Search results for: capability approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14900

Search results for: capability approach

12170 Generalized Approach to Linear Data Transformation

Authors: Abhijith Asok

Abstract:

This paper presents a generalized approach for the simple linear data transformation, Y=bX, through an integration of multidimensional coordinate geometry, vector space theory and polygonal geometry. The scaling is performed by adding an additional ’Dummy Dimension’ to the n-dimensional data, which helps plot two dimensional component-wise straight lines on pairs of dimensions. The end result is a set of scaled extensions of observations in any of the 2n spatial divisions, where n is the total number of applicable dimensions/dataset variables, created by shifting the n-dimensional plane along the ’Dummy Axis’. The derived scaling factor was found to be dependent on the coordinates of the common point of origin for diverging straight lines and the plane of extension, chosen on and perpendicular to the ’Dummy Axis’, respectively. This result indicates the geometrical interpretation of a linear data transformation and hence, opportunities for a more informed choice of the factor ’b’, based on a better choice of these coordinate values. The paper follows on to identify the effect of this transformation on certain popular distance metrics, wherein for many, the distance metric retained the same scaling factor as that of the features.

Keywords: data transformation, dummy dimension, linear transformation, scaling

Procedia PDF Downloads 297
12169 Linguistic Landscape as a Bottom-up Approach: Investigation of Semiotic Features and Language Use in the Catering Industry in Hong Kong

Authors: Tsz Ching Jasmine Lam

Abstract:

Linguistic landscape (LL) can serve as both top-down and bottom-up approaches to understanding language planning policy in various dimensions. It can reflect the language identities, motives and contestations perceived by stakeholders of different decision-making levels. Prior studies adopted the bottom-up approach to investigate the language practice and ideologies reflected by the design and linguistic features observed in the linguistic landscapes in ethnically and linguistically diverse areas, like Medan in Russia and Seoul in Korea. As Hong Kong is also a trilingual city with an inclusive combination of nationalities, this paper is intended to take it as a case study to explore the de facto language ideologies reflected by LL at the micro-level. We would look into the catering industry from a holistic perspective by reviewing the food menus of 66 restaurants located in diversified districts and serving different types of cuisines. This bottom-up LL research reveals that business owners and the public share the language ideologies of perceiving English as a prestigious language, multilingualism and traditional Chinese as a standard character.

Keywords: bottom-up, language ideologies, language planning policy, language policy, language identities, linguistic landscape

Procedia PDF Downloads 79
12168 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data

Authors: S. Nickolas, Shobha K.

Abstract:

The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.

Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing

Procedia PDF Downloads 274
12167 Sulfur-Doped Hierarchically Porous Boron Nitride Nanosheets as an Efficient Carbon Dioxide Adsorbent

Authors: Sreetama Ghosh, Sundara Ramaprabhu

Abstract:

Carbon dioxide gas has been a major cause for the worldwide increase in green house effect, which leads to climate change and global warming. So CO₂ capture & sequestration has become an effective way to reduce the concentration of CO₂ in the environment. One such way to capture CO₂ in porous materials is by adsorption process. A potential material in this aspect is porous hexagonal boron nitride or 'white graphene' which is a well-known two-dimensional layered material with very high thermal stability. It had been investigated that the sample with hierarchical pore structure and high specific surface area shows excellent performance in capturing carbon dioxide gas and thereby mitigating the problem of environmental pollution to the certain extent. Besides, the presence of sulfur as well as nitrogen in the sample synergistically helps in the increase in adsorption capacity. In this work, a cost effective single step synthesis of highly porous boron nitride nanosheets doped with sulfur had been demonstrated. Besides, the CO₂ adsorption-desorption studies were carried on using a pressure reduction technique. The studies show that the nanosheets exhibit excellent cyclic stability in storage performance. Thermodynamic studies suggest that the adsorption takes place mainly through physisorption. The studies show that the nanosheets exhibit excellent cyclic stability in storage performance. Further, the surface modification of the highly porous nano sheets carried out by incorporating ionic liquids had further enhanced the capturing capability of CO₂ gas in the nanocomposite, revealing that this particular material has the potential to be an excellent adsorbent of carbon dioxide gas.

Keywords: CO₂ capture, hexagonal boron nitride nanosheets, porous network, sulfur doping

Procedia PDF Downloads 242
12166 An Integrated Label Propagation Network for Structural Condition Assessment

Authors: Qingsong Xiong, Cheng Yuan, Qingzhao Kong, Haibei Xiong

Abstract:

Deep-learning-driven approaches based on vibration responses have attracted larger attention in rapid structural condition assessment while obtaining sufficient measured training data with corresponding labels is relevantly costly and even inaccessible in practical engineering. This study proposes an integrated label propagation network for structural condition assessment, which is able to diffuse the labels from continuously-generating measurements by intact structure to those of missing labels of damage scenarios. The integrated network is embedded with damage-sensitive features extraction by deep autoencoder and pseudo-labels propagation by optimized fuzzy clustering, the architecture and mechanism which are elaborated. With a sophisticated network design and specified strategies for improving performance, the present network achieves to extends the superiority of self-supervised representation learning, unsupervised fuzzy clustering and supervised classification algorithms into an integration aiming at assessing damage conditions. Both numerical simulations and full-scale laboratory shaking table tests of a two-story building structure were conducted to validate its capability of detecting post-earthquake damage. The identifying accuracy of a present network was 0.95 in numerical validations and an average 0.86 in laboratory case studies, respectively. It should be noted that the whole training procedure of all involved models in the network stringently doesn’t rely upon any labeled data of damage scenarios but only several samples of intact structure, which indicates a significant superiority in model adaptability and feasible applicability in practice.

Keywords: autoencoder, condition assessment, fuzzy clustering, label propagation

Procedia PDF Downloads 97
12165 Advocacy for Increasing Health Care Budget in Parepare City with DALY Approach: Case Study on Improving Public Health Insurance Budget

Authors: Kasman, Darmawansyah, Alimin Maidin, Amran Razak

Abstract:

Background: In decentralization, advocacy is needed to increase the health budget in Parepare District. One of the advocacy methods recommended by the World Bank is the economic loss approach. Methods: This research is observational in the field of health economics that contributes directly to the magnitude of the economic loss of the community and the government and provides advocacy to the executive and legislative to see the harm it causes. Results: The research results show the amount of direct cost, which consists of household expenditure for transport Rp.295,865,500. Indirect Cost of YLD of Rp.14.688.000, and YLL of Rp.28.986.336.00, so the amount of DALY is Rp.43.674.336.000. The total economic loss of Rp.43.970.201.500. These huge economic losses can be prevented by increasing the allocation of health budgets for promotive and preventive efforts and expanding the coverage of health insurance for the community. Conclusion: There is a need to advocate the executive and legislative about the importance of guarantee on public health financing by conducting studies in terms of economic losses so that all strategic alliances believe that health is an investment.

Keywords: advocacy, economic lost, health insurance, economic losses

Procedia PDF Downloads 114
12164 Keypoints Extraction for Markerless Tracking in Augmented Reality Applications: A Case Study in Dar As-Saraya Museum

Authors: Jafar W. Al-Badarneh, Abdalkareem R. Al-Hawary, Abdulmalik M. Morghem, Mostafa Z. Ali, Rami S. Al-Gharaibeh

Abstract:

Archeological heritage is at the heart of each country’s national glory. Moreover, it could develop into a source of national income. Heritage management requires socially-responsible marketing that achieves high visitor satisfaction while maintaining high site conservation. We have developed an Augmented Reality (AR) experience for heritage and cultural reservation at Dar-As-Saraya museum in Jordan. Our application of this notion relied on markerless-based tracking approach. This approach uses keypoints extraction technique where features of the environment are identified and defined into the system as keypoints. A set of these keypoints forms a tracker for an augmented object to be displayed and overlaid with a real scene at Dar As-Saraya museum. We tested and compared several techniques for markerless tracking and then applied the best technique to complete a mosaic artifact with AR content. The successful results from our application open the door for applications in open archeological sites where markerless tracking is mostly needed.

Keywords: augmented reality, cultural heritage, keypoints extraction, virtual recreation

Procedia PDF Downloads 337
12163 Numerical Investigation into Capture Efficiency of Fibrous Filters

Authors: Jayotpaul Chaudhuri, Lutz Goedeke, Torsten Hallenga, Peter Ehrhard

Abstract:

Purification of gases from aerosols or airborne particles via filters is widely applied in the industry and in our daily lives. This separation especially in the micron and submicron size range is a necessary step to protect the environment and human health. Fibrous filters are often employed due to their low cost and high efficiency. For designing any filter the two most important performance parameters are capture efficiency and pressure drop. Since the capture efficiency is directly proportional to the pressure drop which leads to higher operating costs, a detailed investigation of the separation mechanism is required to optimize the filter designing, i.e., to have a high capture efficiency with a lower pressure drop. Therefore a two-dimensional flow simulation around a single fiber using Ansys CFX and Matlab is used to get insight into the separation process. Instead of simulating a solid fiber, the present Ansys CFX model uses a fictitious domain approach for the fiber by implementing a momentum loss model. This approach has been chosen to avoid creating a new mesh for different fiber sizes, thereby saving time and effort for re-meshing. In a first step, only the flow of the continuous fluid around the fiber is simulated in Ansys CFX and the flow field data is extracted and imported into Matlab and the particle trajectory is calculated in a Matlab routine. This calculation is a Lagrangian, one way coupled approach for particles with all relevant forces acting on it. The key parameters for the simulation in both Ansys CFX and Matlab are the porosity ε, the diameter ratio of particle and fiber D, the fluid Reynolds number Re, the Reynolds particle number Rep, the Stokes number St, the Froude number Fr and the density ratio of fluid and particle ρf/ρp. The simulation results were then compared to the single fiber theory from the literature.

Keywords: BBO-equation, capture efficiency, CFX, Matlab, fibrous filter, particle trajectory

Procedia PDF Downloads 207
12162 Solar-Blind Ni-Schottky Photodetector Based on MOCVD Grown ZnGa₂O₄

Authors: Taslim Khan, Ray Hua Horng, Rajendra Singh

Abstract:

This study presents a comprehensive analysis of the design, fabrication, and performance evaluation of a solar-blind Schottky photodetector based on ZnGa₂O₄ grown via MOCVD, utilizing Ni/Au as the Schottky electrode. ZnGa₂O₄, with its wide bandgap of 5.2 eV, is well-suited for high-performance solar-blind photodetection applications. The photodetector demonstrates an impressive responsivity of 280 A/W, indicating its exceptional sensitivity within the solar-blind ultraviolet band. One of the device's notable attributes is its high rejection ratio of 10⁵, which effectively filters out unwanted background signals, enhancing its reliability in various environments. The photodetector also boasts a photodetector responsivity contrast ratio (PDCR) of 10⁷, showcasing its ability to detect even minor changes in incident UV light. Additionally, the device features an outstanding detective of 10¹⁸ Jones, underscoring its capability to precisely detect faint UV signals. It exhibits a fast response time of 80 ms and an ON/OFF ratio of 10⁵, making it suitable for real-time UV sensing applications. The noise-equivalent power (NEP) of 10^-17 W/Hz further highlights its efficiency in detecting low-intensity UV signals. The photodetector also achieves a high forward-to-backward current rejection ratio of 10⁶, ensuring high selectivity. Furthermore, the device maintains an extremely low dark current of approximately 0.1 pA. These findings position the ZnGa₂O₄-based Schottky photodetector as a leading candidate for solar-blind UV detection applications. It offers a compelling combination of sensitivity, selectivity, and operational efficiency, making it a highly promising tool for environments requiring precise and reliable UV detection.

Keywords: wideband gap, solar blind photodetector, MOCVD, zinc gallate

Procedia PDF Downloads 39
12161 The Effect of Tacit Knowledge for Intelligence Cycle

Authors: Bahadir Aydin

Abstract:

It is difficult to access accurate knowledge because of mass data. This huge data make environment more and more caotic. Data are main piller of intelligence. The affiliation between intelligence and knowledge is quite significant to understand underlying truths. The data gathered from different sources can be modified, interpreted and classified by using intelligence cycle process. This process is applied in order to progress to wisdom as well as intelligence. Within this process the effect of tacit knowledge is crucial. Knowledge which is classified as explicit and tacit knowledge is the key element for any purpose. Tacit knowledge can be seen as "the tip of the iceberg”. This tacit knowledge accounts for much more than we guess in all intelligence cycle. If the concept of intelligence cycle is scrutinized, it can be seen that it contains risks, threats as well as success. The main purpose of all organizations is to be successful by eliminating risks and threats. Therefore, there is a need to connect or fuse existing information and the processes which can be used to develop it. Thanks to this process the decision-makers can be presented with a clear holistic understanding, as early as possible in the decision making process. Altering from the current traditional reactive approach to a proactive intelligence cycle approach would reduce extensive duplication of work in the organization. Applying new result-oriented cycle and tacit knowledge intelligence can be procured and utilized more effectively and timely.

Keywords: information, intelligence cycle, knowledge, tacit Knowledge

Procedia PDF Downloads 514
12160 CyberSteer: Cyber-Human Approach for Safely Shaping Autonomous Robotic Behavior to Comply with Human Intention

Authors: Vinicius G. Goecks, Gregory M. Gremillion, William D. Nothwang

Abstract:

Modern approaches to train intelligent agents rely on prolonged training sessions, high amounts of input data, and multiple interactions with the environment. This restricts the application of these learning algorithms in robotics and real-world applications, in which there is low tolerance to inadequate actions, interactions are expensive, and real-time processing and action are required. This paper addresses this issue introducing CyberSteer, a novel approach to efficiently design intrinsic reward functions based on human intention to guide deep reinforcement learning agents with no environment-dependent rewards. CyberSteer uses non-expert human operators for initial demonstration of a given task or desired behavior. The trajectories collected are used to train a behavior cloning deep neural network that asynchronously runs in the background and suggests actions to the deep reinforcement learning module. An intrinsic reward is computed based on the similarity between actions suggested and taken by the deep reinforcement learning algorithm commanding the agent. This intrinsic reward can also be reshaped through additional human demonstration or critique. This approach removes the need for environment-dependent or hand-engineered rewards while still being able to safely shape the behavior of autonomous robotic agents, in this case, based on human intention. CyberSteer is tested in a high-fidelity unmanned aerial vehicle simulation environment, the Microsoft AirSim. The simulated aerial robot performs collision avoidance through a clustered forest environment using forward-looking depth sensing and roll, pitch, and yaw references angle commands to the flight controller. This approach shows that the behavior of robotic systems can be shaped in a reduced amount of time when guided by a non-expert human, who is only aware of the high-level goals of the task. Decreasing the amount of training time required and increasing safety during training maneuvers will allow for faster deployment of intelligent robotic agents in dynamic real-world applications.

Keywords: human-robot interaction, intelligent robots, robot learning, semisupervised learning, unmanned aerial vehicles

Procedia PDF Downloads 259
12159 KSVD-SVM Approach for Spontaneous Facial Expression Recognition

Authors: Dawood Al Chanti, Alice Caplier

Abstract:

Sparse representations of signals have received a great deal of attention in recent years. In this paper, the interest of using sparse representation as a mean for performing sparse discriminative analysis between spontaneous facial expressions is demonstrated. An automatic facial expressions recognition system is presented. It uses a KSVD-SVM approach which is made of three main stages: A pre-processing and feature extraction stage, which solves the problem of shared subspace distribution based on the random projection theory, to obtain low dimensional discriminative and reconstructive features; A dictionary learning and sparse coding stage, which uses the KSVD model to learn discriminative under or over dictionaries for sparse coding; Finally a classification stage, which uses a SVM classifier for facial expressions recognition. Our main concern is to be able to recognize non-basic affective states and non-acted expressions. Extensive experiments on the JAFFE static acted facial expressions database but also on the DynEmo dynamic spontaneous facial expressions database exhibit very good recognition rates.

Keywords: dictionary learning, random projection, pose and spontaneous facial expression, sparse representation

Procedia PDF Downloads 305
12158 A Needs-Based Top-Down Approach for a Tailor-Made Smart City Roadmap

Authors: Mustafa Eruyar, Ersoy Pehlivan, Fatih Kafalı, Fatih Gundogan

Abstract:

All megacities are not only under the pressure of common urbanization and growth problems but also dealing with different challenges according to their specific circumstances. However, the majority of cities focuses mainly on popular smart city projects, which are usually driven by strong private sector, regardless of their characteristics, each city needs to develop customized projects within a tailor-made smart city roadmap to be able to solve its own challenges. Smart city manifest, helps citizens to feel the action better than good reading smart city vision statements, which consists of five elements; namely purpose, values, mission, vision, and strategy. This study designs a methodology for smart city roadmap based on a top-down approach, breaking down of smart city manifest to feasible projects for a systematic smart city transformation. This methodology was implemented in Istanbul smart city transformation program which includes smart city literature review, current state analysis, roadmap, and architecture projects, respectively. Istanbul smart city roadmap project followed an extensive literature review of certain leading smart cities around the world and benchmarking of the city’s current state using well known smart city indices. In the project, needs of citizens and service providers of the city were identified via stakeholder, persona and social media analysis. The project aimed to develop smart city projects targeting fulfilling related needs by implementing a gap analysis between current state and foreseen plans. As a result, in 11 smart city domains and enablers; 24 strategic objectives, 50 programs, and 101 projects were developed with the support of 183 smart city stakeholder entities and based on 125 citizen persona profiles and last one-year social media analysis. In conclusion, the followed methodology helps cities to identify and prioritize their needs and plan for long-term sustainable development, despite limited resources.

Keywords: needs-based, manifest, roadmap, smart city, top-down approach

Procedia PDF Downloads 216
12157 Human Resources and Business Result: An Empirical Approach Based on RBV Theory

Authors: Xhevrie Mamaqi

Abstract:

Organization capacity learning is a process referring to the sum total of individual and collective learning through training programs, experience and experimentation, among others. Today, in-business ongoing training is one of the most important strategies for human capital development and it is crucial to sustain and improve workers’ knowledge and skills. Many organizations, firms and business are adopting a strategy of continuous learning, encouraging employees to learn new skills continually to be innovative and to try new processes and work in order to achieve a competitive advantage and superior business results. This paper uses the Resource Based View and Capacities (RBV) approach to construct a hypothetical relationships model between training and business results. The test of the model is applied on transversal data. A sample of 266 business of Spanish sector service has been selected. A Structural Equation Model (SEM) is used to estimate the relationship between ongoing training, represented by two latent dimension denominated Human and Social Capital resources and economic business results. The coefficients estimated have shown the efficient of some training aspects explaining the variation in business results.

Keywords: business results, human and social capital resources, training, RBV theory, SEM

Procedia PDF Downloads 300
12156 Integrated Information System on Human Resource Management in Project-Based Organizations

Authors: Akbar Farahani, Afsaneh Hassani, Peyman M. Farkhondeh

Abstract:

Human Resource Management as one of the core processes of the project-based companies, despite its key role in the success and competitive advantage, is relatively unknown. In the project-based companies, due to the accelerated movement of knowledge in the work activities and the temporary nature of the project, the need to develop mechanisms for achieving optimal management of this issues is very challenging. Approach to human resource management in these companies evolves with goals, strategies, and operational processes. Therefore, the need for appropriate tools to facilitate implementation of the optimized human resource management in the project is more than before,Which currently with the development of information technology and modern communication, appropriate to address the optimal approach for dynamic management of human resources in the project have been provided.This is done by using the referral system implemented in Mahab GCE that provides 1: the ability to use humans in projects without geographic limitation and 2:information on the activities and outcomes of referrals.Furthermore, by using this system, recording the lessons learned after any particular activity on projects,accessing quantitative information, procedures, documentation of learned practices that have been stored in the data base as well as using them in future projects is provided.

Keywords: human resource management, project base company, ERP, referrals system

Procedia PDF Downloads 477
12155 A Practical Approach Towards Disinfection Challenges in Sterile Manufacturing Area

Authors: Doris Lacej, Eni Bushi

Abstract:

Cleaning and disinfection procedures are essential for maintaining the cleanliness status of the pharmaceutical manufacturing environment particularly of the cleanrooms and sterile unit area. The Good Manufacturing Practice (GMP) Annex 1 recommendation highly requires the implementation of the standard and validated cleaning and disinfection protocols. However, environmental monitoring has shown that even a validated cleaning method with certified agents may result in the presence of atypical microorganisms’ colony that exceeds GMP limits for a specific cleanroom area. In response to this issue, this case study aims to arrive at the root cause of the microbial contamination observed in the sterile production environment in Profarma pharmaceutical industry in Albania through applying a problem-solving practical approach that ensures the appropriate sterility grade. The guidelines and literature emphasize the importance of several factors in the prevention of possible microbial contamination occurring in cleanrooms, grade A and C. These factors are integrated into a practical framework, to identify the root cause of the presence of Aspergillus Niger colony in the sterile production environment in Profarma pharmaceutical industry in Albania. In addition, the application of a semi-automatic disinfecting system such as H2O2 FOG into sterile grade A and grade C cleanrooms has been an effective solution in eliminating the atypical colony of Aspergillus Niger. Selecting the appropriate detergents and disinfectants at the right concentration, frequency, and combination; the presence of updated and standardized guidelines for cleaning and disinfection as well as continuous training of operators on these practices in accordance with the updated GMP guidelines are some of the identified factors that influence the success of achieving sterility grade. However, to ensure environmental sustainability it is important to be prepared for identifying the source of contamination and making the appropriate decision. The proposed case-based practical approach may help pharmaceutical companies to achieve sterile production and cleanliness environmental sustainability in challenging situations. Apart from the integration of valid agents and standardized cleaning and disinfection protocols according to GMP Annex 1, pharmaceutical companies must be careful and investigate the source and all the steps that can influence the results of an abnormal situation. Subsequently apart from identifying the root cause it is important to solve the problem with a successful alternative approach.

Keywords: cleanrooms, disinfectants, environmental monitoring, GMP Annex 1

Procedia PDF Downloads 216
12154 Comparison of Methods for Detecting and Quantifying Amplitude Modulation of Wind Farm Noise

Authors: Phuc D. Nguyen, Kristy L. Hansen, Branko Zajamsek

Abstract:

The existence of special characteristics of wind farm noise such as amplitude modulation (AM) contributes significantly to annoyance, which could ultimately result in sleep disturbance and other adverse health effects for residents living near wind farms. In order to detect and quantify this phenomenon, several methods have been developed which can be separated into three types: time-domain, frequency-domain and hybrid methods. However, due to a lack of systematic validation of these methods, it is still difficult to select the best method for identifying AM. Furthermore, previous comparisons between AM methods have been predominantly qualitative or based on synthesised signals, which are not representative of the actual noise. In this study, a comparison between methods for detecting and quantifying AM has been carried out. The results are based on analysis of real noise data which were measured at a wind farm in South Australia. In order to evaluate the performance of these methods in terms of detecting AM, an approach has been developed to select the most successful method of AM detection. This approach uses a receiver operating characteristic (ROC) curve which is based on detection of AM in audio files by experts.

Keywords: amplitude modulation, wind farm noise, ROC curve

Procedia PDF Downloads 145
12153 An Atomistic Approach to Define Continuum Mechanical Quantities in One Dimensional Nanostructures at Finite Temperature

Authors: Smriti, Ajeet Kumar

Abstract:

We present a variant of the Irving-Kirkwood procedure to obtain the microscopic expressions of the cross-section averaged continuum fields such as internal force and moment in one-dimensional nanostructures in the non-equilibrium setting. In one-dimensional continuum theories for slender bodies, we deal with quantities such as mass, linear momentum, angular momentum, and strain energy densities, all defined per unit length. These quantities are obtained by integrating the corresponding pointwise (per unit volume) quantities over the cross-section of the slender body. However, no well-defined cross-section exists for these nanostructures at finite temperature. We thus define the cross-section of a nanorod to be an infinite plane which is fixed in space even when time progresses and defines the above continuum quantities by integrating the pointwise microscopic quantities over this infinite plane. The method yields explicit expressions of both the potential and kinetic parts of the above quantities. We further specialize in these expressions for helically repeating one-dimensional nanostructures in order to use them in molecular dynamics study of extension, torsion, and bending of such nanostructures. As, the Irving-Kirkwood procedure does not yield expressions of stiffnesses, we resort to a thermodynamic equilibrium approach to obtain the expressions of axial force, twisting moment, bending moment, and the associated stiffnesses by taking the first and second derivatives of the Helmholtz free energy with respect to conjugate strain measures. The equilibrium approach yields expressions independent of kinetic terms. We then establish the equivalence of the expressions obtained using the two approaches. The derived expressions are used to understand the extension, torsion, and bending of single-walled carbon nanotubes at non-zero temperatures.

Keywords: thermoelasticity, molecular dynamics, one dimensional nanostructures, nanotube buckling

Procedia PDF Downloads 126
12152 Identify and Prioritize the Sustainable Development of Sports Venues Using New and Degradable Energies with a Hierarchical Analysis Approach

Authors: Mahsaossadat Pourrahmati Khelejan

Abstract:

The purpose of this research was to identify and prioritize the sustainable development of sports venues using new and degradable energies with using the AHP Hierarchical Analysis approach. The research method is a descriptive strategy with regard to the direction of implementation and is a hierarchical research with a practical purpose. In this study, 30 experts (physical education faculty members, geography professors, accredited sports venues managers, and renewable energy engineers) were selected using purposeful sampling method as the research population. The research tool was a researcher-made questionnaire on the factors affecting the sustainable development of sports venues by using new technologies and degradable energy. Finally, the research questionnaire was designed with four components and 21 items. All steps were performed by using Expert Choice software. The importance of indicators that influence the sustainable development of sports venues is highlighted by the use of clean and degradable energy, for example: 1. Economic factor, weighing 0.420 2. Environmental index, weighing 0. 320 3. Physical index, weighing 0.148 4. Social index, weighing 0.122.

Keywords: Sports Venues, Sustainable Development, Degradable Energies, Prioritize

Procedia PDF Downloads 134
12151 Investigating the Suitability of Utilizing Lyophilized Gels to Improve the Stability of Ufasomes

Authors: Mona Hassan Aburahma, Alaa Hamed Salama

Abstract:

Ufasomes “unsaturated fatty acids liposomes” are unique nano-sized self-assembled bilayered vesicles that can be easily created from the readily available unsaturated fatty acid. Ufasomes are formed due to weak associative interaction of the fully ionized and unionized fatty acids into bilayers structures. In the ufasomes constructs, the fatty acid molecules are oriented with their hydrocarbon tails directed toward the membrane interior and the carboxyl groups are in contact with water. Although ufasomes can be employed as a safe vesicular carrier for drugs, the extreme instability of their aqueous dispersions hinders their effective use in drug delivery field. Accordingly, in our study, lyophilized gels containing ufasomes were prepared using a simple assembling technique form the readily available oleic acid to overcome the colloidal instability of the ufasomes dispersions and convert them into accurate unit dosage forms. The influence of changing cholesterol percentage relative to oleic acid on the ufasomes vesicles were investigated using factorial design. The optimized oleic acid ufasomes comprised nanoscaled spherical vesicles. Scanning electron micrographs of the lyophilized gels revealed that the included ufasomes were intact, non-aggregating, and preserved their spherical morphology. Rheological characterization (viscosity and shear stress versus shear rate) of reconstituted ufasomal lyophilized gel ensured the ease of application. The capability of the ufasomes, included in the gel, to penetrate deep through the mucosa layers was illustrated using ex-vivo confocal laser imaging, thereby, highlighting the feasibility of stabilizing ufasomes using lyophilized gel platforms.

Keywords: ufasomes, lyophilized gel, confocal scanning microscopy, rheological characterization, oleic acid

Procedia PDF Downloads 408
12150 An Approach to Integrate Ontologies of Open Educational Resources in Knowledge Base Management Systems

Authors: Firas A. Al Laban, Mohamed Chabi, Sammani Danwawu Abdullahi

Abstract:

There are a real needs to integrate types of Open Educational Resources (OER) with an intelligent system to extract information and knowledge in the semantic searching level. Those needs raised because most of current learning standard adopted web based learning and the e-learning systems does not always serve all educational goals. Semantic Web systems provide educators, students, and researchers with intelligent queries based on a semantic knowledge management learning system. An ontology-based learning system is an advanced system, where ontology plays the core of the semantic web in a smart learning environment. The objective of this paper is to discuss the potentials of ontologies and mapping different kinds of ontologies; heterogeneous or homogenous to manage and control different types of Open Educational Resources. The important contribution of this research is to approach a methodology uses logical rules and conceptual relations to map between ontologies of different educational resources. We expect from this methodology to establish for an intelligent educational system supporting student tutoring, self and lifelong learning system.

Keywords: knowledge management systems, ontologies, semantic web, open educational resources

Procedia PDF Downloads 498
12149 Parameter Selection for Computationally Efficient Use of the Bfvrns Fully Homomorphic Encryption Scheme

Authors: Cavidan Yakupoglu, Kurt Rohloff

Abstract:

In this study, we aim to provide a novel parameter selection model for the BFVrns scheme, which is one of the prominent FHE schemes. Parameter selection in lattice-based FHE schemes is a practical challenges for experts or non-experts. Towards a solution to this problem, we introduce a hybrid principles-based approach that combines theoretical with experimental analyses. To begin, we use regression analysis to examine the parameters on the performance and security. The fact that the FHE parameters induce different behaviors on performance, security and Ciphertext Expansion Factor (CEF) that makes the process of parameter selection more challenging. To address this issue, We use a multi-objective optimization algorithm to select the optimum parameter set for performance, CEF and security at the same time. As a result of this optimization, we get an improved parameter set for better performance at a given security level by ensuring correctness and security against lattice attacks by providing at least 128-bit security. Our result enables average ~ 5x smaller CEF and mostly better performance in comparison to the parameter sets given in [1]. This approach can be considered a semiautomated parameter selection. These studies are conducted using the PALISADE homomorphic encryption library, which is a well-known HE library. The abstract goes here.

Keywords: lattice cryptography, fully homomorphic encryption, parameter selection, LWE, RLWE

Procedia PDF Downloads 155
12148 Improving Search Engine Performance by Removing Indexes to Malicious URLs

Authors: Durga Toshniwal, Lokesh Agrawal

Abstract:

As the web continues to play an increasing role in information exchange, and conducting daily activities, computer users have become the target of miscreants which infects hosts with malware or adware for financial gains. Unfortunately, even a single visit to compromised web site enables the attacker to detect vulnerabilities in the user’s applications and force the downloading of multitude of malware binaries. We provide an approach to effectively scan the so-called drive-by downloads on the Internet. Drive-by downloads are result of URLs that attempt to exploit their visitors and cause malware to be installed and run automatically. To scan the web for malicious pages, the first step is to use a crawler to collect URLs that live on the Internet, and then to apply fast prefiltering techniques to reduce the amount of pages that are needed to be examined by precise, but slower, analysis tools (such as honey clients or antivirus programs). Although the technique is effective, it requires a substantial amount of resources. A main reason is that the crawler encounters many pages on the web that are legitimate and needs to be filtered. In this paper, to characterize the nature of this rising threat, we present implementation of a web crawler on Python, an approach to search the web more efficiently for pages that are likely to be malicious, filtering benign pages and passing remaining pages to antivirus program for detection of malwares. Our approaches starts from an initial seed of known, malicious web pages. Using these seeds, our system generates search engines queries to identify other malicious pages that are similar to the ones in the initial seed. By doing so, it leverages the crawling infrastructure of search engines to retrieve URLs that are much more likely to be malicious than a random page on the web. The results shows that this guided approach is able to identify malicious web pages more efficiently when compared to random crawling-based approaches.

Keywords: web crawler, malwares, seeds, drive-by-downloads, security

Procedia PDF Downloads 229
12147 Cooperative Sensing for Wireless Sensor Networks

Authors: Julien Romieux, Fabio Verdicchio

Abstract:

Wireless Sensor Networks (WSNs), which sense environmental data with battery-powered nodes, require multi-hop communication. This power-demanding task adds an extra workload that is unfairly distributed across the network. As a result, nodes run out of battery at different times: this requires an impractical individual node maintenance scheme. Therefore we investigate a new Cooperative Sensing approach that extends the WSN operational life and allows a more practical network maintenance scheme (where all nodes deplete their batteries almost at the same time). We propose a novel cooperative algorithm that derives a piecewise representation of the sensed signal while controlling approximation accuracy. Simulations show that our algorithm increases WSN operational life and spreads communication workload evenly. Results convey a counterintuitive conclusion: distributing workload fairly amongst nodes may not decrease the network power consumption and yet extend the WSN operational life. This is achieved as our cooperative approach decreases the workload of the most burdened cluster in the network.

Keywords: cooperative signal processing, signal representation and approximation, power management, wireless sensor networks

Procedia PDF Downloads 390
12146 Neurodiversity in Post Graduate Medical Education: A Rapid Solution to Faculty Development

Authors: Sana Fatima, Paul Sadler, Jon Cooper, David Mendel, Ayesha Jameel

Abstract:

Background: Neurodiversity refers to intrinsic differences between human minds and encompasses dyspraxia, dyslexia, attention deficit hyperactivity disorder, dyscalculia, autism spectrum disorder, and Tourette syndrome. There is increasing recognition of neurodiversity in relation to disability/diversity in medical education and the associated impact on training, career progression, and personal and professional wellbeing. In addition, documented and anecdotal evidence suggests that medical educators and training providers in all four nations (UK) are increasingly concerned about understanding neurodiversity and identifying and providing support for neurodivergent trainees. Summary of Work: A national Neurodiversity Task and Finish group were established to survey Health Education England local office Professional Support teams about insights into infrastructure, training for educators, triggers for assessment, resources, and intervention protocols. This group drew from educational leadership, professional and personal neurodiverse expertise, occupational medicine, employer human resource, and trainees. An online, exploratory survey was conducted to gather insights from supervisors and trainers across England using the Professional Support Units' platform. Summary of Results: This survey highlighted marked heterogeneity in the identification, assessment, and approaches to support and management of neurodivergent trainees and highlighted a 'deficit' approach to neurodiversity. It also demonstrated a paucity of educational and protocol resources for educators and supervisors in supporting neurodivergent trainees. Discussions and Conclusions: In phase one, we focused on faculty development. An educational repository for all supervising trainees using a thematic approach was formalised. This was guided by our survey findings specific for neurodiversity and took a triple 'A' approach: awareness, assessment, and action. This is further supported by video material incorporating stories in training as well as mobile workshops for trainers for more immersive learning. The subtle theme from both the survey and Task and finish group suggested a move away from deficit-focused methods toward a positive holistic, interdisciplinary approach within a biopsychosocial framework. Contributions: 1. Faculty Knowledge and basic understanding of neurodiversity are key to supporting trainees with known or underlying Neurodiverse conditions. This is further complicated by challenges around non-disclosure, varied presentations, stigma, and intersectionality. 2. There is national (and international) inconsistency in the approach to how trainees are managed once a neurodiverse condition is suspected or diagnosed. 3. A carefully constituted and focussed Task and Finish group can rapidly identify national inconsistencies in neurodiversity and implement rapid educational interventions. 4. Nuanced findings from surveys and discussion can reframe the approach to neurodiversity; from a medical model to a more comprehensive, asset-based, biopsychosocial model of support, fostering a cultural shift, accepting 'diversity' in all its manifestations, visible and hidden.

Keywords: neurodiversity, professional support, human considerations, workplace wellbeing

Procedia PDF Downloads 91
12145 A Predictive Model of Supply and Demand in the State of Jalisco, Mexico

Authors: M. Gil, R. Montalvo

Abstract:

Business Intelligence (BI) has become a major source of competitive advantages for firms around the world. BI has been defined as the process of data visualization and reporting for understanding what happened and what is happening. Moreover, BI has been studied for its predictive capabilities in the context of trade and financial transactions. The current literature has identified that BI permits managers to identify market trends, understand customer relations, and predict demand for their products and services. This last capability of BI has been of special concern to academics. Specifically, due to its power to build predictive models adaptable to specific time horizons and geographical regions. However, the current literature of BI focuses on predicting specific markets and industries because the impact of such predictive models was relevant to specific industries or organizations. Currently, the existing literature has not developed a predictive model of BI that takes into consideration the whole economy of a geographical area. This paper seeks to create a predictive model of BI that would show the bigger picture of a geographical area. This paper uses a data set from the Secretary of Economic Development of the state of Jalisco, Mexico. Such data set includes data from all the commercial transactions that occurred in the state in the last years. By analyzing such data set, it will be possible to generate a BI model that predicts supply and demand from specific industries around the state of Jalisco. This research has at least three contributions. Firstly, a methodological contribution to the BI literature by generating the predictive supply and demand model. Secondly, a theoretical contribution to BI current understanding. The model presented in this paper incorporates the whole picture of the economic field instead of focusing on a specific industry. Lastly, a practical contribution might be relevant to local governments that seek to improve their economic performance by implementing BI in their policy planning.

Keywords: business intelligence, predictive model, supply and demand, Mexico

Procedia PDF Downloads 123
12144 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach

Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta

Abstract:

Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.

Keywords: support vector machines, decision tree, random forest

Procedia PDF Downloads 40
12143 Formulation of Optimal Shifting Sequence for Multi-Speed Automatic Transmission

Authors: Sireesha Tamada, Debraj Bhattacharjee, Pranab K. Dan, Prabha Bhola

Abstract:

The most important component in an automotive transmission system is the gearbox which controls the speed of the vehicle. In an automatic transmission, the right positioning of actuators ensures efficient transmission mechanism embodiment, wherein the challenge lies in formulating the number of actuators associated with modelling a gearbox. Data with respect to actuation and gear shifting sequence has been retrieved from the available literature, including patent documents, and has been used in this proposed heuristics based methodology for modelling actuation sequence in a gear box. This paper presents a methodological approach in designing a gearbox for the purpose of obtaining an optimal shifting sequence. The computational model considers factors namely, the number of stages and gear teeth as input parameters since these two are the determinants of the gear ratios in an epicyclic gear train. The proposed transmission schematic or stick diagram aids in developing the gearbox layout design. The number of iterations and development time required to design a gearbox layout is reduced by using this approach.

Keywords: automatic transmission, gear-shifting, multi-stage planetary gearbox, rank ordered clustering

Procedia PDF Downloads 325
12142 Krembo Wings Youth Movement for Children with and without Disabilities: An Inclusive Model from an Educational Perspective to a Professional Approach

Authors: Claudia Koby, Merav Boaz, Meirav Zaiger Kober

Abstract:

Krembo Wings is an all-inclusive youth movement which brings children and youth with any disability together with their able-bodied peers (counselors) for weekly fun and educational social activities. Krembo Wings utilizes a socio-educational framework to create and lead social change through members with and without disabilities. All the work that Krembo Wings engages in stems from its central goal of promoting inclusion and integration using social and psychological theories to develop its unique model and approach. The key to Krembo Wings' approach in promoting inclusion is active participation – each member, with and without disabilities, is enabled to participate to their fullest capacity in the youth movement and its activities. In order for this to be achieved, all activities are adjustable and are modified to fit the abilities of each member. Additionally, youth counselors – most of whom are members without disabilities – go through extensive training in order to act as 'intermediaries' for their partner with disabilities, enabling and facilitating their partner's participation in a way that allows them to be as independent and active as possible. The relationship is one of friendship and not of caretaking. There is always a nurse on-hand to tend to any caretaking needs. Two essential elements of Krembo Wings' model is the broadening of concepts – shifting and changing the understanding of certain concepts such as what it means to be 'independent' or 'able' – and the development of a unique language – creating a language which both reflects and shapes reality. These elements of Krembo Wings' model foster the development of the values of acceptance and appreciation of those who are 'different'. It instills in members and counselors a new way of perceiving the world, one in which inclusion and integration are achievable and natural. Krembo Wings is certain that implementation of this model will promote the participation and inclusion of individuals with disabilities in society while promoting diversity. This model can serve as a platform which can be replicated and adjusted to suit any environment.

Keywords: innovative model for inclusion, socio-educational movement, youth leadership, youth with and without disabilities

Procedia PDF Downloads 128
12141 Satellite-Based Drought Monitoring in Korea: Methodologies and Merits

Authors: Joo-Heon Lee, Seo-Yeon Park, Chanyang Sur, Ho-Won Jang

Abstract:

Satellite-based remote sensing technique has been widely used in the area of drought and environmental monitoring to overcome the weakness of in-situ based monitoring. There are many advantages of remote sensing for drought watch in terms of data accessibility, monitoring resolution and types of available hydro-meteorological data including environmental areas. This study was focused on the applicability of drought monitoring based on satellite imageries by applying to the historical drought events, which had a huge impact on meteorological, agricultural, and hydrological drought. Satellite-based drought indices, the Standardized Precipitation Index (SPI) using Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM); Vegetation Health Index (VHI) using MODIS based Land Surface Temperature (LST), and Normalized Difference Vegetation Index (NDVI); and Scaled Drought Condition Index (SDCI) were evaluated to assess its capability to analyze the complex topography of the Korean peninsula. While the VHI was accurate when capturing moderate drought conditions in agricultural drought-damaged areas, the SDCI was relatively well monitored in hydrological drought-damaged areas. In addition, this study found correlations among various drought indices and applicability using Receiver Operating Characteristic (ROC) method, which will expand our understanding of the relationships between hydro-meteorological variables and drought events at global scale. The results of this research are expected to assist decision makers in taking timely and appropriate action in order to save millions of lives in drought-damaged areas.

Keywords: drought monitoring, moderate resolution imaging spectroradiometer (MODIS), remote sensing, receiver operating characteristic (ROC)

Procedia PDF Downloads 329