Search results for: secure data aggregation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25969

Search results for: secure data aggregation

23119 Assessment of Cardioprotective Effect of Deferiprone on Doxorubicin-Induced Cardiac Toxicity in a Rat Model

Authors: Sadaf Kalhori

Abstract:

Introduction: Doxorubicin (DOX)-induced cardiotoxicity is widely known as the most severe complication of anthracycline-based chemotherapy in patients with cancer. It is unknown whether Deferiprone (DFP), could reduce the severity of DOX-induced cardiotoxicity by inhibiting free radical reactions. Thus, this study was performed to assess the protective effect of Deferiprone on DOX-induced cardiotoxicity in a rat model. Methods: The rats were divided into five groups. Group one was a control group. Group 2 was DOX (2 mg/kg/day, every other day for 12 days), and Group three to five which receiving DOX as in group 2 and DFP 75,100 and 150 mg/kg/day, for 19 days, respectively. DFP was starting 5 days prior to the first DOX injection and two days after the last DOX injection throughout the study. Electrocardiographic and hemodynamic studies, along with histopathological examination, were conducted. In addition, serum sample was taken and total cholesterol, Malone dialdehyde, triglyceride, albumin, AST, ALT, total protein, lactate dehydrogenase, total anti-oxidant and creatine kinase were assessed. Result: Our results showed the normal structure of endocardial, myocardial and pericardial in the control group. Pathologic data such as edema, hyperemia, bleeding, endocarditis, myocarditis and pericarditis, hyaline degeneration, cardiomyocyte necrosis, myofilament degeneration and nuclear chromatin changes were assessed in all groups. In the DOX group, all pathologic data was seen with mean grade of 2±1.25. In the DFP group with a dose of 75 and 100 mg, the mean grade was 1.41± 0.31 and 1±.23, respectively. In DFP group with a dose of 150, the pathologic data showed a milder change in comparison with other groups with e mean grade of 0.45 ±0.19. Most pathologic data in DFP groups showed significant changes in comparison with the DOX group (p < 0.001). Discussion: The results also showed that DFP treatment significantly improved DOX-induced heart damage, structural changes in the myocardium, and ventricular function. Our data confirm that DFP is protective against cardiovascular-related disorders induced by DOX. Clinical studies are needed to be involved to examine these findings in humans.

Keywords: cardiomyopathy, deferiprone, doxorubicin, rat

Procedia PDF Downloads 147
23118 Assessment of Rainfall Erosivity, Comparison among Methods: Case of Kakheti, Georgia

Authors: Mariam Tsitsagi, Ana Berdzenishvili

Abstract:

Rainfall intensity change is one of the main indicators of climate change. It has a great influence on agriculture as one of the main factors causing soil erosion. Splash and sheet erosion are one of the most prevalence and harmful for agriculture. It is invisible for an eye at first stage, but the process will gradually move to stream cutting erosion. Our study provides the assessment of rainfall erosivity potential with the use of modern research methods in Kakheti region. The region is the major provider of wheat and wine in the country. Kakheti is located in the eastern part of Georgia and characterized quite a variety of natural conditions. The climate is dry subtropical. For assessment of the exact rate of rainfall erosion potential several year data of rainfall with short intervals are needed. Unfortunately, from 250 active metro stations running during the Soviet period only 55 of them are active now and 5 stations in Kakheti region respectively. Since 1936 we had data on rainfall intensity in this region, and rainfall erosive potential is assessed, in some old papers, but since 1990 we have no data about this factor, which in turn is a necessary parameter for determining the rainfall erosivity potential. On the other hand, researchers and local communities suppose that rainfall intensity has been changing and the number of haily days has also been increasing. However, finding a method that will allow us to determine rainfall erosivity potential as accurate as possible in Kakheti region is very important. The study period was divided into three sections: 1936-1963; 1963-1990 and 1990-2015. Rainfall erosivity potential was determined by the scientific literature and old meteorological stations’ data for the first two periods. And it is known that in eastern Georgia, at the boundary between steppe and forest zones, rainfall erosivity in 1963-1990 was 20-75% higher than that in 1936-1963. As for the third period (1990-2015), for which we do not have data of rainfall intensity. There are a variety of studies, where alternative ways of calculating the rainfall erosivity potential based on lack of data are discussed e.g.based on daily rainfall data, average annual rainfall data and the elevation of the area, etc. It should be noted that these methods give us a totally different results in case of different climatic conditions and sometimes huge errors in some cases. Three of the most common methods were selected for our research. Each of them was tested for the first two sections of the study period. According to the outcomes more suitable method for regional climatic conditions was selected, and after that, we determined rainfall erosivity potential for the third section of our study period with use of the most successful method. Outcome data like attribute tables and graphs was specially linked to the database of Kakheti, and appropriate thematic maps were created. The results allowed us to analyze the rainfall erosivity potential changes from 1936 to the present and make the future prospect. We have successfully implemented a method which can also be use for some another region of Georgia.

Keywords: erosivity potential, Georgia, GIS, Kakheti, rainfall

Procedia PDF Downloads 229
23117 Pragmatic Development of Chinese Sentence Final Particles via Computer-Mediated Communication

Authors: Qiong Li

Abstract:

This study investigated in which condition computer-mediated communication (CMC) could promote pragmatic development. The focal feature included four Chinese sentence final particles (SFPs), a, ya, ba, and ne. They occur frequently in Chinese, and function as mitigators to soften the tone of speech. However, L2 acquisition of SFPs is difficult, suggesting the necessity of additional exposure to or explicit instruction on Chinese SFPs. This study follows this line and aims to explore two research questions: (1) Is CMC combined with data-driven instruction more effective than CMC alone in promoting L2 Chinese learners’ SFP use? (2) How does L2 Chinese learners’ SFP use change over time, as compared to the production of native Chinese speakers? The study involved 19 intermediate-level learners of Chinese enrolled at a private American university. They were randomly assigned to two groups: (1) the control group (N = 10), which was exposed to SFPs through CMC alone, (2) the treatment group (N = 9), which was exposed to SFPs via CMC and data-driven instruction. Learners interacted with native speakers on given topics through text-based CMC over Skype. Both groups went through six 30-minute CMC sessions on a weekly basis, with a one-week interval after the first two CMC sessions and a two-week interval after the second two CMC sessions (nine weeks in total). The treatment group additionally received a data-driven instruction after the first two sessions. Data analysis focused on three indices: token frequency, type frequency, and acceptability of SFP use. Token frequency was operationalized as the raw occurrence of SFPs per clause. Type frequency was the range of SFPs. Acceptability was rated by two native speakers using a rating rubric. The results showed that the treatment group made noticeable progress over time on the three indices. The production of SFPs approximated the native-like level. In contrast, the control group only slightly improved on token frequency. Only certain SFPs (a and ya) reached the native-like use. Potential explanations for the group differences were discussed in two aspects: the property of Chinese SFPs and the role of CMC and data-driven instruction. Though CMC provided the learners with opportunities to notice and observe SFP use, as a feature with low saliency, SFPs were not easily noticed in input. Data-driven instruction in the treatment group directed the learners’ attention to these particles, which facilitated the development.

Keywords: computer-mediated communication, data-driven instruction, pragmatic development, second language Chinese, sentence final particles

Procedia PDF Downloads 421
23116 Forecasting Cancers Cases in Algeria Using Double Exponential Smoothing Method

Authors: Messis A., Adjebli A., Ayeche R., Talbi M., Tighilet K., Louardiane M.

Abstract:

Cancers are the second cause of death worldwide. Prevalence and incidence of cancers is getting increased by aging and population growth. This study aims to predict and modeling the evolution of breast, Colorectal, Lung, Bladder and Prostate cancers over the period of 2014-2019. In this study, data were analyzed using time series analysis with double exponential smoothing method to forecast the future pattern. To describe and fit the appropriate models, Minitab statistical software version 17 was used. Between 2014 and 2019, the overall trend in the raw number of new cancer cases registered has been increasing over time; the change in observations over time has been increasing. Our forecast model is validated since we have good prediction for the period 2020 and data not available for 2021 and 2022. Time series analysis showed that the double exponential smoothing is an efficient tool to model the future data on the raw number of new cancer cases.

Keywords: cancer, time series, prediction, double exponential smoothing

Procedia PDF Downloads 93
23115 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm

Authors: Dipti Patra, Guguloth Uma, Smita Pradhan

Abstract:

Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.

Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information

Procedia PDF Downloads 413
23114 Social Movements of Central-Eastern Europe: Examining Trends of Cooperation and Antagonism by Using Big Data

Authors: Reka Zsuzsanna Mathe

Abstract:

The globalization and the Europeanization have significantly contributed to a change in the role of the nation-states. The global economic crisis, the climate changes, and the recent refugee crisis, are just a few among many challenges that cannot be effectively addressed by the traditional role of the nation-states. One of the main roles of the states is to solve collective action problems, however due to their changing roles; apparently this is getting more and more difficult. Depending on political culture, collective action problems are solved either through cooperation or conflict. The political culture of Central and Eastern European (CEE) countries is marked by low civic participation and by a weak civil society. In this type of culture collective action problems are likely to be induced through conflict, rather than the democratic process of dialogue and any type of social change is probably to be introduced by social movements. Several studies have been conducted on the social movements of the CEE countries, yet, it is still not clear if the most significant social movements of the region tend to choose rather the cooperative or the conflictual way as action strategy. This study differentiates between a national and a European action field, having different social orders. The actors of the two fields are the broadly understood civil society members, conceptualized as social movements. This research tries to answer the following questions: a) What are the norms that best characterize the CEE countries’ social order? b) What type of actors would prefer a change and in which areas? c) Is there a significant difference between the main actors active in the national versus the European field? The main hypotheses are that there are conflicting norms defining the national and the European action field, and there is a significant difference between the action strategies adopted by social movements acting in the two different fields. In mapping the social order, the study uses data provided by the European Social Survey. Big data of the Global Data on Events, Location and Tone (GDELT) database offers information regarding the main social movements and their preferred type of action. The unit of the analysis is the so called ‘Visegrad 4’ countries: Poland, Czech Republic, Slovakia and Hungary and the research uses data starting from 2005 (after the European accession of these four countries) until May, 2017. According to the data, the main hypotheses were confirmed.

Keywords: big data, Central and Eastern Europe, civil society, GDELT, social movements

Procedia PDF Downloads 164
23113 Vascular Foramina of the Capitate Bone of the Hand – an Anatomical Study

Authors: Latha V. Prabhu, B.V. Murlimanju, P.J. Jiji, Mangala M. Pai

Abstract:

Background: The capitate is the largest among the carpal bones. There exists no literature about the vascular foramina of the capitate bone. The objective of the present study was to investigate the morphology and number of the nutrient foramina in the cadaveric dried capitate bones of the Indian population. Methods: The present study included 59 capitate bones (25 right sided and 34 left sided) which were obtained from the gross anatomy laboratory of our institution. The bones were macroscopically observed for the nutrient foramina and the data was collected with respect to their number. The tabulation of the data and analysis were done. Results: All of our specimens (100%) exhibited the nutrient foramina over the non-articular and articular surfaces. The foramina were observed at the medial, lateral, palmar and dorsal surfaces of the capitate bones. The foramina were ranged from 6 to 23 in each capitate bone. In the medial surface, the foramina ranged from 1 to 6, lateral surface from 0 to 7, the foramina ranged between 0 and 5 in the palmar surface. However most of the foramina were located at the dorsal surface which ranged from 3 to 11. Conclusion: We believe that the present study has provided additional data about the nutrient foramina of the capitate bones. The data is enlightening to the orthopedic surgeon and would help in the hand surgeries. The knowledge about the foramina is also important to the radiologists to prevent the misinterpretation of the findings in the x ray and computed tomogram scan films. The foramina may mimick like erosions and ossicles. The morphological knowledge of the vasculature, their foramina of entry and number is required to understand the concepts in the avascular necrosis of the capitate.

Keywords: avascular necrosis, capitate, morphology, nutrient foramen

Procedia PDF Downloads 346
23112 Development and Validation of a Semi-Quantitative Food Frequency Questionnaire for Use in Urban and Rural Communities of Rwanda

Authors: Phenias Nsabimana, Jérôme W. Some, Hilda Vasanthakaalam, Stefaan De Henauw, Souheila Abbeddou

Abstract:

Tools for the dietary assessment in adults are limited in low- and middle-income settings. The objective of this study was to develop and validate a semi-quantitative food frequency questionnaire (FFQ) against the multiple pass-24 h recall tool for use in urban and rural Rwanda. A total of 212 adults (154 females and 58 males), 18-49 aged, including 105 urban and 107 rural residents, from the four regions of Rwanda, were recruited in the present study. A multiple-pass 24- H recall technique was used to collect dietary data in both urban and rural areas in four different rounds, on different days (one weekday and one weekend day), separated by a period of three months, from November 2020 to October 2021. The details of all the foods and beverages consumed over the 24h period of the day prior to the interview day were collected during face-to-face interviews. A list of foods, beverages, and commonly consumed recipes was developed by the study researchers and ten research assistants from the different regions of Rwanda. Non-standard recipes were collected when the information was available. A single semi-quantitative FFQ was also developed in the same group discussion prior to the beginning of the data collection. The FFQ was collected at the beginning and the end of the data collection period. Data were collected digitally. The amount of energy and macro-nutrients contributed by each food, recipe, and beverage will be computed based on nutrient composition reported in food composition tables and weight consumed. Median energy and nutrient contents of different food intakes from FFQ and 24-hour recalls and median differences (24-hour recall –FFQ) will be calculated. Kappa, Spearman, Wilcoxon, and Bland-Altman plot statistics will be conducted to evaluate the correlation between estimated nutrient and energy intake found by the two methods. Differences will be tested for their significance and all analyses will be done with STATA 11. Data collection was completed in November 2021. Data cleaning is ongoing and the data analysis is expected to be completed by July 2022. A developed and validated semi-quantitative FFQ will be available for use in dietary assessment. The developed FFQ will help researchers to collect reliable data that will support policy makers to plan for proper dietary change intervention in Rwanda.

Keywords: food frequency questionnaire, reproducibility, 24-H recall questionnaire, validation

Procedia PDF Downloads 145
23111 A Study of Variables Affecting on a Quality Assessment of Mathematics Subject in Thailand by Using Value Added Analysis on TIMSS 2011

Authors: Ruangdech Sirikit

Abstract:

The purposes of this research were to study the variables affecting the quality assessment of mathematics subject in Thailand by using value-added analysis on TIMSS 2011. The data used in this research is the secondary data from the 2011 Trends in International Mathematics and Science Study (TIMSS), collected from 6,124 students in 172 schools from Thailand, studying only mathematics subjects. The data were based on 14 assessment tests of knowledge in mathematics. There were 3 steps of data analysis: 1) To analyze descriptive statistics 2) To estimate competency of students from the assessment of their mathematics proficiency by using MULTILOG program; 3) analyze value added in the model of quality assessment using Value-Added Model with Hierarchical Linear Modeling (HLM) and 2 levels of analysis. The research results were as follows: 1. Student level variables that had significant effects on the competency of students at .01 levels were Parental care, Resources at home, Enjoyment of learning mathematics and Extrinsic motivation in learning mathematics. Variable that had significant effects on the competency of students at .05 levels were Education of parents and self-confident in learning mathematics. 2. School level variable that had significant effects on competency of students at .01 levels was Extra large school. Variable that had significant effects on competency of students at .05 levels was medium school.

Keywords: quality assessment, value-added model, TIMSS, mathematics, Thailand

Procedia PDF Downloads 286
23110 Modeling Average Paths Traveled by Ferry Vessels Using AIS Data

Authors: Devin Simmons

Abstract:

At the USDOT’s Bureau of Transportation Statistics, a biannual census of ferry operators in the U.S. is conducted, with results such as route mileage used to determine federal funding levels for operators. AIS data allows for the possibility of using GIS software and geographical methods to confirm operator-reported mileage for individual ferry routes. As part of the USDOT’s work on the ferry census, an algorithm was developed that uses AIS data for ferry vessels in conjunction with known ferry terminal locations to model the average route travelled for use as both a cartographic product and confirmation of operator-reported mileage. AIS data from each vessel is first analyzed to determine individual journeys based on the vessel’s velocity, and changes in velocity over time. These trips are then converted to geographic linestring objects. Using the terminal locations, the algorithm then determines whether the trip represented a known ferry route. Given a large enough dataset, routes will be represented by multiple trip linestrings, which are then filtered by DBSCAN spatial clustering to remove outliers. Finally, these remaining trips are ready to be averaged into one route. The algorithm interpolates the point on each trip linestring that represents the start point. From these start points, a centroid is calculated, and the first point of the average route is determined. Each trip is interpolated again to find the point that represents one percent of the journey’s completion, and the centroid of those points is used as the next point in the average route, and so on until 100 points have been calculated. Routes created using this algorithm have shown demonstrable improvement over previous methods, which included the implementation of a LOESS model. Additionally, the algorithm greatly reduces the amount of manual digitizing needed to visualize ferry activity.

Keywords: ferry vessels, transportation, modeling, AIS data

Procedia PDF Downloads 180
23109 Power Transformer Risk-Based Maintenance by Optimization of Transformer Condition and Transformer Importance

Authors: Kitti Leangkrua

Abstract:

This paper presents a risk-based maintenance strategy of a power transformer in order to optimize operating and maintenance costs. The methodology involves the study and preparation of a database for the collection the technical data and test data of a power transformer. An evaluation of the overall condition of each transformer is performed by a program developed as a result of the measured results; in addition, the calculation of the main equipment separation to the overall condition of the transformer (% HI) and the criteria for evaluating the importance (% ImI) of each location where the transformer is installed. The condition assessment is performed by analysis test data such as electrical test, insulating oil test and visual inspection. The condition of the power transformer will be classified from very poor to very good condition. The importance is evaluated from load criticality, importance of load and failure consequence. The risk matrix is developed for evaluating the risk of each power transformer. The high risk power transformer will be focused firstly. The computerized program is developed for practical use, and the maintenance strategy of a power transformer can be effectively managed.

Keywords: asset management, risk-based maintenance, power transformer, health index

Procedia PDF Downloads 311
23108 Transition Pay vs. Liquidity Holdings: A Comparative Analysis on Consumption Smoothing using Bank Transaction Data

Authors: Nora Neuteboom

Abstract:

This study investigates household financial behaviors during unemployment spells in the Netherlands using high-frequency transaction data through a event study specification integrating propensity score matching. In our specification, we contrasted treated individuals, who underwent job loss, with non-treated individuals possessing comparable financial characteristics. The initial onset of unemployment triggers a substantial surge in income, primarily attributed to transition payments, but swiftly drops post-unemployment, with unemployment benefits covering slightly over half of former salary earnings. Despite a re-employment rate of around half within six months, the treatment group experiences a persistent average monthly earnings reduction of approximately 600 EUR by month. Spending patterns fluctuate significantly, surging before unemployment due to transition payments and declining below non-treated individuals post-unemployment, indicating challenges to fully smooth consumption after job loss. Furthermore, our study disentangles the effects of transition payments and liquidity holdings on spending, revealing that transition payments exert a more pronounced and prolonged impact on consumption smoothing than liquidity holdings. Transition payments significantly stimulate spending, particularly in pin and iDEAL categories, contrasting a much smaller relative spending impact of liquidity holdings.

Keywords: household consumption, transaction data, big data, propensity score matching

Procedia PDF Downloads 29
23107 System Dietadhoc® - A Fusion of Human-Centred Design and Agile Development for the Explainability of AI Techniques Based on Nutritional and Clinical Data

Authors: Michelangelo Sofo, Giuseppe Labianca

Abstract:

In recent years, the scientific community's interest in the exploratory analysis of biomedical data has increased exponentially. Considering the field of research of nutritional biologists, the curative process, based on the analysis of clinical data, is a very delicate operation due to the fact that there are multiple solutions for the management of pathologies in the food sector (for example can recall intolerances and allergies, management of cholesterol metabolism, diabetic pathologies, arterial hypertension, up to obesity and breathing and sleep problems). In this regard, in this research work a system was created capable of evaluating various dietary regimes for specific patient pathologies. The system is founded on a mathematical-numerical model and has been created tailored for the real working needs of an expert in human nutrition using the human-centered design (ISO 9241-210), therefore it is in step with continuous scientific progress in the field and evolves through the experience of managed clinical cases (machine learning process). DietAdhoc® is a decision support system nutrition specialists for patients of both sexes (from 18 years of age) developed with an agile methodology. Its task consists in drawing up the biomedical and clinical profile of the specific patient by applying two algorithmic optimization approaches on nutritional data and a symbolic solution, obtained by transforming the relational database underlying the system into a deductive database. For all three solution approaches, particular emphasis has been given to the explainability of the suggested clinical decisions through flexible and customizable user interfaces. Furthermore, the system has multiple software modules based on time series and visual analytics techniques that allow to evaluate the complete picture of the situation and the evolution of the diet assigned for specific pathologies.

Keywords: medical decision support, physiological data extraction, data driven diagnosis, human centered AI, symbiotic AI paradigm

Procedia PDF Downloads 31
23106 An Exploratory Study on the Impact of Video-stimulated Reflection on Novice EFL Teachers’ Professional Development

Authors: Ibrahima Diallo

Abstract:

The literature on teacher education foregrounds reflection as an important aspect of professional practice. Reflection for a teacher consists in critically analysing and evaluating retrospectively a lesson to see what worked, what did not work, and how to improve it for the future. Now, many teacher education programmes worldwide consider the ability to reflect as one of the hallmarks of an effective educator. However, in some context like Senegal, reflection has not been given due consideration in teacher education programmes. In contexts where it has been in the education landscape for some time now, reflection is mostly depicted as an individual written activity and many teacher trainees have become disenchanted by the repeated enactments of this task that is solely intended to satisfy course requirements. This has resulted in whitewashing weaknesses or even ‘faking’ reflection. Besides, the “one-size-fits-all” approach of reflection could not flourish because how reflection impacts on practice is still unproven. Therefore, reflective practice needs to be contextualised and made more thought-provoking through dialogue and by using classroom data. There is also a need to highlight change brought in teachers’ practice through reflection. So, this study introduces reflection in a new context and aims to show evidenced change in novice EFL teachers’ practice through dialogic data-led reflection. The purpose of this study is also to contribute to the scarce literature on reflection in sub-Saharan Africa by bringing new perspectives on contextualised teacher-led reflection. Eight novice EFL teachers participated in this qualitative longitudinal study, and data have been gathered online through post-lesson reflection recordings and lesson videos for a period of four months. Then, the data have been thematically analysed using NVivo to systematically organize and manage the large amount of data. The analysis followed the six steps approach to thematic analysis. Major themes related to teachers’ classroom practice and their conception of reflection emerged from the analysis of the data. The results showed that post-lesson reflection with a peer can help novice EFL teachers gained more awareness on their classroom practice. Dialogic reflection also helped them evaluate their lessons and seek for improvement. The analysis of the data also gave insight on teachers’ conception of reflection in an EFL context. It was found that teachers were more engaged in reflection when using their lesson video recordings. Change in teaching behaviour as a result of reflection was evidenced by the analysis of the lesson video recordings. This study has shown that video-stimulated reflection is practical form of professional development that can be embedded in teachers’ professional life.

Keywords: novice EFL teachers, practice, professional development, video-stimulated reflection

Procedia PDF Downloads 101
23105 Comparison of Spiking Neuron Models in Terms of Biological Neuron Behaviours

Authors: Fikret Yalcinkaya, Hamza Unsal

Abstract:

To understand how neurons work, it is required to combine experimental studies on neural science with numerical simulations of neuron models in a computer environment. In this regard, the simplicity and applicability of spiking neuron modeling functions have been of great interest in computational neuron science and numerical neuroscience in recent years. Spiking neuron models can be classified by exhibiting various neuronal behaviors, such as spiking and bursting. These classifications are important for researchers working on theoretical neuroscience. In this paper, three different spiking neuron models; Izhikevich, Adaptive Exponential Integrate Fire (AEIF) and Hindmarsh Rose (HR), which are based on first order differential equations, are discussed and compared. First, the physical meanings, derivatives, and differential equations of each model are provided and simulated in the Matlab environment. Then, by selecting appropriate parameters, the models were visually examined in the Matlab environment and it was aimed to demonstrate which model can simulate well-known biological neuron behaviours such as Tonic Spiking, Tonic Bursting, Mixed Mode Firing, Spike Frequency Adaptation, Resonator and Integrator. As a result, the Izhikevich model has been shown to perform Regular Spiking, Continuous Explosion, Intrinsically Bursting, Thalmo Cortical, Low-Threshold Spiking and Resonator. The Adaptive Exponential Integrate Fire model has been able to produce firing patterns such as Regular Ignition, Adaptive Ignition, Initially Explosive Ignition, Regular Explosive Ignition, Delayed Ignition, Delayed Regular Explosive Ignition, Temporary Ignition and Irregular Ignition. The Hindmarsh Rose model showed three different dynamic neuron behaviours; Spike, Burst and Chaotic. From these results, the Izhikevich cell model may be preferred due to its ability to reflect the true behavior of the nerve cell, the ability to produce different types of spikes, and the suitability for use in larger scale brain models. The most important reason for choosing the Adaptive Exponential Integrate Fire model is that it can create rich ignition patterns with fewer parameters. The chaotic behaviours of the Hindmarsh Rose neuron model, like some chaotic systems, is thought to be used in many scientific and engineering applications such as physics, secure communication and signal processing.

Keywords: Izhikevich, adaptive exponential integrate fire, Hindmarsh Rose, biological neuron behaviours, spiking neuron models

Procedia PDF Downloads 186
23104 Ontology-Based Approach for Temporal Semantic Modeling of Social Networks

Authors: Souâad Boudebza, Omar Nouali, Faiçal Azouaou

Abstract:

Social networks have recently gained a growing interest on the web. Traditional formalisms for representing social networks are static and suffer from the lack of semantics. In this paper, we will show how semantic web technologies can be used to model social data. The SemTemp ontology aligns and extends existing ontologies such as FOAF, SIOC, SKOS and OWL-Time to provide a temporal and semantically rich description of social data. We also present a modeling scenario to illustrate how our ontology can be used to model social networks.

Keywords: ontology, semantic web, social network, temporal modeling

Procedia PDF Downloads 393
23103 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases

Authors: Hao-Hsiang Ku, Ching-Ho Chi

Abstract:

Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.

Keywords: Hadoop, NoSQL, ontology, back propagation neural network, high distributed file system

Procedia PDF Downloads 264
23102 Biophysically Motivated Phylogenies

Authors: Catherine Felce, Lior Pachter

Abstract:

Current methods for building phylogenetic trees from gene expression data consider mean expression levels. With single-cell technologies, we can leverage more information about cell dynamics by considering the entire distribution of gene expression across cells. Using biophysical modeling, we propose a method for constructing phylogenetic trees from scRNA-seq data, building on Felsenstein's method of continuous characters. This method can highlight genes whose level of expression may be unchanged between species, but whose rates of transcription/decay may have evolved over time.

Keywords: phylogenetics, single-cell, biophysical modeling, transcription

Procedia PDF Downloads 64
23101 Open Educational Resource in Online Mathematics Learning

Authors: Haohao Wang

Abstract:

Technology, multimedia in Open Educational Resources, can contribute positively to student performance in an online instructional environment. Student performance data of past four years were obtained from an online course entitled Applied Calculus (MA139). This paper examined the data to determine whether multimedia (independent variable) had any impact on student performance (dependent variable) in online math learning, and how students felt about the value of the technology. Two groups of student data were analyzed, group 1 (control) from the online applied calculus course that did not use multimedia instructional materials, and group 2 (treatment) of the same online applied calculus course that used multimedia instructional materials. For the MA139 class, results indicate a statistically significant difference (p = .001) between the two groups, where group 1 had a final score mean of 56.36 (out of 100), group 2 of 70.68. Additionally, student testimonials were discussed in which students shared their experience in learning applied calculus online with multimedia instructional materials.

Keywords: online learning, open educational resources, multimedia, technology

Procedia PDF Downloads 379
23100 Design and Development of Fleet Management System for Multi-Agent Autonomous Surface Vessel

Authors: Zulkifli Zainal Abidin, Ahmad Shahril Mohd Ghani

Abstract:

Agent-based systems technology has been addressed as a new paradigm for conceptualizing, designing, and implementing software systems. Agents are sophisticated systems that act autonomously across open and distributed environments in solving problems. Nevertheless, it is impractical to rely on a single agent to do all computing processes in solving complex problems. An increasing number of applications lately require multiple agents to work together. A multi-agent system (MAS) is a loosely coupled network of agents that interact to solve problems that are beyond the individual capacities or knowledge of each problem solver. However, the network of MAS still requires a main system to govern or oversees the operation of the agents in order to achieve a unified goal. We had developed a fleet management system (FMS) in order to manage the fleet of agents, plan route for the agents, perform real-time data processing and analysis, and issue sets of general and specific instructions to the agents. This FMS should be able to perform real-time data processing, communicate with the autonomous surface vehicle (ASV) agents and generate bathymetric map according to the data received from each ASV unit. The first algorithm is developed to communicate with the ASV via radio communication using standard National Marine Electronics Association (NMEA) protocol sentences. Next, the second algorithm will take care of the path planning, formation and pattern generation is tested using various sample data. Lastly, the bathymetry map generation algorithm will make use of data collected by the agents to create bathymetry map in real-time. The outcome of this research is expected can be applied on various other multi-agent systems.

Keywords: autonomous surface vehicle, fleet management system, multi agent system, bathymetry

Procedia PDF Downloads 275
23099 The Role of Big Data Analytics and Corporate Social Responsibility in Driving Green Innovation

Authors: Abdeslam Hassani

Abstract:

This study addresses the increasing environmental concerns faced by businesses due to regulatory and stakeholder pressures. It explores how big data analytics (BDA) and advanced technologies, particularly artificial intelligence, combined with corporate social responsibility (CSR), can foster green innovation and sustainable practices. The research builds on existing literature, highlighting the critical role of technologies and CSR in achieving sustainability goals. This research adopts a multidimensional approach, offering a more comprehensive understanding of the interplay between technologies, governance, and environmental policies. A qualitative methodology was chosen, involving a systematic literature review and semi-structured interviews with executives from Canadian companies. NVivo software will be used to analyze interview data, ensuring a rigorous approach to identifying key contextual factors. The cross-analysis of literature findings and interview insights will help validate theoretical constructs and develop a conceptual framework. This study contributes by providing both theoretical insights and practical recommendations. It offers executives actionable guidance on integrating CSR into strategic decision-making and aligning technological capabilities with sustainability objectives. This approach aims to improve firms’ competitiveness, ensure regulatory compliance, and enhance their role in promoting green innovation.

Keywords: big data analytics, corporate social responsibility, green innovation, advanced technology

Procedia PDF Downloads 7
23098 A Geometric Based Hybrid Approach for Facial Feature Localization

Authors: Priya Saha, Sourav Dey Roy Jr., Debotosh Bhattacharjee, Mita Nasipuri, Barin Kumar De, Mrinal Kanti Bhowmik

Abstract:

Biometric face recognition technology (FRT) has gained a lot of attention due to its extensive variety of applications in both security and non-security perspectives. It has come into view to provide a secure solution in identification and verification of person identity. Although other biometric based methods like fingerprint scans, iris scans are available, FRT is verified as an efficient technology for its user-friendliness and contact freeness. Accurate facial feature localization plays an important role for many facial analysis applications including biometrics and emotion recognition. But, there are certain factors, which make facial feature localization a challenging task. On human face, expressions can be seen from the subtle movements of facial muscles and influenced by internal emotional states. These non-rigid facial movements cause noticeable alterations in locations of facial landmarks, their usual shapes, which sometimes create occlusions in facial feature areas making face recognition as a difficult problem. The paper proposes a new hybrid based technique for automatic landmark detection in both neutral and expressive frontal and near frontal face images. The method uses the concept of thresholding, sequential searching and other image processing techniques for locating the landmark points on the face. Also, a Graphical User Interface (GUI) based software is designed that could automatically detect 16 landmark points around eyes, nose and mouth that are mostly affected by the changes in facial muscles. The proposed system has been tested on widely used JAFFE and Cohn Kanade database. Also, the system is tested on DeitY-TU face database which is created in the Biometrics Laboratory of Tripura University under the research project funded by Department of Electronics & Information Technology, Govt. of India. The performance of the proposed method has been done in terms of error measure and accuracy. The method has detection rate of 98.82% on JAFFE database, 91.27% on Cohn Kanade database and 93.05% on DeitY-TU database. Also, we have done comparative study of our proposed method with other techniques developed by other researchers. This paper will put into focus emotion-oriented systems through AU detection in future based on the located features.

Keywords: biometrics, face recognition, facial landmarks, image processing

Procedia PDF Downloads 416
23097 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle

Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar

Abstract:

As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the Central Processing Unit (CPU), operational (RAM), and permanent (ROM) memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.

Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles

Procedia PDF Downloads 119
23096 Deep learning with Noisy Labels : Learning True Labels as Discrete Latent Variable

Authors: Azeddine El-Hassouny, Chandrashekhar Meshram, Geraldin Nanfack

Abstract:

In recent years, learning from data with noisy labels (Label Noise) has been a major concern in supervised learning. This problem has become even more worrying in Deep Learning, where the generalization capabilities have been questioned lately. Indeed, deep learning requires a large amount of data that is generally collected by search engines, which frequently return data with unreliable labels. In this paper, we investigate the Label Noise in Deep Learning using variational inference. Our contributions are : (1) exploiting Label Noise concept where the true labels are learnt using reparameterization variational inference, while observed labels are learnt discriminatively. (2) the noise transition matrix is learnt during the training without any particular process, neither heuristic nor preliminary phases. The theoretical results shows how true label distribution can be learned by variational inference in any discriminate neural network, and the effectiveness of our approach is proved in several target datasets, such as MNIST and CIFAR32.

Keywords: label noise, deep learning, discrete latent variable, variational inference, MNIST, CIFAR32

Procedia PDF Downloads 132
23095 Assessment of Environmental Quality of an Urban Setting

Authors: Namrata Khatri

Abstract:

The rapid growth of cities is transforming the urban environment and posing significant challenges for environmental quality. This study examines the urban environment of Belagavi in Karnataka, India, using geostatistical methods to assess the spatial pattern and land use distribution of the city and to evaluate the quality of the urban environment. The study is driven by the necessity to assess the environmental impact of urbanisation. Satellite data was utilised to derive information on land use and land cover. The investigation revealed that land use had changed significantly over time, with a drop in plant cover and an increase in built-up areas. High-resolution satellite data was also utilised to map the city's open areas and gardens. GIS-based research was used to assess public green space accessibility and to identify regions with inadequate waste management practises. The findings revealed that garbage collection and disposal techniques in specific areas of the city needed to be improved. Moreover, the study evaluated the city's thermal environment using Landsat 8 land surface temperature (LST) data. The investigation found that built-up regions had higher LST values than green areas, pointing to the city's urban heat island (UHI) impact. The study's conclusions have far-reaching ramifications for urban planners and politicians in Belgaum and other similar cities. The findings may be utilised to create sustainable urban planning strategies that address the environmental effect of urbanisation while also improving the quality of life for city dwellers. Satellite data and high-resolution satellite pictures were gathered for the study, and remote sensing and GIS tools were utilised to process and analyse the data. Ground truthing surveys were also carried out to confirm the accuracy of the remote sensing and GIS-based data. Overall, this study provides a complete assessment of Belgaum's environmental quality and emphasizes the potential of remote sensing and geographic information systems (GIS) approaches in environmental assessment and management.

Keywords: environmental quality, UEQ, remote sensing, GIS

Procedia PDF Downloads 83
23094 Parameter Estimation of Gumbel Distribution with Maximum-Likelihood Based on Broyden Fletcher Goldfarb Shanno Quasi-Newton

Authors: Dewi Retno Sari Saputro, Purnami Widyaningsih, Hendrika Handayani

Abstract:

Extreme data on an observation can occur due to unusual circumstances in the observation. The data can provide important information that can’t be provided by other data so that its existence needs to be further investigated. The method for obtaining extreme data is one of them using maxima block method. The distribution of extreme data sets taken with the maxima block method is called the distribution of extreme values. Distribution of extreme values is Gumbel distribution with two parameters. The parameter estimation of Gumbel distribution with maximum likelihood method (ML) is difficult to determine its exact value so that it is necessary to solve the approach. The purpose of this study was to determine the parameter estimation of Gumbel distribution with quasi-Newton BFGS method. The quasi-Newton BFGS method is a numerical method used for nonlinear function optimization without constraint so that the method can be used for parameter estimation from Gumbel distribution whose distribution function is in the form of exponential doubel function. The quasi-New BFGS method is a development of the Newton method. The Newton method uses the second derivative to calculate the parameter value changes on each iteration. Newton's method is then modified with the addition of a step length to provide a guarantee of convergence when the second derivative requires complex calculations. In the quasi-Newton BFGS method, Newton's method is modified by updating both derivatives on each iteration. The parameter estimation of the Gumbel distribution by a numerical approach using the quasi-Newton BFGS method is done by calculating the parameter values that make the distribution function maximum. In this method, we need gradient vector and hessian matrix. This research is a theory research and application by studying several journals and textbooks. The results of this study obtained the quasi-Newton BFGS algorithm and estimation of Gumbel distribution parameters. The estimation method is then applied to daily rainfall data in Purworejo District to estimate the distribution parameters. This indicates that the high rainfall that occurred in Purworejo District decreased its intensity and the range of rainfall that occurred decreased.

Keywords: parameter estimation, Gumbel distribution, maximum likelihood, broyden fletcher goldfarb shanno (BFGS)quasi newton

Procedia PDF Downloads 331
23093 U.S. Trade and Trade Balance with China: Testing for Marshall-Lerner Condition and the J-Curve Hypothesis

Authors: Anisul Islam

Abstract:

The U.S. has a very strong trade relationship with China but with a large and persistent trade deficit. Some has argued that the undervalued Chinese Yuan is to be blamed for the persistent trade deficit. The empirical results are mixed at best. This paper empirically estimates the U.S. export function along with the U.S. import function with its trade with China with the purpose of testing for the existence of the Marshall-Lerner (ML) condition as well for the possible existence of the J-curve hypothesis. Annual export and import data will be utilized for as long as the time series data exists. The export and import functions will be estimated using advanced econometric techniques, along with appropriate diagnostic tests performed to examine the validity and reliability of the estimated results. The annual time-series data covers from 1975 to 2022 with a sample size of 48 years, the longest period ever utilized before in any previous study. The data is collected from several sources, such as the World Bank’s World Development Indicators, IMF Financial Statistics, IMF Direction of Trade Statistics, and several other sources. The paper is expected to shed important light on the ongoing debate regarding the persistent U.S. trade deficit with China and the policies that may be useful to reduce such deficits over time. As such, the paper will be of great interest for the academics, researchers, think tanks, global organizations, and policy makers in both China and the U.S.

Keywords: exports, imports, marshall-lerner condition, j-curve hypothesis, united states, china

Procedia PDF Downloads 70
23092 Analysis of Education Faculty Students’ Attitudes towards E-Learning According to Different Variables

Authors: Eyup Yurt, Ahmet Kurnaz, Ismail Sahin

Abstract:

The purpose of the study is to investigate the education faculty students’ attitudes towards e-learning according to different variables. In current study, the data were collected from 393 students of an education faculty in Turkey. In this study, theattitude towards e‐learning scale and the demographic information form were used to collect data. The collected data were analyzed by t-test, ANOVA and Pearson correlation coefficient. It was found that there is a significant difference in students’ tendency towards e-learning and avoidance from e-learning based on gender. Male students have more positive attitudes towards e-learning than female students. Also, the students who used the internet lesshave higher levels of avoidance from e-learning. Additionally, it is found that there is a positive and significant relationship between the number of personal mobile learning devices and tendency towards e-learning. On the other hand, there is a negative and significant relationship between the number of personal mobile learning devices and avoidance from e-learning. Also, suggestions were presented according to findings.

Keywords: education faculty students, attitude towards e-learning, gender, daily internet usage time, m-learning

Procedia PDF Downloads 313
23091 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem

Authors: Feng Yang

Abstract:

Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.

Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics

Procedia PDF Downloads 154
23090 Effect of Freight Transport Intensity on Firm Performance: Mediating Role of Operational Capability

Authors: Bonaventure Naab Dery, Abdul Muntaka Samad

Abstract:

During the past two decades, huge population growth has been recorded in developing countries. Thisled to an increase in the demand for transport services for human and merchandises. The study sought to examine the effect of freight transport intensity on firm performance. Among others, this study sought to examine the link between freight transport intensity and firm performance; the link between operational capability and firm performance, and the mediating role of operational capability on the relationship between freight transport intensity and firm performance. The study used a descriptive research design and a quantitative research approach. Questionnaireswereusedfor the data collection through snowball sampling and purposive sampling. SPSS and Mplus are being used to analyze the data. It is anticipated that, when the data is analyzed, it would validate the hypotheses that have been proposed by the researchers. Base on the findings, relevant recommendations would be made for managerial implications and future studies.

Keywords: freight transport intensity, freight economy transport intensity, freight efficiency transport intensity, operational capability, firm performance

Procedia PDF Downloads 151