Search results for: mathematical modeling
2593 Statistical Modeling of Mobile Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes
Authors: Jihad S. Daba, J. P. Dubois
Abstract:
Understanding the statistics of non-isotropic scattering multipath channels that fade randomly with respect to time, frequency, and space in a mobile environment is very crucial for the accurate detection of received signals in wireless and cellular communication systems. In this paper, we derive stochastic models for the probability density function (PDF) of the shift in the carrier frequency caused by the Doppler Effect on the received illuminating signal in the presence of a dominant line of sight. Our derivation is based on a generalized Clarke’s and a two-wave partially developed scattering models, where the statistical distribution of the frequency shift is shown to be consistent with the power spectral density of the Doppler shifted signal.Keywords: Doppler shift, filtered Poisson process, generalized Clark’s model, non-isotropic scattering, partially developed scattering, Rician distribution
Procedia PDF Downloads 3722592 WEMax: Virtual Manned Assembly Line Generation
Authors: Won Kyung Ham, Kang Hoon Cho, Sang C. Park
Abstract:
Presented in this paper is a framework of a software ‘WEMax’. The WEMax is invented for analysis and simulation for manned assembly lines to sustain and improve performance of manufacturing systems. In a manufacturing system, performance, such as productivity, is a key of competitiveness for output products. However, the manned assembly lines are difficult to forecast performance, because human labors are not expectable factors by computer simulation models or mathematical models. Existing approaches to performance forecasting of the manned assembly lines are limited to matters of the human itself, such as ergonomic and workload design, and non-human-factor-relevant simulation. Consequently, an approach for the forecasting and improvement of manned assembly line performance is needed to research. As a solution of the current problem, this study proposes a framework that is for generation and simulation of virtual manned assembly lines, and the framework has been implemented as a software.Keywords: performance forecasting, simulation, virtual manned assembly line, WEMax
Procedia PDF Downloads 3262591 Sliding Mode Controller for Active Suspension System on a Passenger Car Model
Authors: Nouby M. Ghazaly, Ahmed O. Moaaz, Mostafa Makrahy
Abstract:
The main purpose of a car suspension system is to reduce the vibrations resulting from road roughness. The main objective of this research paper is to decrease vibration and improve passenger comfort through controlling car suspension system using sliding mode control techniques. The mathematical model for passive and active suspensions systems for quarter car model which subject to excitation from different road profiles is obtained. The active suspension system is synthesized based on sliding mode control for a quarter car model. The performance of the sliding mode control is determined through computer simulations using MATLAB and SIMULINK toolbox. The simulated results plotted in time domain, and root mean square values. It is found that active suspension system using sliding mode control improves the ride comfort and decrease vibration.Keywords: quarter car model, active suspension system, sliding mode control, road profile
Procedia PDF Downloads 3092590 Application of the Standard Deviation in Regulating Design Variation of Urban Solutions Generated through Evolutionary Computation
Authors: Mohammed Makki, Milad Showkatbakhsh, Aiman Tabony
Abstract:
Computational applications of natural evolutionary processes as problem-solving tools have been well established since the mid-20th century. However, their application within architecture and design has only gained ground in recent years, with an increasing number of academics and professionals in the field electing to utilize evolutionary computation to address problems comprised from multiple conflicting objectives with no clear optimal solution. Recent advances in computer science and its consequent constructive influence on the architectural discourse has led to the emergence of multiple algorithmic processes capable of simulating the evolutionary process in nature within an efficient timescale. Many of the developed processes of generating a population of candidate solutions to a design problem through an evolutionary based stochastic search process are often driven through the application of both environmental and architectural parameters. These methods allow for conflicting objectives to be simultaneously, independently, and objectively optimized. This is an essential approach in design problems with a final product that must address the demand of a multitude of individuals with various requirements. However, one of the main challenges encountered through the application of an evolutionary process as a design tool is the ability for the simulation to maintain variation amongst design solutions in the population while simultaneously increasing in fitness. This is most commonly known as the ‘golden rule’ of balancing exploration and exploitation over time; the difficulty of achieving this balance in the simulation is due to the tendency of either variation or optimization being favored as the simulation progresses. In such cases, the generated population of candidate solutions has either optimized very early in the simulation, or has continued to maintain high levels of variation to which an optimal set could not be discerned; thus, providing the user with a solution set that has not evolved efficiently to the objectives outlined in the problem at hand. As such, the experiments presented in this paper seek to achieve the ‘golden rule’ by incorporating a mathematical fitness criterion for the development of an urban tissue comprised from the superblock as its primary architectural element. The mathematical value investigated in the experiments is the standard deviation factor. Traditionally, the standard deviation factor has been used as an analytical value rather than a generative one, conventionally used to measure the distribution of variation within a population by calculating the degree by which the majority of the population deviates from the mean. A higher standard deviation value delineates a higher number of the population is clustered around the mean and thus limited variation within the population, while a lower standard deviation value is due to greater variation within the population and a lack of convergence towards an optimal solution. The results presented will aim to clarify the extent to which the utilization of the standard deviation factor as a fitness criterion can be advantageous to generating fitter individuals in a more efficient timeframe when compared to conventional simulations that only incorporate architectural and environmental parameters.Keywords: architecture, computation, evolution, standard deviation, urban
Procedia PDF Downloads 1332589 Effect of Environmental Conditions on the Substrate Cu(In,Ga)Se2 Solar Cell Performances
Authors: Mekhannene Amine
Abstract:
In this paper, we began in the first step by two-dimensional simulation of a CIGS solar cell, in order to increase the current record efficiency of 20.48% for a single CIGS cell. Was created by utilizing a set of physical and technological parameters a solar cell of reference (such as layer thicknesses, gallium ratio, doping levels and materials properties) documented in bibliography and very known in the experimental field. This was accomplished through modeling and simulation using Atlas SILVACO-TCAD, an tool two and three dimensions very powerful and very adapted. This study has led us to determine the influence of different environmental parameters such as illumination (G) and temperature (T). In the second step, we continued our study by determining the influence of physical parameters (the acceptor of concentration NA) and geometric (thickness t) of the CIGS absorber layer, were varied to produce an optimum efficiency of 24.36%. This approach is promising to produce a CIGS classic solar cell to conduct a maximum performance.Keywords: solar cell, cigs, photovoltaic generator, illumination, temperature, Atlas SILVACO-TCAD
Procedia PDF Downloads 6452588 Reliability Analysis for the Functioning of Complete and Low Capacity MLDB Systems in Piston Plants
Authors: Ramanpreet Kaur, Upasana Sharma
Abstract:
The purpose of this paper is to address the challenges facing the water supply for the Machine Learning Database (MLDB) system at the piston foundry plant. In the MLDB system, one main unit, i.e., robotic, is connected by two sub-units. The functioning of the system depends on the robotic and water supply. Lack of water supply causes system failure. The system operates at full capacity with the help of two sub-units. If one sub-unit fails, the system runs at a low capacity. Reliability modeling is performed using semi-Markov processes and regenerative point techniques. Several system effects such as mean time to system failure, availability at full capacity, availability at reduced capacity, busy period for repair and expected number of visits have been achieved. Benefits have been analyzed. The graphical study is designed for a specific case using programming in C++ and MS Excel.Keywords: MLDB system, robotic, semi-Markov process, regenerative point technique
Procedia PDF Downloads 1032587 Dynamic Analysis of Viscoelastic Plates with Variable Thickness
Authors: Gülçin Tekin, Fethi Kadıoğlu
Abstract:
In this study, the dynamic analysis of viscoelastic plates with variable thickness is examined. The solutions of dynamic response of viscoelastic thin plates with variable thickness have been obtained by using the functional analysis method in the conjunction with the Gâteaux differential. The four-node serendipity element with four degrees of freedom such as deflection, bending, and twisting moments at each node is used. Additionally, boundary condition terms are included in the functional by using a systematic way. In viscoelastic modeling, Three-parameter Kelvin solid model is employed. The solutions obtained in the Laplace-Carson domain are transformed to the real time domain by using MDOP, Dubner & Abate, and Durbin inverse transform techniques. To test the performance of the proposed mixed finite element formulation, numerical examples are treated.Keywords: dynamic analysis, inverse laplace transform techniques, mixed finite element formulation, viscoelastic plate with variable thickness
Procedia PDF Downloads 3312586 Distance Education: Using a Digital Platform to Improve Struggling University Students' Mathematical Skills
Authors: Robert Vanderburg, Nicholas Gibson
Abstract:
Objectives: There has been an increased focus in education students’ mathematics skills in the last two years. Universities have, specifically, had problems teaching students struggling with mathematics. This paper focuses on the ability of a digital platform to significantly improve mathematics skills for struggling students. Methods: 32 students who demonstrated low scores on a mathematics test were selected to take part in a one-month tutorial program using a digital mathematics portal. Students were provided feedback for questions posted on the portal and a fortnightly tutorial session. Results: A pre-test post-test design was analyzed using a one-way analysis of variance (ANOVA). The analysis suggested that students improved skills in algebra, geometry, statistics, probability, ratios, fractions, and probability. Conclusion: Distance university students can improve their mathematics skills using a digital platform.Keywords: digital education, distance education, higher education, mathematics education
Procedia PDF Downloads 1862585 Lane Detection Using Labeling Based RANSAC Algorithm
Authors: Yeongyu Choi, Ju H. Park, Ho-Youl Jung
Abstract:
In this paper, we propose labeling based RANSAC algorithm for lane detection. Advanced driver assistance systems (ADAS) have been widely researched to avoid unexpected accidents. Lane detection is a necessary system to assist keeping lane and lane departure prevention. The proposed vision based lane detection method applies Canny edge detection, inverse perspective mapping (IPM), K-means algorithm, mathematical morphology operations and 8 connected-component labeling. Next, random samples are selected from each labeling region for RANSAC. The sampling method selects the points of lane with a high probability. Finally, lane parameters of straight line or curve equations are estimated. Through the simulations tested on video recorded at daytime and nighttime, we show that the proposed method has better performance than the existing RANSAC algorithm in various environments.Keywords: Canny edge detection, k-means algorithm, RANSAC, inverse perspective mapping
Procedia PDF Downloads 2432584 Design and Thermal Analysis of a Concrete House in Libya Using BEopt
Authors: Gamal Alamri, Tariq Iqbal
Abstract:
This paper presents an optimum designs and thermal analysis of concrete house in the hot climate of Libya. For this goal we have used BEopt software (building energy optimization) that provides capabilities for estimating residential building design and thermal analysis. The most area of the house that is exposed to the sunlight’s is the roof leading to heat gain. Therefore, house cooling consumes high energy. The cooling energy consumption is three times the heating energy consumption. In order to maintain comfortable indoor conditions in a low-energy house, the entire building envelope needs to be perfectly insulated and prevented from air leakages. Insulated roof is selected to reduce cooling demand, and the paper presents details and BEopt simulation results. Designed house needs 12.02mmbtus/year. Furthermore, the modeling indicates that the designed house is close to achieving the Passive standard.Keywords: concrete house design, thermal analysis, hot climate, BEopt software
Procedia PDF Downloads 4122583 Application of UAS in Forest Firefighting for Detecting Ignitions and 3D Fuel Volume Estimation
Authors: Artur Krukowski, Emmanouela Vogiatzaki
Abstract:
The article presents results from the AF3 project “Advanced Forest Fire Fighting” focused on Unmanned Aircraft Systems (UAS)-based 3D surveillance and 3D area mapping using high-resolution photogrammetric methods from multispectral imaging, also taking advantage of the 3D scanning techniques from the SCAN4RECO project. We also present a proprietary embedded sensor system used for the detection of fire ignitions in the forest using near-infrared based scanner with weight and form factors allowing it to be easily deployed on standard commercial micro-UAVs, such as DJI Inspire or Mavic. Results from real-life pilot trials in Greece, Spain, and Israel demonstrated added-value in the use of UAS for precise and reliable detection of forest fires, as well as high-resolution 3D aerial modeling for accurate quantification of human resources and equipment required for firefighting.Keywords: forest wildfires, surveillance, fuel volume estimation, firefighting, ignition detectors, 3D modelling, UAV
Procedia PDF Downloads 1422582 Empirical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;
Procedia PDF Downloads 822581 A Vision Making Exercise for Twente Region; Development and Assesment
Authors: Gelareh Ghaderi
Abstract:
the overall objective of this study is to develop two alternative plans of spatial and infrastructural development for the Netwerkstad Twente (Twente region) until 2040 and to assess the impacts of those two alternative plans. This region is located on the eastern border of the Netherlands, and it comprises of five municipalities. Based on the strengths and opportunities of the five municipalities of the Netwerkstad Twente, and in order develop the region internationally, strengthen the job market and retain skilled and knowledgeable young population, two alternative visions have been developed; environmental oriented vision, and economical oriented vision. Environmental oriented vision is based mostly on preserving beautiful landscapes. Twente would be recognized as an educational center, driven by green technologies and environment-friendly economy. Market-oriented vision is based on attracting and developing different economic activities in the region based on visions of the five cities of Netwerkstad Twente, in order to improve the competitiveness of the region in national and international scale. On the basis of the two developed visions and strategies for achieving the visions, land use and infrastructural development are modeled and assessed. Based on the SWOT analysis, criteria were formulated and employed in modeling the two contrasting land use visions by the year 2040. Land use modeling consists of determination of future land use demand, assessment of suitability land (Suitability analysis), and allocation of land uses on suitable land. Suitability analysis aims to determine the available supply of land for future development as well as assessing their suitability for specific type of land uses on the basis of the formulated set of criteria. Suitability analysis was operated using CommunityViz, a Planning Support System application for spatially explicit land suitability and allocation. Netwerkstad Twente has highly developed transportation infrastructure, consists of highways network, national road network, regional road network, street network, local road network, railway network and bike-path network. Based on the assumptions of speed limitations on different types of roads provided, infrastructure accessibility level of predicted land use parcels by four different transport modes is investigated. For evaluation of the two development scenarios, the Multi-criteria Evaluation (MCE) method is used. The first step was to determine criteria used for evaluation of each vision. All factors were categorized as economical, ecological and social. Results of Multi-criteria Evaluation show that Environmental oriented cities scenario has higher overall score. Environment-oriented scenario has impressive scores in relation to economical and ecological factors. This is due to the fact that a large percentage of housing tends towards compact housing. Twente region has immense potential, and the success of this project will define the Eastern part of The Netherlands and create a real competitive local economy with innovations and attractive environment as its backbone.Keywords: economical oriented vision, environmental oriented vision, infrastructure, land use, multi criteria assesment, vision
Procedia PDF Downloads 2272580 Generalized Additive Model Approach for the Chilean Hake Population in a Bio-Economic Context
Authors: Selin Guney, Andres Riquelme
Abstract:
The traditional bio-economic method for fisheries modeling uses some estimate of the growth parameters and the system carrying capacity from a biological model for the population dynamics (usually a logistic population growth model) which is then analyzed as a traditional production function. The stock dynamic is transformed into a revenue function and then compared with the extraction costs to estimate the maximum economic yield. In this paper, the logistic population growth model for the population is combined with a forecast of the abundance and location of the stock by using a generalized additive model approach. The paper focuses on the Chilean hake population. This method allows for the incorporation of climatic variables and the interaction with other marine species, which in turn will increase the reliability of the estimates and generate better extraction paths for different conservation objectives, such as the maximum biological yield or the maximum economic yield.Keywords: bio-economic, fisheries, GAM, production
Procedia PDF Downloads 2522579 Simulations of Laminar Liquid Flows through Superhydrophobic Micro-Pipes
Authors: Mohamed E. Eleshaky
Abstract:
This paper investigates the dynamic behavior of laminar water flows inside superhydrophobic micro-pipes patterned with square micro-posts features under different operating conditions. It also investigates the effects of air fraction and Reynolds number on the frictional performance of these pipes. Rather than modeling the air-water interfaces of superhydrophobic as a flat inflexible surface, a transient, incompressible, three-dimensional, volume-of-fluid (VOF) methodology has been employed to continuously track the air–water interface shape inside micro-pipes. Also, the entrance effects on the flow field have been taken into consideration. The results revealed the strong dependency of the frictional performance on the air fractions and Reynolds number. The frictional resistance reduction becomes increasingly more significant at large air fractions and low Reynolds numbers. Increasing Reynolds number has an adverse effect on the frictional resistance reduction.Keywords: drag reduction, laminar flow in micropipes, numerical simulation, superhyrophobic surfaces, microposts
Procedia PDF Downloads 3272578 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption
Authors: Waziri Victor Onomza, John K. Alhassan, Idris Ismaila, Noel Dogonyaro Moses
Abstract:
This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute theoretical presentations in high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm.Keywords: big data analytics, security, privacy, bootstrapping, homomorphic, homomorphic encryption scheme
Procedia PDF Downloads 3792577 Investigations on the Application of Avalanche Simulations: A Survey Conducted among Avalanche Experts
Authors: Korbinian Schmidtner, Rudolf Sailer, Perry Bartelt, Wolfgang Fellin, Jan-Thomas Fischer, Matthias Granig
Abstract:
This study focuses on the evaluation of snow avalanche simulations, based on a survey that has been carried out among avalanche experts. In the last decades, the application of avalanche simulation tools has gained recognition within the realm of hazard management. Traditionally, avalanche runout models were used to predict extreme avalanche runout and prepare avalanche maps. This has changed rather dramatically with the application of numerical models. For safety regulations such as road safety simulation tools are now being coupled with real-time meteorological measurements to predict frequent avalanche hazard. That places new demands on model accuracy and requires the simulation of physical processes that previously could be ignored. These simulation tools are based on a deterministic description of the avalanche movement allowing to predict certain quantities (e.g. pressure, velocities, flow heights, runout lengths etc.) of the avalanche flow. Because of the highly variable regimes of the flowing snow, no uniform rheological law describing the motion of an avalanche is known. Therefore, analogies to fluid dynamical laws of other materials are stated. To transfer these constitutional laws to snow flows, certain assumptions and adjustments have to be imposed. Besides these limitations, there exist high uncertainties regarding the initial and boundary conditions. Further challenges arise when implementing the underlying flow model equations into an algorithm executable by a computer. This implementation is constrained by the choice of adequate numerical methods and their computational feasibility. Hence, the model development is compelled to introduce further simplifications and the related uncertainties. In the light of these issues many questions arise on avalanche simulations, on their assets and drawbacks, on potentials for improvements as well as their application in practice. To address these questions a survey among experts in the field of avalanche science (e.g. researchers, practitioners, engineers) from various countries has been conducted. In the questionnaire, special attention is drawn on the expert’s opinion regarding the influence of certain variables on the simulation result, their uncertainty and the reliability of the results. Furthermore, it was tested to which degree a simulation result influences the decision making for a hazard assessment. A discrepancy could be found between a large uncertainty of the simulation input parameters as compared to a relatively high reliability of the results. This contradiction can be explained taking into account how the experts employ the simulations. The credibility of the simulations is the result of a rather thoroughly simulation study, where different assumptions are tested, comparing the results of different flow models along with the use of supplemental data such as chronicles, field observation, silent witnesses i.a. which are regarded as essential for the hazard assessment and for sanctioning simulation results. As the importance of avalanche simulations grows within the hazard management along with their further development studies focusing on the modeling fashion could contribute to a better understanding how knowledge of the avalanche process can be gained by running simulations.Keywords: expert interview, hazard management, modeling, simulation, snow avalanche
Procedia PDF Downloads 3262576 Equivalent Circuit Model for the Eddy Current Damping with Frequency-Dependence
Authors: Zhiguo Shi, Cheng Ning Loong, Jiazeng Shan, Weichao Wu
Abstract:
This study proposes an equivalent circuit model to simulate the eddy current damping force with shaking table tests and finite element modeling. The model is firstly proposed and applied to a simple eddy current damper, which is modelled in ANSYS, indicating that the proposed model can simulate the eddy current damping force under different types of excitations. Then, a non-contact and friction-free eddy current damper is designed and tested, and the proposed model can reproduce the experimental observations. The excellent agreement between the simulated results and the experimental data validates the accuracy and reliability of the equivalent circuit model. Furthermore, a more complicated model is performed in ANSYS to verify the feasibility of the equivalent circuit model in complex eddy current damper, and the higher-order fractional model and viscous model are adopted for comparison.Keywords: equivalent circuit model, eddy current damping, finite element model, shake table test
Procedia PDF Downloads 1912575 New Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.Keywords: regression, piecewise, Bayesian, reversible Jump MCMC
Procedia PDF Downloads 5212574 Removal of Cr⁶⁺, Co²⁺ and Ni²⁺ Ions from Aqueous Solutions by Algerian Enteromorpha compressa (L.) Biomass
Authors: Asma Aid, Samira Amokrane, Djamel Nibou, Hadj Mekatel
Abstract:
The marine Enteromorpha Compressa (L.) (ECL) biomass was used as a low-cost biological adsorbent for the removal of Cr⁶⁺, Co²⁺ and Ni²⁺ ions from artificially contaminated aqueous solutions. The operating variables pH, the initial concentration C₀, the solid/liquid ratio R and the temperature T were studied. A full factorial experimental design technique enabled us to obtain a mathematical model describing the adsorption of Cr⁶⁺, Co²⁺ and Ni²⁺ ions and to study the main effects and interactions among operational parameters. The equilibrium isotherm has been analyzed by Langmuir, Freundlich, and Dubinin-Radushkevich models; it has been found that the adsorption process follows the Langmuir model for the used ions. Kinetic studies showed that the pseudo-second-order model correlates our experimental data. Thermodynamic parameters showed the endothermic heat of adsorption and the spontaneity of the adsorption process for Cr⁶⁺ ions and exothermic heat of adsorption for Co²⁺ and Ni²⁺ ions.Keywords: enteromorpha Compressa, adsorption process, Cr⁶⁺, Co²⁺ and Ni²⁺, equilibrium isotherm
Procedia PDF Downloads 1962573 Performance Analysis of the Time-Based and Periodogram-Based Energy Detector for Spectrum Sensing
Authors: Sadaf Nawaz, Adnan Ahmed Khan, Asad Mahmood, Chaudhary Farrukh Javed
Abstract:
Classically, an energy detector is implemented in time domain (TD). However, frequency domain (FD) based energy detector has demonstrated an improved performance. This paper presents a comparison between the two approaches as to analyze their pros and cons. A detailed performance analysis of the classical TD energy-detector and the periodogram based detector is performed. Exact and approximate mathematical expressions for probability of false alarm (Pf) and probability of detection (Pd) are derived for both approaches. The derived expressions naturally lead to an analytical as well as intuitive reasoning for the improved performance of (Pf) and (Pd) in different scenarios. Our analysis suggests the dependence improvement on buffer sizes. Pf is improved in FD, whereas Pd is enhanced in TD based energy detectors. Finally, Monte Carlo simulations results demonstrate the analysis reached by the derived expressions.Keywords: cognitive radio, energy detector, periodogram, spectrum sensing
Procedia PDF Downloads 3772572 Dimensional Accuracy of CNTs/PMMA Parts and Holes Produced by Laser Cutting
Authors: A. Karimzad Ghavidel, M. Zadshakouyan
Abstract:
Laser cutting is a very common production method for cutting 2D polymeric parts. Developing of polymer composites with nano-fibers makes important their other properties like laser workability. The aim of this research is investigation of the influence different laser cutting conditions on the dimensional accuracy of parts and holes from poly methyl methacrylate (PMMA)/carbon nanotubes (CNTs) material. Experiments were carried out by considering of CNTs (in four level 0,0.5, 1 and 1.5% wt.%), laser power (60, 80, and 100 watt) and cutting speed 20, 30, and 40 mm/s as input variable factors. The results reveal that CNTs adding improves the laser workability of PMMA and the increasing of power has a significant effect on the part and hole size. The findings also show cutting speed is effective parameter on the size accuracy. Eventually, the statistical analysis of results was done, and calculated mathematical equations by the regression are presented for determining relation between input and output factor.Keywords: dimensional accuracy, PMMA, CNTs, laser cutting
Procedia PDF Downloads 3072571 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks
Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.
Abstract:
In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means
Procedia PDF Downloads 5582570 Nonlinear Finite Element Modeling of Unbonded Steel Reinforced Concrete Beams
Authors: Fares Jnaid, Riyad Aboutaha
Abstract:
In this paper, a nonlinear Finite Element Analysis (FEA) was carried out using ANSYS software to build a model able of predicting the behavior of Reinforced Concrete (RC) beams with unbonded reinforcement. The FEA model was compared to existing experimental data by other researchers. The existing experimental data consisted of 16 beams that varied from structurally sound beams to beams with unbonded reinforcement with different unbonded lengths and reinforcement ratios. The model was able to predict the ultimate flexural strength, load-deflection curve, and crack pattern of concrete beams with unbonded reinforcement. It was concluded that when the when the unbonded length is less than 45% of the span, there will be no decrease in the ultimate flexural strength due to the loss of bond between the steel reinforcement and the surrounding concrete regardless of the reinforcement ratio. Moreover, when the reinforcement ratio is relatively low, there will be no decrease in ultimate flexural strength regardless of the length of unbond.Keywords: FEA, ANSYS, unbond, strain
Procedia PDF Downloads 2532569 Multi-Criteria Goal Programming Model for Sustainable Development of India
Authors: Irfan Ali, Srikant Gupta, Aquil Ahmed
Abstract:
Every country needs a sustainable development (SD) for its economic growth by forming suitable policies and initiative programs for the development of different sectors of the country. This paper is comprised of modeling and optimization of different sectors of India that form a multi-criterion model. In this paper, we developed a fractional goal programming (FGP) model that helps in providing the efficient allocation of resources simultaneously by achieving the sustainable goals in gross domestic product (GDP), electricity consumption (EC) and greenhouse gasses (GHG) emission by the year 2030. Also, a weighted model of FGP is presented to obtain varying solution according to the priorities set by the policy maker for achieving future goals of GDP growth, EC, and GHG emission. The presented models provide a useful insight to the decision makers for implementing strategies in a different sector.Keywords: sustainable and economic development, multi-objective fractional programming, fuzzy goal programming, weighted fuzzy goal programming
Procedia PDF Downloads 2232568 Cervical Cell Classification Using Random Forests
Authors: Dalwinder Singh, Amandeep Verma, Manpreet Kaur, Birmohan Singh
Abstract:
The detection of pre-cancerous changes using a Pap smear test of cervical cell is the important step for the early diagnosis of cervical cancer. The Pap smear test consists of a sample of human cells taken from the cervix which are analysed to detect cancerous and pre-cancerous stage of the given subject. The manual analysis of these cells is labor intensive and time consuming process which relies on expert cytotechnologist. In this paper, a computer assisted system for the automated analysis of the cervical cells has been proposed. We propose a morphology based approach to the nucleus detection and segmentation of the cytoplasmic region of the given single or multiple overlapped cell. Further, various texture and region based features are calculated from these cells to classify these into normal and abnormal cell. Experimental results on public available dataset show that our system has achieved satisfactory success rate.Keywords: cervical cancer, cervical tissue, mathematical morphology, texture features
Procedia PDF Downloads 5262567 On Differential Growth Equation to Stochastic Growth Model Using Hyperbolic Sine Function in Height/Diameter Modeling of Pines
Authors: S. O. Oyamakin, A. U. Chukwu
Abstract:
Richard's growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richard's growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richard's growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richard's nonlinear growth models better than the classical Richard's growth model.Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, Richard's, stochastic
Procedia PDF Downloads 4802566 Predicting the Relationship Between Childhood Trauma on the Formation of Defense Mechanisms with the Mediating Role of Object Relations in Traders
Authors: Ahmadreza Jabalameli, Mohammad Ebrahimpour Borujeni
Abstract:
According to psychodynamic theories, the major personality structure of individuals is formed in the first years of life. Trauma is an inseparable and undeniable part of everyone's life and they inevitably struggle with many traumas that can have a very significant impact on their lives. The present study deals with the relationship between childhood trauma on the formation of defense mechanisms and the role of object relations. The present descriptive study is a correlation with structural equation modeling (SEM). Sample selection is available and consists of 200 knowledgeable traders in Jabalameli Information Technology Company. The results indicate that the experience of childhood trauma with a demographic moderating effect, through the mediating role of object relations can lead to vulnerability to ego reality functionality and immature and psychically disturbed defense mechanisms. In this regard, there is a significant negative relationship between childhood trauma and object relations with mature defense mechanisms.Keywords: childhood trauma, defense mechanisms, object relations, trade
Procedia PDF Downloads 1322565 A Qualitative Study of Experienced Early Childhood Teachers Resolving Workplace Challenges with Character Strengths
Authors: Michael J. Haslip
Abstract:
Character strength application improves performance and well-being in adults across industries, but the potential impact of character strength training among early childhood educators is mostly unknown. To explore how character strengths are applied by early childhood educators at work, a qualitative study was completed alongside professional development provided to a group of in-service teachers of children ages 0-5 in Philadelphia, Pennsylvania, United States. Study participants (n=17) were all female. The majority of participants were non-white, in full-time lead or assistant teacher roles, had at least ten years of experience and a bachelor’s degree. Teachers were attending professional development weekly for 2 hours over a 10-week period on the topic of social and emotional learning and child guidance. Related to this training were modules and sessions on identifying a teacher’s character strength profile using the Values in Action classification of 24 strengths (e.g., humility, perseverance) that have a scientific basis. Teachers were then asked to apply their character strengths to help resolve current workplace challenges. This study identifies which character strengths the teachers reported using most frequently and the nature of the workplace challenges being resolved in this context. The study also reports how difficult these challenges were to the teachers and their success rate at resolving workplace challenges using a character strength application plan. The study also documents how teachers’ own use of character strengths relates to their modeling of these same traits (e.g., kindness, teamwork) for children, especially when the nature of the workplace challenge directly involves the children, such as when addressing issues of classroom management and behavior. Data were collected on action plans (reflective templates) which teachers wrote to explain the work challenge they were facing, the character strengths they used to address the challenge, their plan for applying strengths to the challenge, and subsequent results. Content analysis and thematic analysis were used to investigate the research questions using approaches that included classifying, connecting, describing, and interpreting data reported by educators. Findings reveal that teachers most frequently use kindness, leadership, fairness, hope, and love to address a range of workplace challenges, ranging from low to high difficulty, involving children, coworkers, parents, and for self-management. Teachers reported a 71% success rate at fully or mostly resolving workplace challenges using the action plan method introduced during professional development. Teachers matched character strengths to challenges in different ways, with certain strengths being used mostly when the challenge involved children (love, forgiveness), others mostly with adults (bravery, teamwork), and others universally (leadership, kindness). Furthermore, teacher’s application of character strengths at work involved directly modeling character for children in 31% of reported cases. The application of character strengths among early childhood educators may play a significant role in improving teacher well-being, reducing job stress, and improving efforts to model character for young children.Keywords: character strengths, positive psychology, professional development, social-emotional learning
Procedia PDF Downloads 1052564 Statistical Modeling for Permeabilization of a Novel Yeast Isolate for β-Galactosidase Activity Using Organic Solvents
Authors: Shweta Kumari, Parmjit S. Panesar, Manab B. Bera
Abstract:
The hydrolysis of lactose using β-galactosidase is one of the most promising biotechnological applications, which has wide range of potential applications in food processing industries. However, due to intracellular location of the yeast enzyme, and expensive extraction methods, the industrial applications of enzymatic hydrolysis processes are being hampered. The use of permeabilization technique can help to overcome the problems associated with enzyme extraction and purification of yeast cells and to develop the economically viable process for the utilization of whole cell biocatalysts in food industries. In the present investigation, standardization of permeabilization process of novel yeast isolate was carried out using a statistical model approach known as Response Surface Methodology (RSM) to achieve maximal b-galactosidase activity. The optimum operating conditions for permeabilization process for optimal β-galactosidase activity obtained by RSM were 1:1 ratio of toluene (25%, v/v) and ethanol (50%, v/v), 25.0 oC temperature and treatment time of 12 min, which displayed enzyme activity of 1.71 IU /mg DW.Keywords: β-galactosidase, optimization, permeabilization, response surface methodology, yeast
Procedia PDF Downloads 254