape. Moreover, for comparing the result of the NMF analysis of two matrices, there is Discriminant NMF (DNMF) shows the difference of users features between two matrices. In this study, we combine EMNMF and DNMF and also analyze the target data. As the interpretation, we show the difference of the features of users between LINE Pay and Paypay.Keywords: data science, non-negative matrix factorization, missing data, quality of services
Procedia PDF Downloads 131800 An Effective and Efficient Web Platform for Monitoring, Control, and Management of Drones Supported by a Microservices Approach
Authors: Jorge R. Santos, Pedro Sebastiao
Abstract:
In recent years there has been a great growth in the use of drones, being used in several areas such as security, agriculture, or research. The existence of some systems that allow the remote control of drones is a reality; however, these systems are quite simple and directed to specific functionality. This paper proposes the development of a web platform made in Vue.js and Node.js to control, manage, and monitor drones in real time. Using a microservice architecture, the proposed project will be able to integrate algorithms that allow the optimization of processes. Communication with remote devices is suggested via HTTP through 3G, 4G, and 5G networks and can be done in real time or by scheduling routes. This paper addresses the case of forest fires as one of the services that could be included in a system similar to the one presented. The results obtained with the elaboration of this project were a success. The communication between the web platform and drones allowed its remote control and monitoring. The incorporation of the fire detection algorithm in the platform proved possible a real time analysis of the images captured by the drone without human intervention. The proposed system has proved to be an asset to the use of drones in fire detection. The architecture of the application developed allows other algorithms to be implemented, obtaining a more complex application with clear expansion.Keywords: drone control, microservices, node.js, unmanned aerial vehicles, vue.js
Procedia PDF Downloads 148799 Lab Bench for Synthetic Aperture Radar Imaging System
Authors: Karthiyayini Nagarajan, P. V. Ramakrishna
Abstract:
Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar (SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System (Lab Bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.Keywords: synthetic aperture radar, radio reflection model, lab bench, imaging engineering
Procedia PDF Downloads 497798 Numerical Simulation of Natural Gas Dispersion from Low Pressure Pipelines
Authors: Omid Adibi, Nategheh Najafpour, Bijan Farhanieh, Hossein Afshin
Abstract:
Gas release from the pipelines is one of the main factors in the gas industry accidents. Released gas ejects from the pipeline as a free jet and in the growth process, the fuel gets mixed with the ambient air. Accordingly, an accidental spark will release the chemical energy of the mixture with an explosion. Gas explosion damages the equipment and endangers the life of staffs. So due to importance of safety in gas industries, prevision of accident can reduce the number of the casualties. In this paper, natural gas leakages from the low pressure pipelines are studied in two steps: 1) the simulation of mixing process and identification of flammable zones and 2) the simulation of wind effects on the mixing process. The numerical simulations were performed by using the finite volume method and the pressure-based algorithm. Also, for the grid generation the structured method was used. The results show that, in just 6.4 s after accident, released natural gas could penetrate to 40 m in vertical and 20 m in horizontal direction. Moreover, the results show that the wind speed is a key factor in dispersion process. In fact, the wind transports the flammable zones into the downstream. Hence, to improve the safety of the people and human property, it is preferable to construct gas facilities and buildings in the opposite side of prevailing wind direction.Keywords: flammable zones, gas pipelines, numerical simulation, wind effects
Procedia PDF Downloads 166797 Real-Time Path Planning for Unmanned Air Vehicles Using Improved Rapidly-Exploring Random Tree and Iterative Trajectory Optimization
Authors: A. Ramalho, L. Romeiro, R. Ventura, A. Suleman
Abstract:
A real-time path planning framework for Unmanned Air Vehicles, and in particular multi-rotors is proposed. The framework is designed to provide feasible trajectories from the current UAV position to a goal state, taking into account constraints such as obstacle avoidance, problem kinematics, and vehicle limitations such as maximum speed and maximum acceleration. The framework computes feasible paths online, allowing to avoid new, unknown, dynamic obstacles without fully re-computing the trajectory. These features are achieved using an iterative process in which the robot computes and optimizes the trajectory while performing the mission objectives. A first trajectory is computed using a modified Rapidly-Exploring Random Tree (RRT) algorithm, that provides trajectories that respect a maximum curvature constraint. The trajectory optimization is accomplished using the Interior Point Optimizer (IPOPT) as a solver. The framework has proven to be able to compute a trajectory and optimize to a locally optimal with computational efficiency making it feasible for real-time operations.Keywords: interior point optimization, multi-rotors, online path planning, rapidly exploring random trees, trajectory optimization
Procedia PDF Downloads 135796 Development of a Shape Based Estimation Technology Using Terrestrial Laser Scanning
Authors: Gichun Cha, Byoungjoon Yu, Jihwan Park, Minsoo Park, Junghyun Im, Sehwan Park, Sujung Sin, Seunghee Park
Abstract:
The goal of this research is to estimate a structural shape change using terrestrial laser scanning. This study proceeds with development of data reduction and shape change estimation algorithm for large-capacity scan data. The point cloud of scan data was converted to voxel and sampled. Technique of shape estimation is studied to detect changes in structure patterns, such as skyscrapers, bridges, and tunnels based on large point cloud data. The point cloud analysis applies the octree data structure to speed up the post-processing process for change detection. The point cloud data is the relative representative value of shape information, and it used as a model for detecting point cloud changes in a data structure. Shape estimation model is to develop a technology that can detect not only normal but also immediate structural changes in the event of disasters such as earthquakes, typhoons, and fires, thereby preventing major accidents caused by aging and disasters. The study will be expected to improve the efficiency of structural health monitoring and maintenance.Keywords: terrestrial laser scanning, point cloud, shape information model, displacement measurement
Procedia PDF Downloads 234795 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms
Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,
Abstract:
Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model
Procedia PDF Downloads 282794 Design and Implementation of a Lab Bench for Synthetic Aperture Radar Imaging System
Authors: Karthiyayini Nagarajan, P. V. RamaKrishna
Abstract:
Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar(SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System(lab bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.Keywords: synthetic aperture radar, radio reflection model, lab bench
Procedia PDF Downloads 468793 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph
Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn
Abstract:
Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction
Procedia PDF Downloads 425792 A Fuzzy Analytic Hierarchy Process Approach for the Decision of Maintenance Priorities of Building Entities: A Case Study in a Facilities Management Company
Authors: Wai Ho Darrell Kwok
Abstract:
Building entities are valuable assets of a society, however, all of them are suffered from the ravages of weather and time. Facilitating onerous maintenance activities is the only way to either maintain or enhance the value and contemporary standard of the premises. By the way, maintenance budget is always bounded by the corresponding threshold limit. In order to optimize the limited resources allocation in carrying out maintenance, there is a substantial need to prioritize maintenance work. This paper reveals the application of Fuzzy AHP in a Facilities Management Company determining the maintenance priorities on the basis of predetermined criteria, viz., Building Status (BS), Effects on Fabrics (EF), Effects on Sustainability (ES), Effects on Users (EU), Importance of Usage (IU) and Physical Condition (PC) in dealing with categorized 8 predominant building components maintenance aspects for building premises. From the case study, it is found that ‘building exterior repainting or re-tiling’, ‘spalling concrete repair works among exterior area’ and ‘lobby renovation’ are the top three maintenance priorities from facilities manager and maintenance expertise personnel. Through the application of the Fuzzy AHP for maintenance priorities decision algorithm, a more systemic and easier comparing scalar linearity factors being explored even in considering other multiple criteria decision scenarios of building maintenance issue.Keywords: building maintenance, fuzzy AHP, maintenance priority, multi-criteria decision making
Procedia PDF Downloads 243791 Using Closed Frequent Itemsets for Hierarchical Document Clustering
Authors: Cheng-Jhe Lee, Chiun-Chieh Hsu
Abstract:
Due to the rapid development of the Internet and the increased availability of digital documents, the excessive information on the Internet has led to information overflow problem. In order to solve these problems for effective information retrieval, document clustering in text mining becomes a popular research topic. Clustering is the unsupervised classification of data items into groups without the need of training data. Many conventional document clustering methods perform inefficiently for large document collections because they were originally designed for relational database. Therefore they are impractical in real-world document clustering and require special handling for high dimensionality and high volume. We propose the FIHC (Frequent Itemset-based Hierarchical Clustering) method, which is a hierarchical clustering method developed for document clustering, where the intuition of FIHC is that there exist some common words for each cluster. FIHC uses such words to cluster documents and builds hierarchical topic tree. In this paper, we combine FIHC algorithm with ontology to solve the semantic problem and mine the meaning behind the words in documents. Furthermore, we use the closed frequent itemsets instead of only use frequent itemsets, which increases efficiency and scalability. The experimental results show that our method is more accurate than those of well-known document clustering algorithms.Keywords: FIHC, documents clustering, ontology, closed frequent itemset
Procedia PDF Downloads 399790 Controller Design for Highly Maneuverable Aircraft Technology Using Structured Singular Value and Direct Search Method
Authors: Marek Dlapa
Abstract:
The algebraic approach is applied to the control of the HiMAT (Highly Maneuverable Aircraft Technology). The objective is to find a robust controller which guarantees robust stability and decoupled control of longitudinal model of a scaled remotely controlled vehicle version of the advanced fighter HiMAT. Control design is performed by decoupling the nominal MIMO (multi-input multi-output) system into two identical SISO (single-input single-output) plants which are approximated by a 4th order transfer function. The algebraic approach is then used for pole placement design, and the nominal closed-loop poles are tuned so that the peak of the µ-function is minimal. As an optimization tool, evolutionary algorithm Differential Migration is used in order to overcome the multimodality of the cost function yielding simple controller with decoupling for nominal plant which is compared with the D-K iteration through simulations of standard longitudinal manoeuvres documenting decoupled control obtained from algebraic approach for nominal plant as well as worst case perturbation.Keywords: algebraic approach, evolutionary computation, genetic algorithms, HiMAT, robust control, structured singular value
Procedia PDF Downloads 140789 Real-Time Classification of Hemodynamic Response by Functional Near-Infrared Spectroscopy Using an Adaptive Estimation of General Linear Model Coefficients
Authors: Sahar Jahani, Meryem Ayse Yucel, David Boas, Seyed Kamaledin Setarehdan
Abstract:
Near-infrared spectroscopy allows monitoring of oxy- and deoxy-hemoglobin concentration changes associated with hemodynamic response function (HRF). HRF is usually affected by natural physiological hemodynamic (systemic interferences) which occur in all body tissues including brain tissue. This makes HRF extraction a very challenging task. In this study, we used Kalman filter based on a general linear model (GLM) of brain activity to define the proportion of systemic interference in the brain hemodynamic. The performance of the proposed algorithm is evaluated in terms of the peak to peak error (Ep), mean square error (MSE), and Pearson’s correlation coefficient (R2) criteria between the estimated and the simulated hemodynamic responses. This technique also has the ability of real time estimation of single trial functional activations as it was applied to classify finger tapping versus resting state. The average real-time classification accuracy of 74% over 11 subjects demonstrates the feasibility of developing an effective functional near infrared spectroscopy for brain computer interface purposes (fNIRS-BCI).Keywords: hemodynamic response function, functional near-infrared spectroscopy, adaptive filter, Kalman filter
Procedia PDF Downloads 165788 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning
Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie
Abstract:
This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network
Procedia PDF Downloads 143787 Effect of pH-Dependent Surface Charge on the Electroosmotic Flow through Nanochannel
Authors: Partha P. Gopmandal, Somnath Bhattacharyya, Naren Bag
Abstract:
In this article, we have studied the effect of pH-regulated surface charge on the electroosmotic flow (EOF) through nanochannel filled with binary symmetric electrolyte solution. The channel wall possesses either an acidic or a basic functional group. Going beyond the widely employed Debye-Huckel linearization, we develop a mathematical model based on Nernst-Planck equation for the charged species, Poisson equation for the induced potential, Stokes equation for fluid flow. A finite volume based numerical algorithm is adopted to study the effect of key parameters on the EOF. We have computed the coupled governing equations through the finite volume method and our results found to be in good agreement with the analytical solution obtained from the corresponding linear model based on low surface charge condition or strong electrolyte solution. The influence of the surface charge density, reaction constant of the functional groups, bulk pH, and concentration of the electrolyte solution on the overall flow rate is studied extensively. We find the effect of surface charge diminishes with the increase in electrolyte concentration. In addition for strong electrolyte, the surface charge becomes independent of pH due to complete dissociation of the functional groups.Keywords: electroosmosis, finite volume method, functional group, surface charge
Procedia PDF Downloads 419786 Design and Analysis of Adaptive Type-I Progressive Hybrid Censoring Plan under Step Stress Partially Accelerated Life Testing Using Competing Risk
Authors: Ariful Islam, Showkat Ahmad Lone
Abstract:
Statistical distributions have long been employed in the assessment of semiconductor devices and product reliability. The power function-distribution is one of the most important distributions in the modern reliability practice and can be frequently preferred over mathematically more complex distributions, such as the Weibull and the lognormal, because of its simplicity. Moreover, it may exhibit a better fit for failure data and provide more appropriate information about reliability and hazard rates in some circumstances. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests for competing risk based on adoptive type-I progressive hybrid censoring criteria. The life data of the units under test is assumed to follow Mukherjee-Islam distribution. The point and interval maximum-likelihood estimations are obtained for distribution parameters and tampering coefficient. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.Keywords: adoptive progressive hybrid censoring, competing risk, mukherjee-islam distribution, partially accelerated life testing, simulation study
Procedia PDF Downloads 347785 Stackelberg Security Game for Optimizing Security of Federated Internet of Things Platform Instances
Authors: Violeta Damjanovic-Behrendt
Abstract:
This paper presents an approach for optimal cyber security decisions to protect instances of a federated Internet of Things (IoT) platform in the cloud. The presented solution implements the repeated Stackelberg Security Game (SSG) and a model called Stochastic Human behaviour model with AttRactiveness and Probability weighting (SHARP). SHARP employs the Subjective Utility Quantal Response (SUQR) for formulating a subjective utility function, which is based on the evaluations of alternative solutions during decision-making. We augment the repeated SSG (including SHARP and SUQR) with a reinforced learning algorithm called Naïve Q-Learning. Naïve Q-Learning belongs to the category of active and model-free Machine Learning (ML) techniques in which the agent (either the defender or the attacker) attempts to find an optimal security solution. In this way, we combine GT and ML algorithms for discovering optimal cyber security policies. The proposed security optimization components will be validated in a collaborative cloud platform that is based on the Industrial Internet Reference Architecture (IIRA) and its recently published security model.Keywords: security, internet of things, cloud computing, stackelberg game, machine learning, naive q-learning
Procedia PDF Downloads 354784 Optimization of Lubricant Distribution with Alternative Coordinates and Number of Warehouses Considering Truck Capacity and Time Windows
Authors: Taufik Rizkiandi, Teuku Yuri M. Zagloel, Andri Dwi Setiawan
Abstract:
Distribution and growth in the transportation and warehousing business sector decreased by 15,04%. There was a decrease in Gross Domestic Product (GDP) contribution level from rank 7 of 4,41% in 2019 to 3,81% in rank 8 in 2020. A decline in the transportation and warehousing business sector contributes to GDP, resulting in oil and gas companies implementing an efficient supply chain strategy to ensure the availability of goods, especially lubricants. Fluctuating demand for lubricants and warehouse service time limits are essential things that are taken into account in determining an efficient route. Add depots points as a solution so that demand for lubricants is fulfilled (not stock out). However, adding a depot will increase operating costs and storage costs. Therefore, it is necessary to optimize the addition of depots using the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW). This research case study was conducted at an oil and gas company that produces lubricants from 2019 to 2021. The study results obtained the optimal route and the addition of a depot with a minimum additional cost. The total cost remains efficient with the addition of a depot when compared to one depot from Jakarta.Keywords: CVRPTW, optimal route, depot, tabu search algorithm
Procedia PDF Downloads 136783 An Entropy Stable Three Dimensional Ideal MHD Solver with Guaranteed Positive Pressure
Authors: Andrew R. Winters, Gregor J. Gassner
Abstract:
A high-order numerical magentohydrodynamics (MHD) solver built upon a non-linear entropy stable numerical flux function that supports eight traveling wave solutions will be described. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver is especially well-suited for flows involving strong discontinuities due to its strong stability without the need to enforce artificial low density or energy limits. Furthermore, a new formulation of the numerical algorithm to guarantee positivity of the pressure during the simulation is described and presented. By construction, the solver conserves mass, momentum, and energy and is entropy stable. High spatial order is obtained through the use of a third order limiting technique. High temporal order is achieved by utilizing the family of strong stability preserving (SSP) Runge-Kutta methods. Main attributes of the solver are presented as well as details on an implementation of the new solver into the multi-physics, multi-scale simulation code FLASH. The accuracy, robustness, and computational efficiency is demonstrated with a variety of numerical tests. Comparisons are also made between the new solver and existing methods already present in FLASH framework.Keywords: entropy stability, finite volume scheme, magnetohydrodynamics, pressure positivity
Procedia PDF Downloads 343782 Cost Analysis of Optimized Fast Network Mobility in IEEE 802.16e Networks
Authors: Seyyed Masoud Seyyedoshohadaei, Borhanuddin Mohd Ali
Abstract:
To support group mobility, the NEMO Basic Support Protocol has been standardized as an extension of Mobile IP that enables an entire network to change its point of attachment to the Internet. Using NEMO in IEEE 802.16e (WiMax) networks causes latency in handover procedure and affects seamless communication of real-time applications. To decrease handover latency and service disruption time, an integrated scheme named Optimized Fast NEMO (OFNEMO) was introduced by authors of this paper. In OFNEMO a pre-establish multi tunnels concept, cross function optimization and cross layer design are used. In this paper, an analytical model is developed to evaluate total cost consisting of signaling and packet delivery costs of the OFNEMO compared with RFC3963. Results show that OFNEMO increases probability of predictive mode compared with RFC3963 due to smaller handover latency. Even though OFNEMO needs extra signalling to pre-establish multi tunnel, it has less total cost thanks to its optimized algorithm. OFNEMO can minimize handover latency for supporting real time application in moving networks.Keywords: fast mobile IPv6, handover latency, IEEE802.16e, network mobility
Procedia PDF Downloads 197781 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting
Procedia PDF Downloads 384780 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique
Authors: Kritiyaporn Kunsook
Abstract:
Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting
Procedia PDF Downloads 372779 The Mechanism of Design and Analysis Modeling of Performance of Variable Speed Wind Turbine and Dynamical Control of Wind Turbine Power
Authors: Mohammadreza Heydariazad
Abstract:
Productivity growth of wind energy as a clean source needed to achieve improved strategy in production and transmission and management of wind resources in order to increase quality of power and reduce costs. New technologies based on power converters that cause changing turbine speed to suit the wind speed blowing turbine improve extraction efficiency power from wind. This article introduces variable speed wind turbines and optimization of power, and presented methods to use superconducting inductor in the composition of power converter and is proposed the dc measurement for the wind farm and especially is considered techniques available to them. In fact, this article reviews mechanisms and function, changes of wind speed turbine according to speed control strategies of various types of wind turbines and examines power possible transmission and ac from producing location to suitable location for a strong connection integrating wind farm generators, without additional cost or equipment. It also covers main objectives of the dynamic control of wind turbines, and the methods of exploitation and the ways of using it that includes the unique process of these components. Effective algorithm is presented for power control in order to extract maximum active power and maintains power factor at the desired value.Keywords: wind energy, generator, superconducting inductor, wind turbine power
Procedia PDF Downloads 327778 Fuzzy Logic Based Ventilation for Controlling Harmful Gases in Livestock Houses
Authors: Nuri Caglayan, H. Kursat Celik
Abstract:
There are many factors that influence the health and productivity of the animals in livestock production fields, including temperature, humidity, carbon dioxide (CO2), ammonia (NH3), hydrogen sulfide (H2S), physical activity and particulate matter. High NH3 concentrations reduce feed consumption and cause daily weight gain. At high concentrations, H2S causes respiratory problems and CO2 displace oxygen, which can cause suffocation or asphyxiation. Good air quality in livestock facilities can have an impact on the health and well-being of animals and humans. Air quality assessment basically depends on strictly given limits without taking into account specific local conditions between harmful gases and other meteorological factors. The stated limitations may be eliminated. using controlling systems based on neural networks and fuzzy logic. This paper describes a fuzzy logic based ventilation algorithm, which can calculate different fan speeds under pre-defined boundary conditions, for removing harmful gases from the production environment. In the paper, a fuzzy logic model has been developed based on a Mamedani’s fuzzy method. The model has been built on MATLAB software. As the result, optimum fan speeds under pre-defined boundary conditions have been presented.Keywords: air quality, fuzzy logic model, livestock housing, fan speed
Procedia PDF Downloads 372777 Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation
Authors: Rizwan Rizwan
Abstract:
This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks.Keywords: federated learning, differential privacy, gradient descent strategy, convergence, stability, threats
Procedia PDF Downloads 30776 Non-Contact Measurement of Soil Deformation in a Cyclic Triaxial Test
Authors: Erica Elice Uy, Toshihiro Noda, Kentaro Nakai, Jonathan Dungca
Abstract:
Deformation in a conventional cyclic triaxial test is normally measured by using point-wise measuring device. In this study, non-contact measurement technique was applied to be able to monitor and measure the occurrence of non-homogeneous behavior of the soil under cyclic loading. Non-contact measurement is executed through image processing. Two-dimensional measurements were performed using Lucas and Kanade optical flow algorithm and it was implemented Labview. In this technique, the non-homogeneous deformation was monitored using a mirrorless camera. A mirrorless camera was used because it is economical and it has the capacity to take pictures at a fast rate. The camera was first calibrated to remove the distortion brought about the lens and the testing environment as well. Calibration was divided into 2 phases. The first phase was the calibration of the camera parameters and distortion caused by the lens. The second phase was to for eliminating the distortion brought about the triaxial plexiglass. A correction factor was established from this phase. A series of consolidated undrained cyclic triaxial test was performed using a coarse soil. The results from the non-contact measurement technique were compared to the measured deformation from the linear variable displacement transducer. It was observed that deformation was higher at the area where failure occurs.Keywords: cyclic loading, non-contact measurement, non-homogeneous, optical flow
Procedia PDF Downloads 301775 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning
Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam
Abstract:
Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped
Procedia PDF Downloads 316774 Biomimetic Paradigms in Architectural Conceptualization: Science, Technology, Engineering, Arts and Mathematics in Higher Education
Authors: Maryam Kalkatechi
Abstract:
The application of algorithms in architecture has been realized as geometric forms which are increasingly being used by architecture firms. The abstraction of ideas in a formulated algorithm is not possible. There is still a gap between design innovation and final built in prescribed formulas, even the most aesthetical realizations. This paper presents the application of erudite design process to conceptualize biomimetic paradigms in architecture. The process is customized to material and tectonics. The first part of the paper outlines the design process elements within four biomimetic pre-concepts. The pre-concepts are chosen from plants family. These include the pine leaf, the dandelion flower; the cactus flower and the sun flower. The choice of these are related to material qualities and natural pattern of the tectonics of these plants. It then focuses on four versions of tectonic comprehension of one of the biomimetic pre-concepts. The next part of the paper discusses the implementation of STEAM in higher education in architecture. This is shown by the relations within the design process and the manifestation of the thinking processes. The A in the SETAM, in this case, is only achieved by the design process, an engaging event as a performing arts, in which the conceptualization and development is realized in final built.Keywords: biomimetic paradigm, erudite design process, tectonic, STEAM (Science, Technology, Engineering, Arts, Mathematic)
Procedia PDF Downloads 211