Search results for: language tasks
2263 Man Eaters and the Eaten Men: A Study of the Portrayal of Indians in the Writings of Jim Corbett
Authors: Iti Roychowdhury
Abstract:
India to the Colonial mind was a crazy quilt of multicoloured patchwork- a land of untold wealth and bejewelled maharajas, of snake charmers and tight rope walkers. India was also the land that offered unparalled game. Indeed Shikar (hunting) was de rigueur for the Raj experience. Tales of shootings and trophies were told and retold in clubs and in company. Foremost among the writers of this genre is Jim Corbett – tracker, hunter, writer, conservationist. Corbett is best known for the killing of man eating tigers and his best known books are Man eaters of Kumaon, The Temple Tiger, Man eating Leopard of Rudraprayag etc. The stories of Jim Corbett are stories of hunting, with no palpable design, no subtext of hegemony, or white man’s burden. The protagonists are the cats. Nevertheless from his writings emerge a vibrant picture of Indian villages, of men, women and children toiling for a livelihood under the constant shadow of the man eaters. Corbett shared a symbiotic relationship with the villagers. They needed him to kill the predators while Corbett needed the support of the locals as drum beaters, coolies and runners to accomplish his tasks. The aim of the present paper is to study the image of Indians in the writings of Jim Corbett and to examine them in the light of colonial perception of Indians.Keywords: hegemony, orientalism, Shikar literature, White Man's Burden
Procedia PDF Downloads 2762262 An Analysis of Mongolian Possessive Markers
Authors: Yaxuan Wang
Abstract:
It has long been a mystery that why the Mongolian possessive suffix, which is constrained by Condition A of binding theory, has the ability to probe a potential antecedent outside of its binding domain. This squib argues that binding theory alone is not sufficient to explain the linguistic facts and proposes an analysis adopting the Agree operation. The current analysis correctly predicts all the possible and impossible structures, with an additional hypothesis that Mongolian possessive suffixes serve as an antecedent for PROs in adjunct. The findings thus provide insights into how Agree operates in Mongolian language.Keywords: syntax, Mongolian, agreement, possessive particles
Procedia PDF Downloads 982261 Effect of Enterprise Risk Management Commitee on the Financial Performance of Listed Banks in Nigeria
Authors: Joseph Uche Azubike, Evelyn Ngozi Agbasi, M. I. Ogbonna
Abstract:
The audit committee of the board of directors could no longer handle the enterprise's risks. Therefore, a risk management committee was created to control them. Thus, this study examined how enterprise risk management committee characteristics affected Nigerian exchange-listed banks' financial performance from 2013 to 2022. The study's hypotheses and three objectives were to determine how enterprise risk management committee size, composition, and gender diversity affect Nigerian banks' performance. An ex-post facto study design collected secondary data from bank annual reports. We used descriptive statistics, correlation analysis, and Ordinary least square regression to analyze panel data. Enterprise risk management committee size and composition had both negative and no significant effect on bank financial performance in Nigeria, whereas enterprise risk committee gender diversity has a 10% favorable effect. The report advises that adding more women with relevant knowledge to the risk committee to boost performance and allowing women to be at the lead of such risk management could improve bank performance in Nigeria since they are noted to be thorough in their tasks.Keywords: bank, committee, enterprise, management, performance, risk
Procedia PDF Downloads 422260 Tailoring Workspaces for Generation Z: Harmonizing Teamwork, Privacy, and Connectivity
Authors: Maayan Nakash
Abstract:
The modern workplace is undergoing a revolution, with Generation Z (Gen-Z) at the forefront of this transformative shift. However, empirical investigations specifically targeting the workplace preferences of this generation remain limited. Through direct examination of their tendencies via a survey approach, this study offers vital insights for aligning organizational policies and practices. The results presented in this paper are part of a comprehensive study that explored Gen Z's viewpoints on various employment market aspects, likely to decisively influence the design of future work environments. Data were collected via an online survey distributed among a cohort of 461 individuals from Gen-Z, born between the mid-1990s and 2010, consisting of 241 males (52.28%) and 220 females (47.72%). Responses were gauged using Likert scale statements that probed preferences for teamwork versus individual work, virtual versus personal interactions, and open versus private workspaces. Descriptive statistics and analytical analyses were conducted to pinpoint key patterns. We discovered that a high proportion of respondents (81.99%, n=378) exhibited a preference for teamwork over individual work. Correspondingly, the data indicate strong support for the recognition of team-based tasks as a tool contributing to personal and professional development. In terms of communication, the majority of respondents (61.38%) either disagreed (n=154) or slightly agreed (n=129) with the exclusive reliance on virtual interactions with their organizational peers. This finding underscores that despite technological progress, digital natives place significant value on physical interaction and non-mediated communication. Moreover, we understand that they also value a quiet and private work environment, clearly preferring it over open and shared workspaces. Considering that Gen-Z does not necessarily experience high levels of stress within social frameworks in the workplace, this can be attributed to a desire for a space that allows for focused engagement with work tasks. A One-Sample Chi-Square Test was performed on the observed distribution of respondents' reactions to each examined statement. The results showed statistically significant deviations from a uniform distribution (p<.001), indicating that the response patterns did not occur by chance and that there were meaningful tendencies in the participants' responses. The findings expand the theoretical knowledge base on human resources in the dynamics of a multi-generational workforce, illuminating the values, approaches, and expectations of Gen-Z. Practically, the results may lead organizations to equip themselves with tools to create policies tailored to Gen-Z in the context of workspaces and social needs, which could potentially foster a fertile environment and aid in attracting and retaining young talent. Future studies might include investigating potential mitigating factors, such as cultural influences or individual personality traits, which could further clarify the nuances in Gen-Z's work style preferences. Longitudinal studies tracking changes in these preferences as the generation matures may also yield valuable insights. Ultimately, as the landscape of the workforce continues to evolve, ongoing investigations into the unique characteristics and aspirations of emerging generations remain essential for nurturing harmonious, productive, and future-ready organizational environments.Keywords: workplace, future of work, generation Z, digital natives, human resources management
Procedia PDF Downloads 502259 Manual to Automated Testing: An Effort-Based Approach for Determining the Priority of Software Test Automation
Authors: Peter Sabev, Katalina Grigorova
Abstract:
Test automation allows performing difficult and time consuming manual software testing tasks efficiently, quickly and repeatedly. However, development and maintenance of automated tests is expensive, so it needs a proper prioritization what to automate first. This paper describes a simple yet efficient approach for such prioritization of test cases based on the effort needed for both manual execution and software test automation. The suggested approach is very flexible because it allows working with a variety of assessment methods, and adding or removing new candidates at any time. The theoretical ideas presented in this article have been successfully applied in real world situations in several software companies by the authors and their colleagues including testing of real estate websites, cryptographic and authentication solutions, OSGi-based middleware framework that has been applied in various systems for smart homes, connected cars, production plants, sensors, home appliances, car head units and engine control units (ECU), vending machines, medical devices, industry equipment and other devices that either contain or are connected to an embedded service gateway.Keywords: automated testing, manual testing, test automation, software testing, test prioritization
Procedia PDF Downloads 3332258 Explainable Graph Attention Networks
Authors: David Pham, Yongfeng Zhang
Abstract:
Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.Keywords: explainable AI, graph attention network, graph neural network, node classification
Procedia PDF Downloads 1962257 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks
Authors: Radhika Ranjan Roy
Abstract:
Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve
Procedia PDF Downloads 772256 Study of Syntactic Errors for Deep Parsing at Machine Translation
Authors: Yukiko Sasaki Alam, Shahid Alam
Abstract:
Syntactic parsing is vital for semantic treatment by many applications related to natural language processing (NLP), because form and content coincide in many cases. However, it has not yet reached the levels of reliable performance. By manually examining and analyzing individual machine translation output errors that involve syntax as well as semantics, this study attempts to discover what is required for improving syntactic and semantic parsing.Keywords: syntactic parsing, error analysis, machine translation, deep parsing
Procedia PDF Downloads 5572255 Validation of Visibility Data from Road Weather Information Systems by Comparing Three Data Resources: Case Study in Ohio
Authors: Fan Ye
Abstract:
Adverse weather conditions, particularly those with low visibility, are critical to the driving tasks. However, the direct relationship between visibility distances and traffic flow/roadway safety is uncertain due to the limitation of visibility data availability. The recent growth of deployment of Road Weather Information Systems (RWIS) makes segment-specific visibility information available which can be integrated with other Intelligent Transportation System, such as automated warning system and variable speed limit, to improve mobility and safety. Before applying the RWIS visibility measurements in traffic study and operations, it is critical to validate the data. Therefore, an attempt was made in the paper to examine the validity and viability of RWIS visibility data by comparing visibility measurements among RWIS, airport weather stations, and weather information recorded by police in crash reports, based on Ohio data. The results indicated that RWIS visibility measurements were significantly different from airport visibility data in Ohio, but no conclusion regarding the reliability of RWIS visibility could be drawn in the consideration of no verified ground truth in the comparisons. It was suggested that more objective methods are needed to validate the RWIS visibility measurements, such as continuous in-field measurements associated with various weather events using calibrated visibility sensors.Keywords: RWIS, visibility distance, low visibility, adverse weather
Procedia PDF Downloads 2462254 Play in College: Shifting Perspectives and Creative Problem-Based Play
Authors: Agni Stylianou-Georgiou, Eliza Pitri
Abstract:
This study is a design narrative that discusses researchers’ new learning based on changes made in pedagogies and learning opportunities in the context of a Cognitive Psychology and an Art History undergraduate course. The purpose of this study was to investigate how to encourage creative problem-based play in tertiary education engaging instructors and student-teachers in designing educational games. Course instructors modified content to encourage flexible thinking during game design problem-solving. Qualitative analyses of data sources indicated that Thinking Birds’ questions could encourage flexible thinking as instructors engaged in creative problem-based play. However, student-teachers demonstrated weakness in adopting flexible thinking during game design problem solving. Further studies of student-teachers’ shifting perspectives during different instructional design tasks would provide insights for developing the Thinking Birds’ questions as tools for creative problem solving.Keywords: creative problem-based play, educational games, flexible thinking, tertiary education
Procedia PDF Downloads 2902253 A Critical Discourse Analysis of Citizenship Education Textbook for Primary School Students in Singapore
Authors: Ren Boyuan
Abstract:
This study focuses on how the Character and Citizenship Education textbook in Singapore primary schools deliver preferred and desired qualities to students and therefore reveals how discourse in textbooks can facilitate and perpetuate certain social practices. In this way, this study also serves to encourage the critical thinking of textbook writers and school educators by unveiling the nuanced message through language use that facilitates the perpetuation of social practices in a society. In Singapore, Character and Citizenship Education is a compulsory subject for primary school students. Under the framework of 21st Century Competencies, Character and Citizenship Education in Singapore aims to help students thrive in this fast-changing world. The Singapore government is involved in the development of CCE curriculum in schools from primary schools to pre-university. Inevitably, the CCE curriculum is not free from ideological influences. This qualitative study utilizes Fairclough’s three-dimensional theory and his framework of three assumptions to analyze the Character and Citizenship Education textbook for Primary 1 and to reveal ideologies in this textbook. Data for the analysis in this study are the textual parts of the whole textbook for Primary 1 students as this book is used at the beginning of citizenship education in primary schools. It is significant because it promotes messages about CCE to the foundation years of a child's education. The findings of this study show that the four revealed ideologies, namely pragmatism, communitarianism, nationalism, and multiculturalism, are not only dated back in the national history but also updated and explained by the current demands for Singapore’s thriving and prosperity in a sustainable term. This study ends with a discussion of the implications of this study. By pointing out the ideologies in this textbook and how they are embedded in the discourse, this study may help teachers and textbook writers realize the possible political involvement in the book and therefore develop their recognition of the implicit influence of lexical choice on their teaching and writing. In addition, by exploring the ideologies in this book and comparing them with ideologies in past textbooks, this study helps researchers in this area on how language influences readers and reflects certain social demands.Keywords: citizenship education, critical discourse analysis, sociolinguistics, textbook analysis
Procedia PDF Downloads 602252 Randomness in Cybertext: A Study on Computer-Generated Poetry from the Perspective of Semiotics
Authors: Hongliang Zhang
Abstract:
The use of chance procedures and randomizers in poetry-writing can be traced back to surrealist works, which, by appealing to Sigmund Freud's theories, were still logocentrism. In the 1960s, random permutation and combination were extensively used by the Oulipo, John Cage and Jackson Mac Low, which further deconstructed the metaphysical presence of writing. Today, the randomly-generated digital poetry has emerged as a genre of cybertext which should be co-authored by readers. At the same time, the classical theories have now been updated by cybernetics and media theories. N· Katherine Hayles put forward the concept of ‘the floating signifiers’ by Jacques Lacan to be the ‘the flickering signifiers’ , arguing that the technology per se has become a part of the textual production. This paper makes a historical review of the computer-generated poetry in the perspective of semiotics, emphasizing that the randomly-generated digital poetry which hands over the dual tasks of both interpretation and writing to the readers demonstrates the intervention of media technology in literature. With the participation of computerized algorithm and programming languages, poems randomly generated by computers have not only blurred the boundary between encoder and decoder, but also raises the issue of human-machine. It is also a significant feature of the cybertext that the productive process of the text is full of randomness.Keywords: cybertext, digital poetry, poetry generator, semiotics
Procedia PDF Downloads 1742251 Post Mutiny Institutional Buildings of India: A Visual Language of Reconciliation
Authors: Aruna Ramani Grover
Abstract:
In 1857 the British army in Bengal rose in mutiny. The outcome of a yearlong stifle was the abolition of the East India Company and establishment of Crown rule in 1958. Despite being a political democracy back home, with the declaration of Queen Victoria as Empress of India, the British established themselves as imperialistic successors to the Mughals in India. With the institution of the Crown role in the sub-continent, there was a serious endeavour for systematic governance. This led to infrastructure development and creation of institutions as well. The outcome was many public buildings like courts, railway- stations and headquarters, senates, post offices, banks, libraries, memorial halls, museums, memorials, theatres, government colleges, residential-schools and clock towers. These were built in the old and emerging urban settlements of the sub-continents. In the realm of architecture, like all political masters of the past, the British architects too encountered the living tradition of the sub-continent. A bewildering plethora of buildings in various climatic zones, using local materials and crafted with tools and techniques of the region by local craftsmen had to be understood and assimilated. The19th century British architects who built in India, designed institutional buildings which were functional and responded to the need of the user. In visual terms however, it was a completely different story. Using the manifest elements of the complex and layered indigenous tradition, they fashioned buildings to create an architecture of reconciliation. Treating the traditional architecture as a pattern book, finished buildings was served up to the local population coloured by their understanding of tradition. This paper will discuss a series of building some of which are the Senate House and Law courts at Madras, the Municipal Building and Gateway of India in Bombay, the Muir college in Allahabad, Mayo college Ajmer, the Mubarak Mahal in Jaipur to demonstrate how a visual language of reconciliation was created.Keywords: infrastructure, British architects, tradition, pattern book, reconciliation
Procedia PDF Downloads 302250 The Origins of Representations: Cognitive and Brain Development
Authors: Athanasios Raftopoulos
Abstract:
In this paper, an attempt is made to explain the evolution or development of human’s representational arsenal from its humble beginnings to its modern abstract symbols. Representations are physical entities that represent something else. To represent a thing (in a general sense of “thing”) means to use in the mind or in an external medium a sign that stands for it. The sign can be used as a proxy of the represented thing when the thing is absent. Representations come in many varieties, from signs that perceptually resemble their representative to abstract symbols that are related to their representata through conventions. Relying the distinction among indices, icons, and symbols, it is explained how symbolic representations gradually emerged from indices and icons. To understand the development or evolution of our representational arsenal, the development of the cognitive capacities that enabled the gradual emergence of representations of increasing complexity and expressive capability should be examined. The examination of these factors should rely on a careful assessment of the available empirical neuroscientific and paleo-anthropological evidence. These pieces of evidence should be synthesized to produce arguments whose conclusions provide clues concerning the developmental process of our representational capabilities. The analysis of the empirical findings in this paper shows that Homo Erectus was able to use both icons and symbols. Icons were used as external representations, while symbols were used in language. The first step in the emergence of representations is that a sensory-motor purely causal schema involved in indices is decoupled from its normal causal sensory-motor functions and serves as a representation of the object that initially called it into play. Sensory-motor schemes are tied to specific contexts of the organism-environment interactions and are activated only within these contexts. For a representation of an object to be possible, this scheme must be de-contextualized so that the same object can be represented in different contexts; a decoupled schema loses its direct ties to reality and becomes mental content. The analysis suggests that symbols emerged due to selection pressures of the social environment. The need to establish and maintain social relationships in ever-enlarging groups that would benefit the group was a sufficient environmental pressure to lead to the appearance of the symbolic capacity. Symbols could serve this need because they can express abstract relationships, such as marriage or monogamy. Icons, by being firmly attached to what can be observed, could not go beyond surface properties to express abstract relations. The cognitive capacities that are required for having iconic and then symbolic representations were present in Homo Erectus, which had a language that started without syntactic rules but was structured so as to mirror the structure of the world. This language became increasingly complex, and grammatical rules started to appear to allow for the construction of more complex expressions required to keep up with the increasing complexity of social niches. This created evolutionary pressures that eventually led to increasing cranial size and restructuring of the brain that allowed more complex representational systems to emerge.Keywords: mental representations, iconic representations, symbols, human evolution
Procedia PDF Downloads 542249 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review
Authors: Agastya Pratap Singh
Abstract:
Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation
Procedia PDF Downloads 182248 Impact of Endogenous Risk Factors on Risk Cost in KSA PPP Projects
Authors: Saleh Alzahrani, Halim Boussabaine
Abstract:
The Public Private Partnership (PPP) contracts are produced taking into account the reason that the configuration, development, operation, and financing of an open undertaking is to be recompensed to a private gathering inside a solitary contractual structure. PPP venture dangers are ordinarily connected with the improvement and development of another resource and in addition its operation for a considerable length of time. Without a doubt, the most genuine outcomes of dangers amid the development period are value and time overwhelms. These occasions are amongst the most extensively utilized situations as a part of worth for cash investigation dangers. The wellsprings of danger change over the life cycle of a PPP venture. In customary acquirement, the general population segment ordinarily needs to cover all value trouble from these dangers. At any rate there is bounty confirmation to recommend that cost pain is a standard in a percentage of the tasks that are conveyed under customary obtainment. This paper means to research the effect of endogenous dangers on expense overwhelm in KSA PPP ventures. The paper displays a brief writing survey on PPP danger evaluating systems, and after that presents an affiliation model between danger occasions and expense invade in KSA. The paper finishes up with considerations for future examination.Keywords: PPP, risk pricing, impact of risk, Endogenous risks
Procedia PDF Downloads 4512247 The Role of Data Protection Officer in Managing Individual Data: Issues and Challenges
Authors: Nazura Abdul Manap, Siti Nur Farah Atiqah Salleh
Abstract:
For decades, the misuse of personal data has been a critical issue. Malaysia has accepted responsibility by implementing the Malaysian Personal Data Protection Act 2010 to secure personal data (PDPA 2010). After more than a decade, this legislation is set to be revised by the current PDPA 2023 Amendment Bill to align with the world's key personal data protection regulations, such as the European Union General Data Protection Regulations (GDPR). Among the other suggested adjustments is the Data User's appointment of a Data Protection Officer (DPO) to ensure the commercial entity's compliance with the PDPA 2010 criteria. The change is expected to be enacted in parliament fairly soon; nevertheless, based on the experience of the Personal Data Protection Department (PDPD) in implementing the Act, it is projected that there will be a slew of additional concerns associated with the DPO mandate. Consequently, the goal of this article is to highlight the issues that the DPO will encounter and how the Personal Data Protection Department should respond to this subject. The study result was produced using a qualitative technique based on an examination of the current literature. This research reveals that there are probable obstacles experienced by the DPO, and thus, there should be a definite, clear guideline in place to aid DPO in executing their tasks. It is argued that appointing a DPO is a wise measure in ensuring that the legal data security requirements are met.Keywords: guideline, law, data protection officer, personal data
Procedia PDF Downloads 772246 Contextual SenSe Model: Word Sense Disambiguation using Sense and Sense Value of Context Surrounding the Target
Authors: Vishal Raj, Noorhan Abbas
Abstract:
Ambiguity in NLP (Natural language processing) refers to the ability of a word, phrase, sentence, or text to have multiple meanings. This results in various kinds of ambiguities such as lexical, syntactic, semantic, anaphoric and referential am-biguities. This study is focused mainly on solving the issue of Lexical ambiguity. Word Sense Disambiguation (WSD) is an NLP technique that aims to resolve lexical ambiguity by determining the correct meaning of a word within a given context. Most WSD solutions rely on words for training and testing, but we have used lemma and Part of Speech (POS) tokens of words for training and testing. Lemma adds generality and POS adds properties of word into token. We have designed a novel method to create an affinity matrix to calculate the affinity be-tween any pair of lemma_POS (a token where lemma and POS of word are joined by underscore) of given training set. Additionally, we have devised an al-gorithm to create the sense clusters of tokens using affinity matrix under hierar-chy of POS of lemma. Furthermore, three different mechanisms to predict the sense of target word using the affinity/similarity value are devised. Each contex-tual token contributes to the sense of target word with some value and whichever sense gets higher value becomes the sense of target word. So, contextual tokens play a key role in creating sense clusters and predicting the sense of target word, hence, the model is named Contextual SenSe Model (CSM). CSM exhibits a noteworthy simplicity and explication lucidity in contrast to contemporary deep learning models characterized by intricacy, time-intensive processes, and chal-lenging explication. CSM is trained on SemCor training data and evaluated on SemEval test dataset. The results indicate that despite the naivety of the method, it achieves promising results when compared to the Most Frequent Sense (MFS) model.Keywords: word sense disambiguation (wsd), contextual sense model (csm), most frequent sense (mfs), part of speech (pos), natural language processing (nlp), oov (out of vocabulary), lemma_pos (a token where lemma and pos of word are joined by underscore), information retrieval (ir), machine translation (mt)
Procedia PDF Downloads 1052245 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: active contour, bayesian, echocardiographic image, feature vector
Procedia PDF Downloads 4172244 Data Collection Techniques for Robotics to Identify the Facial Expressions of Traumatic Brain Injured Patients
Authors: Chaudhary Muhammad Aqdus Ilyas, Matthias Rehm, Kamal Nasrollahi, Thomas B. Moeslund
Abstract:
This paper presents the investigation of data collection procedures, associated with robots when placed with traumatic brain injured (TBI) patients for rehabilitation purposes through facial expression and mood analysis. Rehabilitation after TBI is very crucial due to nature of injury and variation in recovery time. It is advantageous to analyze these emotional signals in a contactless manner, due to the non-supportive behavior of patients, limited muscle movements and increase in negative emotional expressions. This work aims at the development of framework where robots can recognize TBI emotions through facial expressions to perform rehabilitation tasks by physical, cognitive or interactive activities. The result of these studies shows that with customized data collection strategies, proposed framework identify facial and emotional expressions more accurately that can be utilized in enhancing recovery treatment and social interaction in robotic context.Keywords: computer vision, convolution neural network- long short term memory network (CNN-LSTM), facial expression and mood recognition, multimodal (RGB-thermal) analysis, rehabilitation, robots, traumatic brain injured patients
Procedia PDF Downloads 1522243 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography
Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai
Abstract:
Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics
Procedia PDF Downloads 952242 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems
Authors: Hala Zaghloul, Taymoor Nazmy
Abstract:
One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.Keywords: cognitive system, image processing, segmentation, PCNN kernels
Procedia PDF Downloads 2802241 Proxisch: An Optimization Approach of Large-Scale Unstable Proxy Servers Scheduling
Authors: Xiaoming Jiang, Jinqiao Shi, Qingfeng Tan, Wentao Zhang, Xuebin Wang, Muqian Chen
Abstract:
Nowadays, big companies such as Google, Microsoft, which have adequate proxy servers, have perfectly implemented their web crawlers for a certain website in parallel. But due to lack of expensive proxy servers, it is still a puzzle for researchers to crawl large amounts of information from a single website in parallel. In this case, it is a good choice for researchers to use free public proxy servers which are crawled from the Internet. In order to improve efficiency of web crawler, the following two issues should be considered primarily: (1) Tasks may fail owing to the instability of free proxy servers; (2) A proxy server will be blocked if it visits a single website frequently. In this paper, we propose Proxisch, an optimization approach of large-scale unstable proxy servers scheduling, which allow anyone with extremely low cost to run a web crawler efficiently. Proxisch is designed to work efficiently by making maximum use of reliable proxy servers. To solve second problem, it establishes a frequency control mechanism which can ensure the visiting frequency of any chosen proxy server below the website’s limit. The results show that our approach performs better than the other scheduling algorithms.Keywords: proxy server, priority queue, optimization algorithm, distributed web crawling
Procedia PDF Downloads 2112240 Human Computer Interaction Using Computer Vision and Speech Processing
Authors: Shreyansh Jain Jeetmal, Shobith P. Chadaga, Shreyas H. Srinivas
Abstract:
Internet of Things (IoT) is seen as the next major step in the ongoing revolution in the Information Age. It is predicted that in the near future billions of embedded devices will be communicating with each other to perform a plethora of tasks with or without human intervention. One of the major ongoing hotbed of research activity in IoT is Human Computer Interaction (HCI). HCI is used to facilitate communication between an intelligent system and a user. An intelligent system typically comprises of a system consisting of various sensors, actuators and embedded controllers which communicate with each other to monitor data collected from the environment. Communication by the user to the system is typically done using voice. One of the major ongoing applications of HCI is in home automation as a personal assistant. The prime objective of our project is to implement a use case of HCI for home automation. Our system is designed to detect and recognize the users and personalize the appliances in the house according to their individual preferences. Our HCI system is also capable of speaking with the user when certain commands are spoken such as searching on the web for information and controlling appliances. Our system can also monitor the environment in the house such as air quality and gas leakages for added safety.Keywords: human computer interaction, internet of things, computer vision, sensor networks, speech to text, text to speech, android
Procedia PDF Downloads 3612239 Psycho-Social Consequences of Gynecological Health Disparities among Immigrant Women in the USA: An Integrative Review
Authors: Khadiza Akter, Tammy Greer, Raegan Bishop
Abstract:
An in-depth study of the psycho-social effects of gynecological health disparities among immigrant women in the USA is the goal of this integrative review paper. Immigrant women frequently encounter unique obstacles that have severe psycho-social repercussions when it comes to receiving high-quality gynecological treatment. The review investigates the interaction of psychological, sociological, and health factors that affect the psycho-social effects that immigrant women experience in recognition of the significance of addressing these imbalances. The difficulties that immigrant women face in providing high-quality gynecological treatment in the USA are examined in this study. These difficulties are caused by a variety of psychological issues, including acculturation stress and stigma, as well as by social problems like prejudice, language hurdles, and cultural norms. Additionally, variations in healthcare access and affordability have a role. This study highlights the particular challenges that immigrant women have in receiving high-quality gynecological treatment in the United States. These difficulties are caused by both social problems like language obstacles, cultural norms, and biases, as well as psychological ones like acculturation stress and stigma. Additionally, variations in gynecological care for immigrant women are greatly influenced by variances in healthcare availability and price. To find pertinent research looking at the psychological effects of gynecological health disparities among immigrant women in the USA, a thorough search of numerous databases was done. Numerous approaches, including mixed, quantitative, and qualitative ones, were used in the studies. The important findings from various investigations were extracted and synthesized after they underwent a careful evaluation. In order to lessen these discrepancies and enhance the overall well-being of immigrant women, healthcare professionals, legislators, and researchers must collaborate to create specialized treatments, regulations, and health system reforms.Keywords: cultural barriers, gynecological health disparities, health care access, immigrant women, mental health, psycho-social consequences, social stigma
Procedia PDF Downloads 802238 Historical Analysis of the Evolution of Swiss Identity and the Successful Integration of Multilingualism into the Swiss Concept of Nationhood
Authors: James Beringer
Abstract:
Switzerland’s ability to forge a strong national identity across linguistic barriers has long been of interest to nationalism scholars. This begs the question of how this has been achieved, given that traditional explanations of luck or exceptionalism appear highly reductionist. This paper evaluates the theory that successful Swiss management of linguistic diversity stems from the strong integration of multilingualism into Swiss national identity. Using archival analysis of Swiss government records, historical accounts of prominent Swiss citizens, as well as secondary literature concerning the fundamental aspects of Swiss national identity, this paper charts the historical evolution of Swiss national identity. It explains how multilingualism was deliberately and successfully integrated into Swiss national identity as a response to political fragmentation along linguistic lines during the First World War. Its primary conclusions are the following. Firstly, the earliest foundations of Swiss national identity were purposefully removed from any association with a single national language. This produced symbols, myths, and values -such as a strong commitment to communalism, the imagery of the Swiss natural landscape, and the use of Latin expressions, which can be adopted across Swiss linguistic groups. Secondly, the First World War triggered a turning point in the evolution of Swiss national identity. The fundamental building blocks proved insufficient in preventing political fractures amongst linguistic lines, as each Swiss linguistic group gravitated towards its linguistic neighbours within Europe. To avoid a repeat of such fragmentation, a deliberate effort was made to fully integrate multilingualism as a fundamental aspect of Swiss national identity. Existing natural symbols, such as the St Gotthard Mountains, were recontextualized in order to become associated with multilingualism. The education system was similarly reformed to reflect the unique multilingual nature of the Swiss nation. The successful result of this process can be readily observed in polls and surveys, with large segments of the Swiss population highlighting multilingualism as a uniquely Swiss characteristic, indicating the symbiotic connection between multilingualism and the Swiss nation.Keywords: language's role in identity formation, multilingualism in nationalism, national identity formation, Swiss national identity history
Procedia PDF Downloads 1882237 Study and Calibration of Autonomous UAV Systems with Thermal Sensing Allowing Screening of Environmental Concerns
Authors: Raahil Sheikh, Abhishek Maurya, Priya Gujjar, Himanshu Dwivedi, Prathamesh Minde
Abstract:
UAVs have been an initial member of our environment since it's the first used by Austrian warfare in Venice. At that stage, they were just pilotless balloons equipped with bombs to be dropped on enemy territory. Over time, technological advancements allowed UAVs to be controlled remotely or autonomously. This study shall mainly focus on the intensification of pre-existing manual drones equipping them with a variety of sensors and making them autonomous, and capable, and purposing them for a variety of roles, including thermal sensing, data collection, tracking creatures, forest fires, volcano detection, hydrothermal studies, urban heat, Island measurement, and other environmental research. The system can also be used for reconnaissance, research, 3D mapping, and search and rescue missions. This study mainly focuses on automating tedious tasks and reducing human errors as much as possible, reducing deployment time, and increasing the overall efficiency, efficacy, and reliability of the UAVs. Creation of a comprehensive Ground Control System UI (GCS) enabling less trained professionals to be able to use the UAV with maximum potency. With the inclusion of such an autonomous system, artificially intelligent paths and environmental gusts and concerns can be avoided.Keywords: UAV, drone, autonomous system, thermal imaging
Procedia PDF Downloads 732236 On Enabling Miner Self-Rescue with In-Mine Robots using Real-Time Object Detection with Thermal Images
Authors: Cyrus Addy, Venkata Sriram Siddhardh Nadendla, Kwame Awuah-Offei
Abstract:
Surface robots in modern underground mine rescue operations suffer from several limitations in enabling a prompt self-rescue. Therefore, the possibility of designing and deploying in-mine robots to expedite miner self-rescue can have a transformative impact on miner safety. These in-mine robots for miner self-rescue can be envisioned to carry out diverse tasks such as object detection, autonomous navigation, and payload delivery. Specifically, this paper investigates the challenges in the design of object detection algorithms for in-mine robots using thermal images, especially to detect people in real-time. A total of 125 thermal images were collected in the Missouri S&T Experimental Mine with the help of student volunteers using the FLIR TG 297 infrared camera, which were pre-processed into training and validation datasets with 100 and 25 images, respectively. Three state-of-the-art, pre-trained real-time object detection models, namely YOLOv5, YOLO-FIRI, and YOLOv8, were considered and re-trained using transfer learning techniques on the training dataset. On the validation dataset, the re-trained YOLOv8 outperforms the re-trained versions of both YOLOv5, and YOLO-FIRI.Keywords: miner self-rescue, object detection, underground mine, YOLO
Procedia PDF Downloads 792235 The Strategy of Orbit Avoidance for Optical Remote Sensing Satellite
Authors: Dianxun Zheng, Wuxing Jing, Lin Hetong
Abstract:
Optical remote sensing satellite, always running on the Sun-synchronous orbit, equipped laser warning equipment to alert CCD camera from laser attack. There have three ways to protect the CCD camera, closing the camera cover satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes a satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-object avoid maneuvers. On occasions of fulfilling the orbit tasks of the satellite, the orbit can be restored back to virtual satellite through orbit maneuvers. There into, the avoid maneuvers adopts pulse guidance. and the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to avoidance for optical remote sensing satellite when encounter the laser hostile attacks.Keywords: optical remote sensing satellite, always running on the sun-synchronous
Procedia PDF Downloads 3982234 Optimal Rest Interval between Sets in Robot-Based Upper-Arm Rehabilitation
Authors: Virgil Miranda, Gissele Mosqueda, Pablo Delgado, Yimesker Yihun
Abstract:
Muscular fatigue affects the muscle activation that is needed for producing the desired clinical outcome. Integrating optimal muscle relaxation periods into a variety of health care rehabilitation protocols is important to maximize the efficiency of the therapy. In this study, four muscle relaxation periods (30, 60, 90, and 120 seconds) and their effectiveness in producing consistent muscle activation of the muscle biceps brachii between sets of elbow flexion and extension task was investigated among a sample of 10 subjects with no disabilities. The same resting periods were then utilized in a controlled exoskeleton-based exercise for a sample size of 5 subjects and have shown similar results. On average, the muscle activity of the biceps brachii decreased by 0.3% when rested for 30 seconds, and it increased by 1.25%, 0.76%, and 0.82% when using muscle relaxation periods of 60, 90, and 120 seconds, respectively. The preliminary results suggest that a muscle relaxation period of about 60 seconds is needed for optimal continuous muscle activation within rehabilitation regimens. Robot-based rehabilitation is good to produce repetitive tasks with the right intensity, and knowing the optimal resting period will make the automation more effective.Keywords: rest intervals, muscle biceps brachii, robot rehabilitation, muscle fatigue
Procedia PDF Downloads 189