Search results for: Box and Jenkins Models
4067 Improving Power Quality in Wind Power Generation System
Authors: A. Omeiri, A. Djellad, P. O. Logerais, O. Riou, J. F. Durastanti
Abstract:
With the growing of electrical energy demand, wind power capacity has experienced tremendous growth in the past decade, thanks to wind power’s environmental benefits. Direct driven permanent magnet synchronous generator (PMSG) with a full size back-to-back converter set is one of the promising technologies employed with wind power generation. Wind grid integration brings the problems of voltage fluctuation and harmonic pollution. In the present study, the filter is placed between the wind system and the network to reduce the total harmonic distortion (THD) and enhance power quality during disturbances. The models of wind turbine, PMSG, power electronic converters and the filter are implemented in MATLAB/SIMULINK environment.Keywords: wind energy conversion system, PMSG, PWM, THD, power quality, passive filter
Procedia PDF Downloads 6514066 Modelling and Assessment of an Off-Grid Biogas Powered Mini-Scale Trigeneration Plant with Prioritized Loads Supported by Photovoltaic and Thermal Panels
Authors: Lorenzo Petrucci
Abstract:
This paper is intended to give insight into the potential use of small-scale off-grid trigeneration systems powered by biogas generated in a dairy farm. The off-grid plant object of analysis comprises a dual-fuel Genset as well as electrical and thermal storage equipment and an adsorption machine. The loads are the different apparatus used in the dairy farm, a household where the workers live and a small electric vehicle whose batteries can also be used as a power source in case of emergency. The insertion in the plant of an adsorption machine is mainly justified by the abundance of thermal energy and the simultaneous high cooling demand associated with the milk-chilling process. In the evaluated operational scenario, our research highlights the importance of prioritizing specific small loads which cannot sustain an interrupted supply of power over time. As a consequence, a photovoltaic and thermal panel is included in the plant and is tasked with providing energy independently of potentially disruptive events such as engine malfunctioning or scarce and unstable supplies of fuels. To efficiently manage the plant an energy dispatch strategy is created in order to control the flow of energy between the power sources and the thermal and electric storages. In this article we elaborate on models of the equipment and from these models, we extract parameters useful to build load-dependent profiles of the prime movers and storage efficiencies. We show that under reasonable assumptions the analysis provides a sensible estimate of the generated energy. The simulations indicate that a Diesel Generator sized to a value 25% higher than the total electrical peak demand operates 65% of the time below the minimum acceptable load threshold. To circumvent such a critical operating mode, dump loads are added through the activation and deactivation of small resistors. In this way, the excess of electric energy generated can be transformed into useful heat. The combination of PVT and electrical storage to support the prioritized load in an emergency scenario is evaluated in two different days of the year having the lowest and highest irradiation values, respectively. The results show that the renewable energy component of the plant can successfully sustain the prioritized loads and only during a day with very low irradiation levels it also needs the support of the EVs’ battery. Finally, we show that the adsorption machine can reduce the ice builder and the air conditioning energy consumption by 40%.Keywords: hybrid power plants, mathematical modeling, off-grid plants, renewable energy, trigeneration
Procedia PDF Downloads 1794065 Decomposition-Based Pricing Technique for Solving Large-Scale Mixed IP
Authors: M. Babul Hasan
Abstract:
Management sciences (MS), big group of companies and industries or government policies (GP) is affiliated with a huge number of decision ingredients and complicated restrictions. Every factor in MS, every product in Industries or decision in GP is not always bankable in practice. After formulating these models there arises large-scale mixed integer programming (MIP) problem. In this paper, we developed decomposition-based pricing procedure to filter the unnecessary decision ingredients from MIP where the variables in huge number will be abated and the complicacy of restrictions will be elementary. A real life numerical example has been illustrated to demonstrate the methods. We develop the computer techniques for these methods by using a mathematical programming language (AMPL).Keywords: Lagrangian relaxation, decomposition, sub-problem, master-problem, pricing, mixed IP, AMPL
Procedia PDF Downloads 5134064 Validation of an Acuity Measurement Tool for Maternity Services
Authors: Cherrie Lowe
Abstract:
The TrendCare Patient Dependency System is currently utilized by a large number of Maternity Services across Australia, New Zealand and Singapore. In 2012, 2013, and 2014 validation studies were initiated in all three countries to validate the acuity tools used for Women in Labour, and Postnatal Mothers and Babies. This paper will present the findings of the validation study. Aim: The aim of this study was to; Identify if the care hours provided by the TrendCare Acuity System was an accurate reflection of the care required by Women and Babies. Obtain evidence of changes required to acuity indicators and/or category timings to ensure the TrendCare acuity system remains reliable and valid across a range of Maternity care models in three countries. Method: A non-experimental action research methodology was used across four District Health Boards in New Zealand, two large public Australian Maternity services and a large tertiary Maternity service in Singapore. Standardized data collection forms and timing devices were used to collect Midwife contact times with Women and Babies included in the study. Rejection processes excluded samples where care was not completed/rationed. The variances between actual timed Midwife/Mother/Baby contact and actual Trend Care acuity times were identified and investigated. Results: 87.5% (18) of TrendCare acuity category timings matched the actual timings recorded for Midwifery care. 12.5% (3) of TrendCare night duty categories provided less minutes of care than the actual timings. 100% of Labour Ward TrendCare categories matched actual timings for Midwifery care. The actual times given for assistance to New Zealand independent Midwives in Labour Ward showed a significant deviation to previous studies demonstrating the need for additional time allocations in Trend Care. Conclusion: The results demonstrated the importance of regularly validating the Trend Care category timings with the care hours required, as variances to models of care and length of stay in Maternity units have increased Midwifery workloads on the night shift. The level of assistance provided by the core labour ward staff to the Independent Midwife has increased substantially. Outcomes: As a consequence of this study changes were made to the night duty TrendCare Maternity categories, additional acuity indicators developed and times for assisting independent Midwives increased. The updated TrendCare version was delivered to Maternity services in 2014.Keywords: maternity, acuity, research, nursing workloads
Procedia PDF Downloads 3804063 PLA Plastic as Biodegradable Material for 3D Printers
Authors: Juraj Beniak, Ľubomír Šooš, Peter Križan, Miloš Matúš
Abstract:
Within Rapid Prototyping technologies are used many types of materials. Many of them are recyclable but there are still as plastic like, so practically they do not degrade in the landfill. Polylactic acid (PLA) is one of the special plastic materials which are biodegradable and also available for 3D printing within Fused Deposition Modelling (FDM) technology. The question is, if the mechanical properties of produced models are comparable to similar technical plastic materials which are usual for prototype production. Presented paper shows the experiments results for tensile strength measurements for specimens prepared with different 3D printer settings and model orientation. Paper contains also the comparison of tensile strength values with values measured on specimens produced by conventional technologies as injection moulding.Keywords: 3D printing, biodegradable plastic, fused deposition modeling, PLA plastic, rapid prototyping
Procedia PDF Downloads 4224062 An Inquiry of the Impact of Flood Risk on Housing Market with Enhanced Geographically Weighted Regression
Authors: Lin-Han Chiang Hsieh, Hsiao-Yi Lin
Abstract:
This study aims to determine the impact of the disclosure of flood potential map on housing prices. The disclosure is supposed to mitigate the market failure by reducing information asymmetry. On the other hand, opponents argue that the official disclosure of simulated results will only create unnecessary disturbances on the housing market. This study identifies the impact of the disclosure of the flood potential map by comparing the hedonic price of flood potential before and after the disclosure. The flood potential map used in this study is published by Taipei municipal government in 2015, which is a result of a comprehensive simulation based on geographical, hydrological, and meteorological factors. The residential property sales data of 2013 to 2016 is used in this study, which is collected from the actual sales price registration system by the Department of Land Administration (DLA). The result shows that the impact of flood potential on residential real estate market is statistically significant both before and after the disclosure. But the trend is clearer after the disclosure, suggesting that the disclosure does have an impact on the market. Also, the result shows that the impact of flood potential differs by the severity and frequency of precipitation. The negative impact for a relatively mild, high frequency flood potential is stronger than that for a heavy, low possibility flood potential. The result indicates that home buyers are of more concern to the frequency, than the intensity of flood. Another contribution of this study is in the methodological perspective. The classic hedonic price analysis with OLS regression suffers from two spatial problems: the endogeneity problem caused by omitted spatial-related variables, and the heterogeneity concern to the presumption that regression coefficients are spatially constant. These two problems are seldom considered in a single model. This study tries to deal with the endogeneity and heterogeneity problem together by combining the spatial fixed-effect model and geographically weighted regression (GWR). A series of literature indicates that the hedonic price of certain environmental assets varies spatially by applying GWR. Since the endogeneity problem is usually not considered in typical GWR models, it is arguable that the omitted spatial-related variables might bias the result of GWR models. By combing the spatial fixed-effect model and GWR, this study concludes that the effect of flood potential map is highly sensitive by location, even after controlling for the spatial autocorrelation at the same time. The main policy application of this result is that it is improper to determine the potential benefit of flood prevention policy by simply multiplying the hedonic price of flood risk by the number of houses. The effect of flood prevention might vary dramatically by location.Keywords: flood potential, hedonic price analysis, endogeneity, heterogeneity, geographically-weighted regression
Procedia PDF Downloads 2914061 The Effect of Dark energy on Amplitude of Gravitational Waves
Authors: Jafar Khodagholizadeh
Abstract:
In this talk, we study the tensor mode equation of perturbation in the presence of nonzero $-\Lambda$ as dark energy, whose dynamic nature depends on the Hubble parameter $ H$ and/or its time derivative. Dark energy, according to the total vacuum contribution, has little effect during the radiation-dominated era, but it reduces the squared amplitude of gravitational waves (GWs) up to $60\%$ for the wavelengths that enter the horizon during the matter-dominated era. Moreover, the observations bound on dark energy models, such as running vacuum model (RVM), generalized running vacuum model (GRVM), and generalized running vacuum subcase (GRVS), are effective in reducing the GWs’ amplitude. Although this effect is less for the wavelengths that enter the horizon at later times, this reduction is stable and permanent.Keywords: gravitational waves, dark energy, GW's amplitude, all stage universe
Procedia PDF Downloads 1594060 Unsupervised Neural Architecture for Saliency Detection
Authors: Natalia Efremova, Sergey Tarasenko
Abstract:
We propose a novel neural network architecture for visual saliency detections, which utilizes neuro physiologically plausible mechanisms for extraction of salient regions. The model has been significantly inspired by recent findings from neuro physiology and aimed to simulate the bottom-up processes of human selective attention. Two types of features were analyzed: color and direction of maximum variance. The mechanism we employ for processing those features is PCA, implemented by means of normalized Hebbian learning and the waves of spikes. To evaluate performance of our model we have conducted psychological experiment. Comparison of simulation results with those of experiment indicates good performance of our model.Keywords: neural network models, visual saliency detection, normalized Hebbian learning, Oja's rule, psychological experiment
Procedia PDF Downloads 3524059 Application of Co-Flow Jet Concept to Aircraft Lift Increase
Authors: Sai Likitha Siddanathi
Abstract:
Present project is aimed at increasing the amount of lift produced by typical airfoil. This is achieved by its modification into the co-flow jet structure where a new internal flow is created inside the airfoil from well-designed apertures on its surface. The limit where produced excess lift overcomes the weight of pumping system inserted in airfoil upper portion, and drag force is converted into thrust is discussed in terms of airfoil velocity and angle of attack. Two normal and co-flow jet models are numerically designed and experimental results for both fabricated normal airfoil and CFJ model have been tested in low subsonic wind tunnel. Application has been made to subsonic NACA 652-415 airfoil. Produced lift in CFJ airfoil indicates a maximum value up to a factor of 5 above normal airfoil nearby flow separation ie in relatively weak flow distribution.Keywords: flow Jet, lift coefficient, drag coefficient, airfoil performance
Procedia PDF Downloads 3604058 Performance Analysis of Double Gate FinFET at Sub-10NM Node
Authors: Suruchi Saini, Hitender Kumar Tyagi
Abstract:
With the rapid progress of the nanotechnology industry, it is becoming increasingly important to have compact semiconductor devices to function and offer the best results at various technology nodes. While performing the scaling of the device, several short-channel effects occur. To minimize these scaling limitations, some device architectures have been developed in the semiconductor industry. FinFET is one of the most promising structures. Also, the double-gate 2D Fin field effect transistor has the benefit of suppressing short channel effects (SCE) and functioning well for less than 14 nm technology nodes. In the present research, the MuGFET simulation tool is used to analyze and explain the electrical behaviour of a double-gate 2D Fin field effect transistor. The drift-diffusion and Poisson equations are solved self-consistently. Various models, such as Fermi-Dirac distribution, bandgap narrowing, carrier scattering, and concentration-dependent mobility models, are used for device simulation. The transfer and output characteristics of the double-gate 2D Fin field effect transistor are determined at 10 nm technology node. The performance parameters are extracted in terms of threshold voltage, trans-conductance, leakage current and current on-off ratio. In this paper, the device performance is analyzed at different structure parameters. The utilization of the Id-Vg curve is a robust technique that holds significant importance in the modeling of transistors, circuit design, optimization of performance, and quality control in electronic devices and integrated circuits for comprehending field-effect transistors. The FinFET structure is optimized to increase the current on-off ratio and transconductance. Through this analysis, the impact of different channel widths, source and drain lengths on the Id-Vg and transconductance is examined. Device performance was affected by the difficulty of maintaining effective gate control over the channel at decreasing feature sizes. For every set of simulations, the device's features are simulated at two different drain voltages, 50 mV and 0.7 V. In low-power and precision applications, the off-state current is a significant factor to consider. Therefore, it is crucial to minimize the off-state current to maximize circuit performance and efficiency. The findings demonstrate that the performance of the current on-off ratio is maximum with the channel width of 3 nm for a gate length of 10 nm, but there is no significant effect of source and drain length on the current on-off ratio. The transconductance value plays a pivotal role in various electronic applications and should be considered carefully. In this research, it is also concluded that the transconductance value of 340 S/m is achieved with the fin width of 3 nm at a gate length of 10 nm and 2380 S/m for the source and drain extension length of 5 nm, respectively.Keywords: current on-off ratio, FinFET, short-channel effects, transconductance
Procedia PDF Downloads 664057 Investigate the Effects of Geometrical Structure and Layer Orientation on Strength of 3D-FDM Rapid Prototyped Samples
Authors: Ahmed A.D. Sarhan, Chong Feng Duan, Mum Wai Yip, M. Sayuti
Abstract:
Rapid Prototyping (RP) technologies enable physical parts to be produced from various materials without depending on the conventional tooling. Fused Deposition Modeling (FDM) is one of the famous RP processes used at present. Tensile strength and compressive strength resistance will be identified for different sample structures and different layer orientations of ABS rapid prototype solid models. The samples will be fabricated by a FDM rapid prototyping machine in different layer orientations with variations in internal geometrical structure. The 0° orientation where layers were deposited along the length of the samples displayed superior strength and impact resistance over all the other orientations. The anisotropic properties were probably caused by weak interlayer bonding and interlayer porosity.Keywords: building orientation, compression strength, rapid prototyping, tensile strength
Procedia PDF Downloads 6994056 Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages
Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong
Abstract:
Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale
Procedia PDF Downloads 684055 Optimising the Reservoir Operation Using Water Resources Yield and Planning Model at Inanda Dam, uMngeni Basin
Authors: O. Nkwonta, B. Dzwairo, F. Otieno, J. Adeyemo
Abstract:
The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.Keywords: complex, water resources, planning, cost effective, management
Procedia PDF Downloads 4544054 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects
Authors: Hamed Zolfaghari, Mojtaba Kord
Abstract:
After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.Keywords: time estimation, machine learning, Artificial neural network, project design phase
Procedia PDF Downloads 1004053 The Term Structure of Government Bond Yields in an Emerging Market: Empirical Evidence from Pakistan Bond Market
Authors: Wali Ullah, Muhammad Nishat
Abstract:
The study investigates the extent to which the so called Nelson-Siegel model (DNS) and its extended version that accounts for time varying volatility (DNS-EGARCH) can optimally fit the yield curve and predict its future path in the context of an emerging economy. For the in-sample fit, both models fit the curve remarkably well even in the emerging markets. However, the DNS-EGARCH model fits the curve slightly better than the DNS. Moreover, both specifications of yield curve that are based on the Nelson-Siegel functional form outperform the benchmark VAR forecasts at all forecast horizons. The DNS-EGARCH comes with more precise forecasts than the DNS for the 6- and 12-month ahead forecasts, while the two have almost similar performance in terms of RMSE for the very short forecast horizons.Keywords: yield curve, forecasting, emerging markets, Kalman filter, EGARCH
Procedia PDF Downloads 5414052 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning
Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody
Abstract:
The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification
Procedia PDF Downloads 1114051 CFD Analysis of Passive Cooling Building by Using Solar Chimney for Mild or Warm Climates
Authors: Naci Kalkan, Ihsan Dagtekin
Abstract:
This research presents the design and analysis of solar air-conditioning systems particularly solar chimney which is a passive strategy for natural ventilation, and demonstrates the structures of these systems’ using Computational Fluid Dynamic (CFD) and finally compares the results with several examples, which have been studied experimentally and carried out previously. In order to improve the performance of solar chimney system, highly efficient sub-system components are considered for the design. The general purpose of the research is to understand how efficiently solar chimney systems generate cooling, and is to improve the efficient of such systems for integration with existing and future domestic buildings.Keywords: active and passive solar technologies, solar cooling system, solar chimney, natural ventilation, cavity depth, CFD models for solar chimney
Procedia PDF Downloads 5774050 Artificial Neural Networks for Cognitive Radio Network: A Survey
Authors: Vishnu Pratap Singh Kirar
Abstract:
The main aim of the communication system is to achieve maximum performance. In cognitive radio, any user or transceiver have the ability to sense best suitable channel, while the channel is not in use. It means an unlicensed user can share the spectrum of licensed user without any interference. Though the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper, we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision-making capacity of CRN without affecting bandwidth, cost and signal rate.Keywords: artificial neural network, cognitive radio, cognitive radio networks, back propagation, spectrum sensing
Procedia PDF Downloads 6134049 Flow Visualization in Biological Complex Geometries for Personalized Medicine
Authors: Carlos Escobar-del Pozo, César Ahumada-Monroy, Azael García-Rebolledo, Alberto Brambila-Solórzano, Gregorio Martínez-Sánchez, Luis Ortiz-Rincón
Abstract:
Numerical simulations of flow in complex biological structures have gained considerable attention in the last years. However, the major issue is the validation of the results. The present work shows a Particle Image Velocimetry PIV flow visualization technique in complex biological structures, particularly in intracranial aneurysms. A methodology to reconstruct and generate a transparent model has been developed, as well as visualization and particle tracking techniques. The generated transparent models allow visualizing the flow patterns with a regular camera using the visualization techniques. The final goal is to use visualization as a tool to provide more information on the treatment and surgery decisions in aneurysms.Keywords: aneurysms, PIV, flow visualization, particle tracking
Procedia PDF Downloads 964048 A Review of Transformer Modeling for Power Line Communication Applications
Authors: Balarabe Nkom, Adam P. R. Taylor, Craig Baguley
Abstract:
Power Line Communications (PLC) is being employed in existing power systems, despite the infrastructure not being designed with PLC considerations in mind. Given that power transformers can last for decades, the distribution transformer in particular exists as a relic of un-optimized technology. To determine issues that may need to be addressed in subsequent designs of such transformers, it is essential to have a highly accurate transformer model for simulations and subsequent optimization for the PLC environment, with a view to increase data speed, throughput, and efficiency, while improving overall system stability and reliability. This paper reviews various methods currently available for creating transformer models and provides insights into the requirements of each for obtaining high accuracy. The review indicates that a combination of traditional analytical methods using a hybrid approach gives good accuracy at reasonable costs.Keywords: distribution transformer, modelling, optimization, power line communications
Procedia PDF Downloads 5124047 3-D Visualization and Optimization for SISO Linear Systems Using Parametrization of Two-Stage Compensator Design
Authors: Kazuyoshi Mori, Keisuke Hashimoto
Abstract:
In this paper, we consider the two-stage compensator designs of SISO plants. As an investigation of the characteristics of the two-stage compensator designs, which is not well investigated yet, of SISO plants, we implement three dimensional visualization systems of output signals and optimization system for SISO plants by the parametrization of stabilizing controllers based on the two-stage compensator design. The system runs on Mathematica by using “Three Dimensional Surface Plots,” so that the visualization can be interactively manipulated by users. In this paper, we use the discrete-time LTI system model. Even so, our approach is the factorization approach, so that the result can be applied to many linear models.Keywords: linear systems, visualization, optimization, Mathematica
Procedia PDF Downloads 3034046 Forster Energy Transfer and Optoelectronic Properties of (PFO/TiO2)/Fluorol 7GA Hybrid Thin Films
Authors: Bandar Ali Al-Asbahi, Mohammad Hafizuddin Haji Jumali
Abstract:
Forster energy transfer between poly (9,9'-di-n-octylfluorenyl-2,7-diyl) (PFO)/TiO2 nanoparticles (NPs) as a donor and Fluorol 7GA as an acceptor has been studied. The energy transfer parameters were calculated by using mathematical models. The dominant mechanism responsible for the energy transfer between the donor and acceptor molecules was Forster-type, as evidenced by large values of quenching rate constant, energy transfer rate constant and critical distance of energy transfer. Moreover, these composites which were used as an emissive layer in organic light emitting diodes, were investigated in terms of current density–voltage and electroluminescence spectra.Keywords: energy transfer parameters, forster-type, electroluminescence, organic light emitting diodes
Procedia PDF Downloads 4324045 Access Control System for Big Data Application
Authors: Winfred Okoe Addy, Jean Jacques Dominique Beraud
Abstract:
Access control systems (ACs) are some of the most important components in safety areas. Inaccuracies of regulatory frameworks make personal policies and remedies more appropriate than standard models or protocols. This problem is exacerbated by the increasing complexity of software, such as integrated Big Data (BD) software for controlling large volumes of encrypted data and resources embedded in a dedicated BD production system. This paper proposes a general access control strategy system for the diffusion of Big Data domains since it is crucial to secure the data provided to data consumers (DC). We presented a general access control circulation strategy for the Big Data domain by describing the benefit of using designated access control for BD units and performance and taking into consideration the need for BD and AC system. We then presented a generic of Big Data access control system to improve the dissemination of Big Data.Keywords: access control, security, Big Data, domain
Procedia PDF Downloads 1394044 Efficient Bargaining versus Right to Manage in the Era of Liberalization
Authors: Panagiota Koliousi, Natasha Miaouli
Abstract:
We compare product and labour market liberalization under the two trade union bargaining models: the Right-to-Manage (RTM) model and the Efficient Bargaining (EB) model. The vehicle is a dynamic general equilibrium (DGE) model that incorporates two types of agents (capitalists and workers), imperfectly competitive product and labour markets. The model is solved numerically employing common parameter values and data from the euro area. A key message is that product market deregulation is favourable under any labour market structure while opting for labour market deregulation one should provide special attention to the structure of the labour market such as the bargaining system of unions. If the prevailing way of bargaining is the RTM model then restructuring both markets is beneficial for all agents.Keywords: market structure, structural reforms, trade unions, unemployment
Procedia PDF Downloads 1994043 Towards the Development of Uncertainties Resilient Business Model for Driving the Solar Panel Industry in Nigeria Power Sector
Authors: Balarabe Z. Ahmad, Anne-Lorène Vernay
Abstract:
The emergence of electricity in Nigeria was dated back to 1896. The power plants have the potential to generate 12,522 MW of electric power. Whereas current dispatch is about 4,000 MW, access to electrification is about 60%, with consumption at 0.14 MWh/capita. The government embarked on energy reforms to mitigate energy poverty. The reform targeted the provision of electricity access to 75% of the population by 2020 and 90% by 2030. Growth of total electricity demand by a factor of 5 by 2035 had been projected. This means that Nigeria will require almost 530 TWh of electricity which can be delivered through generators with a capacity of 65 GW. Analogously, the geographical location of Nigeria has placed it in an advantageous position as the source of solar energy; the availability of a high sunshine belt is obvious in the country. The implication is that the far North, where energy poverty is high, equally has about twice the solar radiation as against southern Nigeria. Hence, the chance of generating solar electricity is 66% possible at 11850 x 103 GWh per year, which is one hundred times the current electricity consumption rate in the country. Harvesting these huge potentials may be a mirage if the entrepreneurs in the solar panel business are left with the conventional business models that are not uncertainty resilient. Currently, business entities in RE in Nigeria are uncertain of; accessing the national grid, purchasing potentials of cooperating organizations, currency fluctuation and interest rate increases. Uncertainties such as the security of projects and government policy are issues entrepreneurs must navigate to remain sustainable in the solar panel industry in Nigeria. The aim of this paper is to identify how entrepreneurial firms consider uncertainties in developing workable business models for commercializing solar energy projects in Nigeria. In an attempt to develop a novel business model, the paper investigated how entrepreneurial firms assess and navigate uncertainties. The roles of key stakeholders in helping entrepreneurs to manage uncertainties in the Nigeria RE sector were probed in the ongoing study. The study explored empirical uncertainties that are peculiar to RE entrepreneurs in Nigeria. A mixed-mode of research was embraced using qualitative data from face-to-face interviews conducted on the Solar Energy Entrepreneurs and the experts drawn from key stakeholders. Content analysis of the interview was done using Atlas. It is a nine qualitative tool. The result suggested that all stakeholders are required to synergize in developing an uncertainty resilient business model. It was opined that the RE entrepreneurs need modifications in the business recommendations encapsulated in the energy policy in Nigeria to strengthen their capability in delivering solar energy solutions to the yawning Nigerians.Keywords: uncertainties, entrepreneurial, business model, solar-panel
Procedia PDF Downloads 1534042 A Parametric Study on Effects of Internal Factors on Carbonation of Reinforced Concrete
Authors: Kunal Tongaria, Abhishek Mangal, S. Mandal, Devendra Mohan
Abstract:
The carbonation of concrete is a phenomenon which is a function of various interdependent parameters. Therefore, in spite of numerous literature and database, the useful generalization is not an easy task. These interdependent parameters can be grouped under the category of internal and external factors. This paper focuses on the internal parameters which govern and increase the probability of the ingress of deleterious substances into concrete. The mechanism of effects of internal parameters such as microstructure for with and without supplementary cementing materials (SCM), water/binder ratio, the age of concrete etc. has been discussed. This is followed by the comparison of various proposed mathematical models for the deterioration of concrete. Based on existing laboratory experiments as well as field results, this paper concludes the present understanding of mechanism, modeling and future research needs in this field.Keywords: carbonation, diffusion coefficient, microstructure of concrete, reinforced concrete
Procedia PDF Downloads 4134041 A New Prediction Model for Soil Compression Index
Authors: D. Mohammadzadeh S., J. Bolouri Bazaz
Abstract:
This paper presents a new prediction model for compression index of fine-grained soils using multi-gene genetic programming (MGGP) technique. The proposed model relates the soil compression index to its liquid limit, plastic limit and void ratio. Several laboratory test results for fine-grained were used to develop the models. Various criteria were considered to check the validity of the model. The parametric and sensitivity analyses were performed and discussed. The MGGP method was found to be very effective for predicting the soil compression index. A comparative study was further performed to prove the superiority of the MGGP model to the existing soft computing and traditional empirical equations.Keywords: new prediction model, compression index soil, multi-gene genetic programming, MGGP
Procedia PDF Downloads 3834040 Diagnosis Of Static, Dynamic, And Mixed Eccentricity In Line Start Permanent Magnet Synchronous Motor By Using FEM
Authors: Mohamed Moustafa Mahmoud Sedky
Abstract:
In line start permanent magnet synchronous motor, eccentricity is a common fault that can make it necessary to remove the motor from the production line. However, because the motor may be inaccessible, diagnosing the fault is not easy. This paper presents an FEM that identifies different models, static eccentricity, dynamic eccentricity, and mixed eccentricity, at no load and full load. The method overcomes the difficulty of applying FEMs to transient behavior. It simulates motor speed, torque and flux density distribution along the air gap for SE, DE, and ME. This paper represents the various effects of different eccentricities types on the transient performance.Keywords: line start permanent magnet, synchronous machine, static eccentricity, dynamic eccentricity, mixed eccentricity
Procedia PDF Downloads 3824039 On the Seismic Response of Collided Structures
Authors: George D. Hatzigeorgiou, Nikos G. Pnevmatikos
Abstract:
This study examines the inelastic behavior of adjacent planar reinforced concrete (R.C.) frames subjected to strong ground motions. The investigation focuses on the effects of vertical ground motion on the seismic pounding. The examined structures are modeled and analyzed by RUAUMOKO dynamic nonlinear analysis program using reliable hysteretic models for both structural members and contact elements. It is found that the vertical ground motion mildly affects the seismic response of adjacent buildings subjected to structural pounding and, for this reason, it can be ignored from the displacement and interstorey drifts assessment. However, the structural damage is moderately affected by the vertical component of earthquakes.Keywords: nonlinear seismic behavior, reinforced concrete structures, structural pounding, vertical ground motions
Procedia PDF Downloads 5964038 Mathematical Properties of the Viscous Rotating Stratified Fluid Counting with Salinity and Heat Transfer in a Layer
Authors: A. Giniatoulline
Abstract:
A model of the mathematical fluid dynamics which describes the motion of a three-dimensional viscous rotating fluid in a homogeneous gravitational field with the consideration of the salinity and heat transfer is considered in a vertical finite layer. The model is a generalization of the linearized Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density, salinity, and heat transfer. An explicit solution is constructed and the proof of the existence and uniqueness theorems is given. The localization and the structure of the spectrum of inner waves is also investigated. The results may be used, in particular, for constructing stable numerical algorithms for solutions of the considered models of fluid dynamics of the Atmosphere and the Ocean.Keywords: Fourier transform, generalized solutions, Navier-Stokes equations, stratified fluid
Procedia PDF Downloads 257