Search results for: data mining techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29845

Search results for: data mining techniques

26995 Exploring the Spatial Relationship between Built Environment and Ride-hailing Demand: Applying Street-Level Images

Authors: Jingjue Bao, Ye Li, Yujie Qi

Abstract:

The explosive growth of ride-hailing has reshaped residents' travel behavior and plays a crucial role in urban mobility within the built environment. Contributing to the research of the spatial variation of ride-hailing demand and its relationship to the built environment and socioeconomic factors, this study utilizes multi-source data from Haikou, China, to construct a Multi-scale Geographically Weighted Regression model (MGWR), considering spatial scale heterogeneity. The regression results showed that MGWR model was demonstrated superior interpretability and reliability with an improvement of 3.4% on R2 and from 4853 to 4787 on AIC, compared with Geographically Weighted Regression model (GWR). Furthermore, to precisely identify the surrounding environment of sampling point, DeepLabv3+ model is employed to segment street-level images. Features extracted from these images are incorporated as variables in the regression model, further enhancing its rationality and accuracy by 7.78% improvement on R2 compared with the MGWR model only considered region-level variables. By integrating multi-scale geospatial data and utilizing advanced computer vision techniques, this study provides a comprehensive understanding of the spatial dynamics between ride-hailing demand and the urban built environment. The insights gained from this research are expected to contribute significantly to urban transportation planning and policy making, as well as ride-hailing platforms, facilitating the development of more efficient and effective mobility solutions in modern cities.

Keywords: travel behavior, ride-hailing, spatial relationship, built environment, street-level image

Procedia PDF Downloads 81
26994 A Nucleic Acid Extraction Method for High-Viscosity Floricultural Samples

Authors: Harunori Kawabe, Hideyuki Aoshima, Koji Murakami, Minoru Kawakami, Yuka Nakano, David D. Ordinario, C. W. Crawford, Iri Sato-Baran

Abstract:

With the recent advances in gene editing technologies allowing the rewriting of genetic sequences, additional market growth in the global floriculture market beyond previous trends is anticipated through increasingly sophisticated plant breeding techniques. As a prerequisite for gene editing, the gene sequence of the target plant must first be identified. This necessitates the genetic analysis of plants with unknown gene sequences, the extraction of RNA, and comprehensive expression analysis. Consequently, a technology capable of consistently and effectively extracting high-purity DNA and RNA from plants is of paramount importance. Although model plants, such as Arabidopsis and tobacco, have established methods for DNA and RNA extraction, floricultural species such as roses present unique challenges. Different techniques to extract DNA and RNA from various floricultural species were investigated. Upon sampling and grinding the petals of several floricultural species, it was observed that nucleic acid extraction from the ground petal solutions of low viscosity was straightforward; solutions of high viscosity presented a significant challenge. It is postulated that the presence of substantial quantities of polysaccharides and polyphenols in the plant tissue was responsible for the inhibition of nucleic acid extraction. Consequently, attempts were made to extract high-purity DNA and RNA by improving the CTAB method and combining it with commercially available nucleic acid extraction kits. The quality of the total extracted DNA and RNA was evaluated using standard methods. Finally, the effectiveness of the extraction method was assessed by determining whether it was possible to create a library that could be applied as a suitable template for a next-generation sequencer. In conclusion, a method was developed for consistent and accurate nucleic acid extraction from high-viscosity floricultural samples. These results demonstrate improved techniques for DNA and RNA extraction from flowers, help facilitate gene editing of floricultural species and expand the boundaries of research and commercial opportunities.

Keywords: floriculture, gene editing, next-generation sequencing, nucleic acid extraction

Procedia PDF Downloads 29
26993 A Stable Method for Determination of the Number of Independent Components

Authors: Yuyan Yi, Jingyi Zheng, Nedret Billor

Abstract:

Independent component analysis (ICA) is one of the most commonly used blind source separation (BSS) techniques for signal pre-processing, such as noise reduction and feature extraction. The main parameter in the ICA method is the number of independent components (IC). Although there have been several methods for the determination of the number of ICs, it has not been given sufficient attentionto this important parameter. In this study, wereview the mostused methods fordetermining the number of ICs and providetheir advantages and disadvantages. Further, wepropose an improved version of column-wise ICAByBlock method for the determination of the number of ICs.To assess the performance of the proposed method, we compare the column-wise ICAbyBlock with several existing methods through different ICA methods by using simulated and real signal data. Results show that the proposed column-wise ICAbyBlock is an effective and stable method for determining the optimal number of components in ICA. This method is simple, and results can be demonstrated intuitively with good visualizations.

Keywords: independent component analysis, optimal number, column-wise, correlation coefficient, cross-validation, ICAByblock

Procedia PDF Downloads 99
26992 3D Human Face Reconstruction in Unstable Conditions

Authors: Xiaoyuan Suo

Abstract:

3D object reconstruction is a broad research area within the computer vision field involving many stages and still open problems. One of the existing challenges in this field lies with micromotion, such as the facial expressions on the appearance of the human or animal face. Similar literatures in this field focuses on 3D reconstruction in stable conditions such as an existing image or photos taken in a rather static environment, while the purpose of this work is to discuss a flexible scan system using multiple cameras that can correctly reconstruct 3D stable and moving objects -- human face with expression in particular. Further, a mathematical model is proposed at the end of this literature to automate the 3D object reconstruction process. The reconstruction process takes several stages. Firstly, a set of simple 2D lines would be projected onto the object and hence a set of uneven curvy lines can be obtained, which represents the 3D numerical data of the surface. The lines and their shapes will help to identify object’s 3D construction in pixels. With the two-recorded angles and their distance from the camera, a simple mathematical calculation would give the resulting coordinate of each projected line in an absolute 3D space. This proposed research will benefit many practical areas, including but not limited to biometric identification, authentications, cybersecurity, preservation of cultural heritage, drama acting especially those with rapid and complex facial gestures, and many others. Specifically, this will (I) provide a brief survey of comparable techniques existing in this field. (II) discuss a set of specialized methodologies or algorithms for effective reconstruction of 3D objects. (III)implement, and testing the developed methodologies. (IV) verify findings with data collected from experiments. (V) conclude with lessons learned and final thoughts.

Keywords: 3D photogrammetry, 3D object reconstruction, facial expression recognition, facial recognition

Procedia PDF Downloads 150
26991 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool

Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi

Abstract:

The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.

Keywords: data analysis, deep learning, LSTM neural network, netflix

Procedia PDF Downloads 251
26990 Analysis of User Data Usage Trends on Cellular and Wi-Fi Networks

Authors: Jayesh M. Patel, Bharat P. Modi

Abstract:

The availability of on mobile devices that can invoke the demonstrated that the total data demand from users is far higher than previously articulated by measurements based solely on a cellular-centric view of smart-phone usage. The ratio of Wi-Fi to cellular traffic varies significantly between countries, This paper is shown the compression between the cellular data usage and Wi-Fi data usage by the user. This strategy helps operators to understand the growing importance and application of yield management strategies designed to squeeze maximum returns from their investments into the networks and devices that enable the mobile data ecosystem. The transition from unlimited data plans towards tiered pricing and, in the future, towards more value-centric pricing offers significant revenue upside potential for mobile operators, but, without a complete insight into all aspects of smartphone customer behavior, operators will unlikely be able to capture the maximum return from this billion-dollar market opportunity.

Keywords: cellular, Wi-Fi, mobile, smart phone

Procedia PDF Downloads 365
26989 Data Driven Infrastructure Planning for Offshore Wind farms

Authors: Isha Saxena, Behzad Kazemtabrizi, Matthias C. M. Troffaes, Christopher Crabtree

Abstract:

The calculations done at the beginning of the life of a wind farm are rarely reliable, which makes it important to conduct research and study the failure and repair rates of the wind turbines under various conditions. This miscalculation happens because the current models make a simplifying assumption that the failure/repair rate remains constant over time. This means that the reliability function is exponential in nature. This research aims to create a more accurate model using sensory data and a data-driven approach. The data cleaning and data processing is done by comparing the Power Curve data of the wind turbines with SCADA data. This is then converted to times to repair and times to failure timeseries data. Several different mathematical functions are fitted to the times to failure and times to repair data of the wind turbine components using Maximum Likelihood Estimation and the Posterior expectation method for Bayesian Parameter Estimation. Initial results indicate that two parameter Weibull function and exponential function produce almost identical results. Further analysis is being done using the complex system analysis considering the failures of each electrical and mechanical component of the wind turbine. The aim of this project is to perform a more accurate reliability analysis that can be helpful for the engineers to schedule maintenance and repairs to decrease the downtime of the turbine.

Keywords: reliability, bayesian parameter inference, maximum likelihood estimation, weibull function, SCADA data

Procedia PDF Downloads 86
26988 Synthesis and Characterization of Functionalized Carbon Nanorods/Polystyrene Nanocomposites

Authors: M. A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis

Abstract:

Nanocomposites of Carbon Nanorods (CNRs) with Polystyrene (PS), have been synthesized successfully by means of in situ polymerization process and characterized. Firstly, carbon nanorods with graphitic structure were prepared by the standard synthetic procedure of CMK-3 using MCM-41 as template, instead of SBA-15, and sucrose as carbon source. In order to create an organophilic surface on CNRs, two parts of modification were realized: surface chemical oxidation (CNRs-ox) according to the Staudenmaier’s method and the attachment of octadecylamine molecules on the functional groups of CNRs-ox (CNRs-ODA The nanocomposite materials of polystyrene with CNRs-ODA, were prepared by a solution-precipitation method at three nanoadditive to polymer loadings (1, 3 and 5 wt. %). The as derived nanocomposites were studied with a combination of characterization and analytical techniques. Especially, Fourier-transform infrared (FT-IR) and Raman spectroscopies were used for the chemical and structural characterization of the pristine materials and the derived nanocomposites while the morphology of nanocomposites and the dispersion of the carbon nanorods were analyzed by atomic force and scanning electron microscopy techniques. Tensile testing and thermogravimetric analysis (TGA) along with differential scanning calorimetry (DSC) were also used to examine the mechanical properties and thermal stability -glass transition temperature of PS after the incorporation of CNRs-ODA nanorods. The results showed that the thermal and mechanical properties of the PS/ CNRs-ODA nanocomposites gradually improved with increasing of CNRs-ODA loading.

Keywords: nanocomposites, polystyrene, carbon, nanorods

Procedia PDF Downloads 352
26987 Diagnosis of Rotavirus Infection among Egyptian Children by Using Different Laboratory Techniques

Authors: Mohamed A. Alhammad, Hadia A. Abou-Donia, Mona H. Hashish, Mohamed N. Massoud

Abstract:

Background: Rotavirus is the leading etiologic agent of severe diarrheal disease in infants and young children worldwide. The present study was aimed 1) to detect rotavirus infection as a cause of diarrhoea among children under 5 years of age using the two serological methods (ELISA and LA) and the PCR technique (2) to evaluate the three methodologies used for human RV detection in stool samples. Materials and Methods: This study was carried out on 247 children less than 5 years old, diagnosed clinically as acute gastroenteritis and attending Alexandria University Children Hospital at EL-Shatby. Rotavirus antigen was screened by ELISA and LA tests in all stool samples, whereas only 100 samples were subjected to RT-PCR method for detection of rotavirus RNA. Results: Out of the 247 studied cases with diarrhoea, rotavirus antigen was detected in 83 (33.6%) by ELISA and 73 (29.6%) by LA, while the 100 cases tested by RT-PCR showed that 44% of them had rotavirus RNA. Rotavirus diarrhoea was significantly presented with a marked seasonal peak during autumn and winter (61.4%). Conclusion: The present study confirms the huge burden of rotavirus as a major cause of acute diarrhoea in Egyptian infants and young children. It was concluded that; LA is equal in sensitivity to ELISA, ELISA is more specific than LA, and RT-PCR is more specific than ELISA and LA in diagnosis of rotavirus infection.

Keywords: rotavirus, diarrhea, immunoenzyme techniques, latex fixation tests, RT-PCR

Procedia PDF Downloads 370
26986 Runtime Monitoring Using Policy-Based Approach to Control Information Flow for Mobile Apps

Authors: Mohamed Sarrab, Hadj Bourdoucen

Abstract:

Mobile applications are verified to check the correctness or evaluated to check the performance with respect to specific security properties such as availability, integrity, and confidentiality. Where they are made available to the end users of the mobile application is achievable only to a limited degree using software engineering static verification techniques. The more sensitive the information, such as credit card data, personal medical information or personal emails being processed by mobile application, the more important it is to ensure the confidentiality of this information. Monitoring non-trusted mobile application during execution in an environment where sensitive information is present is difficult and unnerving. The paper addresses the issue of monitoring and controlling the flow of confidential information during non-trusted mobile application execution. The approach concentrates on providing a dynamic and usable information security solution by interacting with the mobile users during the run-time of mobile application in response to information flow events.

Keywords: mobile application, run-time verification, usable security, direct information flow

Procedia PDF Downloads 381
26985 Genetic Algorithms for Feature Generation in the Context of Audio Classification

Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes

Abstract:

Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.

Keywords: feature generation, feature learning, genetic algorithm, music information retrieval

Procedia PDF Downloads 435
26984 Islam-Oriented Movements' Recruiting Strategies in Morocco

Authors: Driss Bouyahya

Abstract:

During the late 1960s, Islam-oriented social movements have encroached to reach the Moroccan public spheres and mobilize huge waves of people from different walks of life under the banners of a rhetoric that resonates with the Muslim way of life away from Modernity and globalization tenets. In this respect, the present study investigates and explores some of the ways utilized by the Movement for Unity and Reform in Morocco as an Islam-oriented movement to recruit students massively at universities. The significance of this study lies in demystifying the recruitment strategies and mechanisms, considered essential for the Islam-oriented social movements to mobilize. This research paper uses a quantitative method to collect and analyze data through two different structured questionnaires. One of the major findings is that this Islam-oriented movement uses different techniques to recruit students, namely social networks, its websites and You-tube as three main modern and sophisticated means of communication. In a nutshell, this paper´s findings fill some of the gaps in the literature in regard to Islam-oriented movements ‘mobilization strategies.

Keywords: changing, ideology, Islam, party

Procedia PDF Downloads 220
26983 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection

Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay

Abstract:

With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.

Keywords: Credit Card Fraud Detection, User Authentication, Behavioral Biometrics, Machine Learning, Literature Survey

Procedia PDF Downloads 121
26982 The Link between Money Market and Economic Growth in Nigeria: Vector Error Correction Model Approach

Authors: Uyi Kizito Ehigiamusoe

Abstract:

The paper examines the impact of money market on economic growth in Nigeria using data for the period 1980-2012. Econometrics techniques such as Ordinary Least Squares Method, Johanson’s Co-integration Test and Vector Error Correction Model were used to examine both the long-run and short-run relationship. Evidence from the study suggest that though a long-run relationship exists between money market and economic growth, but the present state of the Nigerian money market is significantly and negatively related to economic growth. The link between the money market and the real sector of the economy remains very weak. This implies that the market is not yet developed enough to produce the needed growth that will propel the Nigerian economy because of several challenges. It was therefore recommended that government should create the appropriate macroeconomic policies, legal framework and sustain the present reforms with a view to developing the market so as to promote productive activities, investments, and ultimately economic growth.

Keywords: economic growth, investments, money market, money market challenges, money market instruments

Procedia PDF Downloads 344
26981 Alginate Wrapped NiO-ZnO Nanocomposites-Based Catalyst for the Reduction of Methylene Blue

Authors: Mohamed A. Adam Abakar, Abdullah M. Asiri, Sher Bahadar Khan

Abstract:

In this paper, nickel oxide-zinc oxide (NiO-ZnO) catalyst was embedded in an alginate polymer (Na alg/NiO-ZnO), a nanocomposite that was used as a nano-catalyst for catalytic conversion of deleterious contaminants such as organic dyes (Acridine Orange “ArO”, Methylene Blue “MB”, Methyl Orange “MO”) and 4-Nitrophenol “4-NP” as well. FESEM, EDS, FTIR and XRD techniques were used to identify the shape and structure of the nano-catalyst (Na alg/NiO-ZnO). UV spectrophotometry is used to collect the results and it showed greater and faster reduction rate for MB (illustrated in figures 2, 3, 4 and 5). Data recorded and processed, drawing and analysis of graphs achieved by using Origin 2018. Reduction percentage of MB was assessed to be 95.25 % in just 13 minutes. Furthermore, the catalytic property of Na alg/NiO-ZnO in the reduction of organic dyes was investigated using various catalyst amounts, dye types, reaction times and reducing agent dosages at room temperature (rt). NaBH4-assisted reduction of organic dyes was studied using alg/NiO-ZnO as a potential catalyst.

Keywords: Alginate, metal oxides, nanocomposites-based, catalysts, reduction, photocatalytic degradation, water treatment

Procedia PDF Downloads 72
26980 Exploring the Applications of Modular Forms in Cryptography

Authors: Berhane Tewelday Weldhiwot

Abstract:

This research investigates the pivotal role of modular forms in modern cryptographic systems, particularly focusing on their applications in secure communications and data integrity. Modular forms, which are complex analytic functions with rich arithmetic properties, have gained prominence due to their connections to number theory and algebraic geometry. This study begins by outlining the fundamental concepts of modular forms and their historical development, followed by a detailed examination of their applications in cryptographic protocols such as elliptic curve cryptography and zero-knowledge proofs. By employing techniques from analytic number theory, the research delves into how modular forms can enhance the efficiency and security of cryptographic algorithms. The findings suggest that leveraging modular forms not only improves computational performance but also fortifies security measures against emerging threats in digital communication. This work aims to contribute to the ongoing discourse on integrating advanced mathematical theories into practical applications, ultimately fostering innovation in cryptographic methodologies.

Keywords: modular forms, cryptography, elliptic curves, applications, mathematical theory

Procedia PDF Downloads 17
26979 Evaluating Alternative Structures for Prefix Trees

Authors: Feras Hanandeh, Izzat Alsmadi, Muhammad M. Kwafha

Abstract:

Prefix trees or tries are data structures that are used to store data or index of data. The goal is to be able to store and retrieve data by executing queries in quick and reliable manners. In principle, the structure of the trie depends on having letters in nodes at the different levels to point to the actual words in the leafs. However, the exact structure of the trie may vary based on several aspects. In this paper, we evaluated different structures for building tries. Using datasets of words of different sizes, we evaluated the different forms of trie structures. Results showed that some characteristics may impact significantly, positively or negatively, the size and the performance of the trie. We investigated different forms and structures for the trie. Results showed that using an array of pointers in each level to represent the different alphabet letters is the best choice.

Keywords: data structures, indexing, tree structure, trie, information retrieval

Procedia PDF Downloads 452
26978 Data Management System for Environmental Remediation

Authors: Elizaveta Petelina, Anton Sizo

Abstract:

Environmental remediation projects deal with a wide spectrum of data, including data collected during site assessment, execution of remediation activities, and environmental monitoring. Therefore, an appropriate data management is required as a key factor for well-grounded decision making. The Environmental Data Management System (EDMS) was developed to address all necessary data management aspects, including efficient data handling and data interoperability, access to historical and current data, spatial and temporal analysis, 2D and 3D data visualization, mapping, and data sharing. The system focuses on support of well-grounded decision making in relation to required mitigation measures and assessment of remediation success. The EDMS is a combination of enterprise and desktop level data management and Geographic Information System (GIS) tools assembled to assist to environmental remediation, project planning, and evaluation, and environmental monitoring of mine sites. EDMS consists of seven main components: a Geodatabase that contains spatial database to store and query spatially distributed data; a GIS and Web GIS component that combines desktop and server-based GIS solutions; a Field Data Collection component that contains tools for field work; a Quality Assurance (QA)/Quality Control (QC) component that combines operational procedures for QA and measures for QC; Data Import and Export component that includes tools and templates to support project data flow; a Lab Data component that provides connection between EDMS and laboratory information management systems; and a Reporting component that includes server-based services for real-time report generation. The EDMS has been successfully implemented for the Project CLEANS (Clean-up of Abandoned Northern Mines). Project CLEANS is a multi-year, multimillion-dollar project aimed at assessing and reclaiming 37 uranium mine sites in northern Saskatchewan, Canada. The EDMS has effectively facilitated integrated decision-making for CLEANS project managers and transparency amongst stakeholders.

Keywords: data management, environmental remediation, geographic information system, GIS, decision making

Procedia PDF Downloads 161
26977 Humanistic Psychology Workshop to Increase Psychological Well-Being

Authors: Nidia Thalia Alva Rangel, Ferran Padros Blazquez, Ma. Ines Gomez Del Campo Del Paso

Abstract:

Happiness has been since antiquity a concept of interest around the world. Positive psychology is the science that begins to study happiness in a more precise and controlled way, obtaining wide amount of research which can be applied. One of the central constructs of Positive Psychology is Carol Ryff’s psychological well-being model as eudaimonic happiness, which comprehends six dimensions: autonomy, environmental mastery, personal growth, positive relations with others, purpose in life, and self-acceptance. Humanistic psychology is a clear precedent of Positive Psychology, which has studied human development topics and it features a great variety of intervention techniques nevertheless has little evidence with controlled research. Therefore, the present research had the aim to evaluate the efficacy of a humanistic intervention program to increase psychological well-being in healthy adults through a mixed methods study. Before and after the intervention, it was applied Carol Ryff’s psychological well-being scale (PWBS) and the Symptom Check List 90 as pretest and posttest. In addition, a questionnaire of five open questions was applied after each session. The intervention program was designed in experiential workshop format, based on the foundational attitudes defined by Carl Rogers: congruence, unconditional positive regard and empathy, integrating humanistic intervention strategies from gestalt, psychodrama, logotherapy and psychological body therapy, with the aim to strengthen skills in the six dimensions of psychological well-being model. The workshop was applied to six volunteer adults in 12 sessions of 2 hours each. Finally, quantitative data were analyzed with Wilcoxon statistic test through the SPSS program, obtaining as results differences statistically significant in pathology symptoms between prettest and postest, also levels of dimensions of psychological well-being were increased, on the other hand for qualitative strand, by open questionnaires it showed how the participants were experiencing the techniques and changing through the sessions. Thus, the humanistic psychology program was effective to increase psychological well-being. Working to promote well-being prompts to be an effective way to reduce pathological symptoms as a secondary gain. Experiential workshops are a useful tool for small groups. There exists the need for research to count with more evidence of humanistic psychology interventions in different contexts and impulse the application of Positive Psychology knowledge.

Keywords: happiness, humanistic psychology, positive psychology, psychological well-being, workshop

Procedia PDF Downloads 416
26976 Developing a HSE-Finacial Indicator Model in Oil Industry

Authors: Reza Safari, Ali Rajabzadeh Ghatari, Raheleh Hossseinzadeh Mahabadi

Abstract:

In the present world, there are different pressures on firms such as competition, legislations, social etc. these pressures force the firms to follow “survival” as their primary goal and then growth. One of the main factors that helps firms to reach their goals is proper financial performance. To find out about the financial performance, a firm should monitors its financial performance. Financial performance affected by many factors. This research seeks to clear which financial performance indicators are most important according to Environmental situation of a firm and what are their priorities. To do so, environmental indicators specified as presented on OECD Key Environmental Indicators 2008 and so the financial performance indicators such as Profitability, Liquidity, Gearing, Investor ratios, and etc. At this stage, the affections questioned through questionnaires. After gaining the results, data analyzed using Promethee technique. By using decision matrixes extracted from those techniques an expert system designed. This expert system suggests the suitable financial performance indicators and their ranking by receiving the environment situation given environment indicators weight.

Keywords: environment indicators, financial performance indicators, promethee, expert system

Procedia PDF Downloads 442
26975 Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion

Authors: Xudong Guan, Ainong Li, Gaohuan Liu, Chong Huang, Wei Zhao

Abstract:

Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications.

Keywords: image classification, decision fusion, multi-temporal, remote sensing

Procedia PDF Downloads 124
26974 A Memetic Algorithm Approach to Clustering in Mobile Wireless Sensor Networks

Authors: Masood Ahmad, Ataul Aziz Ikram, Ishtiaq Wahid

Abstract:

Wireless sensor network (WSN) is the interconnection of mobile wireless nodes with limited energy and memory. These networks can be deployed formany critical applications like military operations, rescue management, fire detection and so on. In flat routing structure, every node plays an equal role of sensor and router. The topology may change very frequently due to the mobile nature of nodes in WSNs. The topology maintenance may produce more overhead messages. To avoid topology maintenance overhead messages, an optimized cluster based mobile wireless sensor network using memetic algorithm is proposed in this paper. The nodes in this network are first divided into clusters. The cluster leaders then transmit data to that base station. The network is validated through extensive simulation study. The results show that the proposed technique has superior results compared to existing techniques.

Keywords: WSN, routing, cluster based, meme, memetic algorithm

Procedia PDF Downloads 481
26973 Bacterial Flora of the Anopheles Fluviatilis S. L. in an Endemic Malaria Area in Southeastern Iran for Candidate Paraterasgenesis Strains

Authors: Seyed Hassan Moosa-kazemi, Jalal Mohammadi Soleimani, Hassan Vatandoost, Mohammad Hassan Shirazi, Sara Hajikhani, Roonak Bakhtiari, Morteza Akbari, Siamak Hydarzadeh

Abstract:

Malaria is an infectious disease and considered most important health problems in the southeast of Iran. Iran is elimination malaria phase and new tool need to vector control. Paraterasgenesis is a new way to cut of life cycle of the malaria parasite. In this study, the microflora of the surface and gut of various stages of Anopheles fluviatilis James as one of the important malaria vector was studied using biochemical and molecular techniques during 2013-2014. Twelve bacteria species were found including; Providencia rettgeri, Morganella morganii, Enterobacter aerogenes, Pseudomonas oryzihabitans, Citrobacter braakii، Citrobacter freundii، Aeromonas hydrophila، Klebsiella oxytoca, Citrobacter koseri, Serratia fonticola، Enterobacter sakazakii and Yersinia pseudotuberculosis. The species of Alcaligenes faecalis, Providencia vermicola and Enterobacter hormaechei were identified in various stages of the vector and confirmed by biochemical and molecular techniques. We found Providencia rettgeri proper candidate for paratransgenesis.

Keywords: Anopheles fluviatilis, bacteria, malaria, Paraterasgenesis, Southern Iran

Procedia PDF Downloads 492
26972 Reduce, Reuse and Recycle: Grand Challenges in Construction Recovery Process

Authors: Abioye A. Oyenuga, Rao Bhamidiarri

Abstract:

Hurling a successful Construction and Demolition Waste (C&DW) recycling operation around the globe is a challenge today, predominantly because secondary materials markets are yet to be integrated. Reducing, Reusing and recycling of (C&DW) have been employed over the years, and various techniques have been investigated. However, the economic and environmental viability of its application seems limited. This paper discusses the costs and benefits in using secondary materials and focus on investigating reuse and recycling process for five major types of construction materials: concrete, metal, wood, cardboard/paper, and plasterboard. Data obtained from demolition specialist and contractors are considered and evaluated. With the date source, the research paper found that construction material recovery process fully incorporate the 3R’s process and shows how energy recovery by means of 3R's principles can be evaluated. This scrutiny leads to the empathy of grand challenges in construction material recovery process. Recommendations to deepen material recovery process are also discussed.

Keywords: construction and demolition waste (C&DW), 3R concept, recycling, reuse, waste management, UK

Procedia PDF Downloads 428
26971 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement

Authors: Wang Lin, Li Zhiqiang

Abstract:

The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.

Keywords: behavior pattern, cooperative learning, data analyze, k-means clustering algorithm

Procedia PDF Downloads 187
26970 Traditional Practices of Conserving Biodiversity: A Case Study around Jim Corbett National Park, Uttarakhand, India

Authors: Rana Parween, Rob Marchant

Abstract:

With the continued loss of global biodiversity despite the application of modern conservation techniques, it has become crucial to investigate non-conventional methods. Accelerated destruction of ecosystems due to altered land use, climate change, cultural and social change, necessitates the exploration of society-biodiversity attitudes and links. While the loss of species and their extinction is a well-known and well-documented process that attracts much-needed attention from researchers, academics, government and non-governmental organizations, the loss of traditional ecological knowledge and practices is more insidious and goes unnoticed. The growing availability of 'indirect experiences' such as the internet and media are leading to a disaffection towards nature and the 'Extinction of Experience'. Exacerbated by the lack of documentation of traditional practices and skills, there is the possibility for the 'extinction' of traditional practices and skills before they are fully recognized and captured. India, as a mega-biodiverse country, is also known for its historical conservation strategies entwined in traditional beliefs. Indigenous communities hold skillsets, knowledge, and traditions that have accumulated over multiple generations and may play an important role in conserving biodiversity today. This study explores the differences in knowledge and attitudes towards conserving biodiversity, of three different stakeholder groups living around Jim Corbett National Park, based on their age, traditions, and association with the protected area. A triangulation designed multi-strategy investigation collected qualitative and quantitative data through a questionnaire survey of village elders, the general public, and forest officers. Following an inductive approach to analyzing qualitative data, the thematic content analysis was followed. All coding and analysis were completed using NVivo 11. Although the village elders and some general public had vast amounts of traditional knowledge, most of it was related to animal husbandry and the medicinal value of plants. Village elders were unfamiliar with the concept of the term ‘biodiversity’ albeit their way of life and attitudes ensured that they care for the ecosystem without having the scientific basis underpinning biodiversity conservation. Inherently, village elders were keen to conserve nature; the superimposition of governmental policies without any tangible benefit or consultation was seen as detrimental. Alienating villagers and consequently the village elders who are the reservoirs of traditional knowledge would not only be damaging to the social network of the area but would also disdain years of tried and tested techniques held by the elders. Forest officers advocated for biodiversity and conservation education for women and children. Women, across all groups, when questioned about nature conservation, showed more interest in learning and participation. Biodiversity not only has an ethical and cultural value, but also plays a role in ecosystem function and, thus, provides ecosystem services and supports livelihoods. Therefore, underpinning and using traditional knowledge and incorporating them into programs of biodiversity conservation should be explored with a sense of urgency.

Keywords: biological diversity, mega-biodiverse countries, traditional ecological knowledge, society-biodiversity links

Procedia PDF Downloads 106
26969 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 174
26968 A Security Cloud Storage Scheme Based Accountable Key-Policy Attribute-Based Encryption without Key Escrow

Authors: Ming Lun Wang, Yan Wang, Ning Ruo Sun

Abstract:

With the development of cloud computing, more and more users start to utilize the cloud storage service. However, there exist some issues: 1) cloud server steals the shared data, 2) sharers collude with the cloud server to steal the shared data, 3) cloud server tampers the shared data, 4) sharers and key generation center (KGC) conspire to steal the shared data. In this paper, we use advanced encryption standard (AES), hash algorithms, and accountable key-policy attribute-based encryption without key escrow (WOKE-AKP-ABE) to build a security cloud storage scheme. Moreover, the data are encrypted to protect the privacy. We use hash algorithms to prevent the cloud server from tampering the data uploaded to the cloud. Analysis results show that this scheme can resist conspired attacks.

Keywords: cloud storage security, sharing storage, attributes, Hash algorithm

Procedia PDF Downloads 390
26967 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management

Authors: Chokri Slim

Abstract:

The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.

Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines

Procedia PDF Downloads 150
26966 A Process FMEA in Aero Fuel Pump Manufacturing and Conduct the Corrective Actions

Authors: Zohre Soleymani, Meisam Amirzadeh

Abstract:

Many products are safety critical, so proactive analysis techniques are vital for them because these techniques try to identify potential failures before the products are produced. Failure Mode and Effective Analysis (FMEA) is an effective tool in identifying probable problems of product or process and prioritizing them and planning for its elimination. The paper shows the implementation of FMEA process to identify and remove potential troubles of aero fuel pumps manufacturing process and improve the reliability of subsystems. So the different possible causes of failure and its effects along with the recommended actions are discussed. FMEA uses Risk Priority Number (RPN) to determine the risk level. RPN value is depending on Severity(S), Occurrence (O) and Detection (D) parameters, so these parameters need to be determined. After calculating the RPN for identified potential failure modes, the corrective actions are defined to reduce risk level according to assessment strategy and determined acceptable risk level. Then FMEA process is performed again and RPN revised is calculated. The represented results are applied in the format of a case study. These results show the improvement in manufacturing process and considerable reduction in aero fuel pump production risk level.

Keywords: FMEA, risk priority number, aero pump, corrective action

Procedia PDF Downloads 286