Search results for: laminated composite plate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2968

Search results for: laminated composite plate

268 Tracing the Courtyard Typology from the Past: Highlighting a Need for Conservation in Case of Historic Settlement in Historic Town of Gwalior

Authors: Shivani Dolas, A. Richa Mishra

Abstract:

The existence of Courtyards in India can be traced back to ‘Indus valley civilization’ and various layers of history bearing implications like socio-cultural, traditional, religious, climatic, etc., moreover serving as a breathing space in case of historical core areas. Over time, with the overlay of various historic layers within the historic urban cores and the present high density populace, the cores are getting congested day by day. In this case, courtyards may emerge out as an efficient medium to provide quality of life through livable spaces. Presently, with the growing population of the historic town of Gwalior, town in Madhya Pradesh holds remarkable essence of courtyards with its multiple concepts over time. Its scale and function varies from an imposing grand appearance in palatial form, up to functional practices as residential. Its privilege can also be drawn in urban forms, in sharing single space by multiple dwellings and in temples which can be sketched specifically in the region. Moreover, the effectiveness of courtyards has proven balance and control of micro-climate in such composite climate region. The research paper aims to underline the concept of courtyards in case of a mixed use neighborhood, Naya bazar, in Lashkar area of Gwalior, which developed during 19th century, highlighting the need of its preservation. The paper also elaborates its various implications on user-space relationship as in the present context, and growing congestion in the area, user and space relationship is seen lost. The noticeable change in the behavioral context in buildings and users can be noticed with the downfall of courtyards, isolating users with land. Also, a concern has been expressed on negligence of courtyard planning in future development, suggesting recommendations on preserving the courtyard typology as heritage.

Keywords: courtyards, Gwalior, historic settlement, heritage

Procedia PDF Downloads 148
267 Bioconversion of Kitchen Waste to Bio-Ethanol for Energy Security and Solid Waste Management

Authors: Sanjiv Kumar Soni, Chetna Janveja

Abstract:

The approach of utilizing zero cost kitchen waste residues for growing suitable strains of fungi for the induction of a cocktail of hydrolytic enzymes and ethanol generation has been validated in the present study with the objective of developing an indigenous biorefinery for low cost bioethanol production with the generation of zero waste. Solid state fermentation has been carried out to evaluate the potential of various steam pretreated kitchen waste residues as substrates for the co-production of multiple carbohydrases including cellulases, hemicellulases, pectinase and amylases by a locally isolated strain of Aspergillus niger C-5. Of all the residues, potato peels induced the maximum yields of all the enzyme components corresponding to 64.0±1.92 IU of CMCase, 17.0±0.54 IU of FPase , 42.8±1.28 IU of β-glucosidase, 990.0±28.90 IU of xylanase, 53.2±2.12 IU of mannanase, 126.0±3.72 IU of pectinase, 31500.0±375.78 IU of α-amylase and 488.8±9.82 IU of glucoamylase/g dry substrate respectively. Saccharification of various kitchen refuse residues using inhouse produced crude enzyme cocktail resulted in the release of 610±10.56, 570±8.89, 435±6.54, 475±4.56, 445±4.27, 385±4.49, 370±6.89, 490±10.45 mg of total reducing sugars/g of dried potato peels, orange peels, pineapple peels, mausami peels, onion peels, banana stalks, pea pods and composite mixture respectively revealing carbohydrate conversion efficiencies in the range of 97.0-99.4%. After fermentation of released hexoses by Saccharomyces cerevisae, ethanol yields ranging from 80-262 mL/ kg of dry residues were obtained. The study has successfully evaluated the valorization of kitchen garbage, a highly biodegradable component in Municipal Solid Waste by using it as a substrate for the in-house co-production of multiple carbohydrases and employing the steam treated residues as a feed stock for bioethanol production. Such valorization of kitchen garbage may reduce the level of Municipal Solid Waste going into land-fills thus lowering the emissions of greenhouse gases. Moreover, the solid residue left after the bioconversion may be used as a biofertilizer for improving the fertility of the soils.

Keywords: kitchen waste, bioethanol, solid waste, bioconversion, waste management

Procedia PDF Downloads 400
266 Identification of Phenolic Compounds and Study the Antimicrobial Property of Eleaocarpus Ganitrus Fruits

Authors: Velvizhi Dharmalingam, Rajalaksmi Ramalingam, Rekha Prabhu, Ilavarasan Raju

Abstract:

Background: The use of herbal products for various therapeutic regimens has increased tremendously in the developing countries. Elaeocarpus ganitrus(Rudraksha) is a broad-leaved tree, belonging to the family Elaeocarpaceae found in tropical and subtropical areas. It is popular in an indigenous system of medicine like Ayurveda, Siddha, and Unani. According to Ayurvedic medicine, Rudraksha is used in the managing of blood pressure, asthma, mental disorders, diabetes, gynaecological disorders, neurological disorders such as epilepsy and liver diseases. Objectives: The present study aimed to study the physicochemical parameters of Elaeocarpus ganitrus(fruits) and identify the phenolic compounds (gallic acid, ellagic acid, and chebulinic acid). To estimate the microbial load and the antibacterial activity of extract of Elaeocarpus ganitrus for selective pathogens. Methodology: The dried powdered fruit of Elaeocarpus ganitrus was performed the physicochemical parameters (such as Loss on drying, Alcohol soluble extractive, Water soluble extractive, Total ash and Acid insoluble ash) and pH was measured. The dried coarse powdered fruit of Elaeocarpus ganitrus was extracted successively with hexane, chloroform, ethylacetate and aqueous alcohol by cold percolation method. Identification of phenolic compounds (gallic acid, ellagic acid, chebulinic acid) was done by HPTLC method and confirmed by co-TLC using different solvent system.The successive extracts of Elaeocarpus ganitrus and standards (like gallic acid, ellagic acid, and chebulinic acid) was approximately weighed and made up with alcohol. HPTLC (CAMAG) analysis was performed on a TLC over silica gel 60F254 precoated aluminium plate, layer thickness 0.2 mm (E.Merck, Germany) by using ATS4, Visualizer and Scanner with wavelength at 254 nm, 366 nm and derivatized with different reagents. The microbial load such as total bacterial count, total fungal count, Enterobacteria, Escherichia coli, Salmonella species, Staphylococcus aureus and Pseudomonas aeruginosa by serial dilution method and antibacterial activity of was measured by Kirby bauer method for selective pathogens. Results: The physicochemical parameter of Elaeocarpus ganitrus was studied for standardization of crude drug. Among all the successive extracts were identified with phenolic compounds and Elaeocarpus ganitrus extract having potent antibacterial activity against gram-positive and gram-negative bacteria.

Keywords: antimicrobial activity, Elaeocarpus ganitrus, HPTLC, phenolic compounds

Procedia PDF Downloads 341
265 Comparison of Donor Motivations in National Collegiate Athletic Association Division I vs Division II

Authors: Soojin Kim, Yongjae Kim

Abstract:

Continuous economic downturn and ongoing budget cuts poses higher education with profound challenges which has a direct impact on the collegiate athletic programs. In response to the ever-changing landscape of the fiscal environment, universities seek to boost revenues, resorting to alternative sources of funding. In particular, athletic programs have become increasingly dependent on financial support from their alumni and boosters, which is how athletic departments attempt to offset budget shortfalls and make capital improvements. Although there currently exists three major divisions within National Collegiate Athletic Association (NCAA), the majority of the sport management studies on college sport tend to focus on Division I level. Particularly within the donor motivation literature, a plethora of donor motivation studies exist, but mainly on NCAA Division I athletic programs. Since each athletic department functions differently in a number of different dimensions, while institutional difference can also have a huge impact on athletic donor motivations, the current study attempts to fill this gap that exists in the literature. As such, the purpose of this study was to (I) reexamine the factor structure of the Athletic Donor motivation scale; and (II) identify the prominent athletic donor motives in a NCAA Division II athletic program. For the purpose of this study, a total of 232 actual donors were used for analysis. A confirmatory factor analysis (CFA) was employed to test construct validity, and the reliability of the scale was assessed using Composite Reliability. To identify the prominent motivational factors, the means and standard deviations were examined. Results of this study indicated that Vicarious Achievement, Philanthropy, and Commitment are the three primary motivational factors, while Tangible Benefits, was consistently found as an important motive in prior studies was found low. Such findings highlight the key difference and suggest different salient motivations exist that are specific to the context.

Keywords: college athletics, donor, motivation, NCAA

Procedia PDF Downloads 146
264 Study of the Relationship between the Civil Engineering Parameters and the Floating of Buoy Model Which Made from Expanded Polystyrene-Mortar

Authors: Panarat Saengpanya

Abstract:

There were five objectives in this study including the study of housing type with water environment, the physical and mechanical properties of the buoy material, the mechanical properties of the buoy models, the floating of the buoy models and the relationship between the civil engineering parameters and the floating of the buoy. The buoy examples made from Expanded Polystyrene (EPS) covered by 5 mm thickness of mortar with the equal thickness on each side. Specimens are 0.05 m cubes tested at a displacement rate of 0.005 m/min. The existing test method used to assess the parameters relationship is ASTM C 109 to provide comparative results. The results found that the three type of housing with water environment were Stilt Houses, Boat House, and Floating House. EPS is a lightweight material that has been used in engineering applications since at least the 1950s. Its density is about a hundredth of that of mortar, while the mortar strength was found 72 times of EPS. One of the advantage of composite is that two or more materials could be combined to take advantage of the good characteristics of each of the material. The strength of the buoy influenced by mortar while the floating influenced by EPS. Results showed the buoy example compressed under loading. The Stress-Strain curve showed the high secant modulus before reached the peak value. The failure occurred within 10% strain then the strength reduces while the strain was continuing. It was observed that the failure strength reduced by increasing the total volume of examples. For the buoy examples with same area, an increase of the failure strength is found when the high dimension is increased. The results showed the relationship between five parameters including the floating level, the bearing capacity, the volume, the high dimension and the unit weight. The study found increases in high of buoy lead to corresponding decreases in both modulus and compressive strength. The total volume and the unit weight had relationship with the bearing capacity of the buoy.

Keywords: floating house, buoy, floating structure, EPS

Procedia PDF Downloads 145
263 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process

Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke

Abstract:

In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.

Keywords: composite, dynamic mechanical analysis, long fibre reinforced thermoplastics, mechanical properties, time temperature superposition

Procedia PDF Downloads 197
262 Fatty Acid Profile and Dietary Fibre Contents of Some Standardized Soups and Dishes Consumed in Nigeria

Authors: Olufunke O. Obanla, Oluseye O. Onabanjo, Silifat A. Sanni, Mojisola O. Adegunwa, Wasiu A. O. Afolabi, Omolola O. Oyawoye, Atinuke Titilola Lano-Maduagu

Abstract:

Background: Dietary fat is implicated in the increasing development of chronic diseases in developing countries while dietary fibre plays a major role in the management of these diseases. Accurate nutrient composition data for composite dishes unique to a population is essential for the development of a nutrient database and the calculation of dietary intake. Methods: Representative samples of standardized Nigerian soups and dishes were analyzed for fatty acids using gas chromatography-mass spectrophotometry (GC-MS) and dietary fibre using an enzymatic-gravimetric standard method of AOAC. Results: The total Saturated Fatty acids (SFAs) ranged from 0.74+0.3g/100g to 73.82+0.07g/100g. The total monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) ranged from 2.16+1.13g/100g for Yam pottage to 22.25+0.58g/100g for Okazi soup and eba, and from 0.42+0.10g/100g for Yam pottage to 10.22+0.1g/100g for Pounded yam with egusi ball soup, respectively. Trans fat was observed in Alapafubu and Tuwo shinkafa (2.80+0.2g/100g), Yam pottage (0.20+0.15g/100g), Steamed bean pudding (1.28+0.53g/100g) and Ikokore (5.33+0.41g/100g). The Total Dietary Fibre (TDF) contents of the dishes ranged from 12.95+2.99g/100g in Jollof rice to 62.00+0.94g/100g in Melon seed and vegetable soup, the Soluble Dietary Fibre (SDF) ranged from 2.05+0.32g/100g in Steamed bean pudding to 7.81+0.74g/100g in Ikokore while the Insoluble Dietary Fibre (IDF) ranged from 8.20+0.43g/100g in Jollof rice to 57.91+4.69g/100g in melon seed and vegetable soup. Conclusions: The study has indicated that some Nigerian dishes are characterized by high SFAs, TFAs and dietary fibre, moderate MUFAs and very low levels of PUFAs. High levels of SFAs in some soups and dishes are a major public health concern.

Keywords: healthy diet, dietary fibre, fatty acid profile, chronic diseases, Nigerian dishes

Procedia PDF Downloads 373
261 Characterization of AlOOH Film Containing Mg-Al Layered Double Hydroxide Prepared on Al Alloy by Steam Coating

Authors: Ai Serizawa, Kotaro Mori, Takahiro Ishizaki

Abstract:

Al alloys have been used as advanced structural materials in automobile and railway industries because of excellent physical and mechanical properties such as low density, good heat conductivity, and high specific strength. Their low corrosion resistance, however, limits their use in the corrosive environment. To improve the corrosion resistance of the Al alloys, the development of a novel coating technology has been highly desirable. Chemical conversion methods using layered double hydroxide (LDH) have attracted much attention because the LDH can suppress corrosion reaction due to their trapping ability of corrosive anions such as Cl- between layers. In this presentation, we report on a novel preparation method of AlOOH film containing Mg-Al layered double hydroxide (LDH) on Al alloy by steam coating. The corrosion resistance of the composite film including LDH was especially focused. Al-Mg-Si alloy was used as the substrate. The substrates were ultrasonically cleaned in ethanol for 10 min. The cleaned substrates were set in the autoclave with a 100 mL capacity. 20 ml of ultrapure water was located at the bottom of the autoclave to produce steam. The autoclave was heated up to a temperature of 100 to 200 °C, and then held at this temperature for up to 48 h, and was subsequently cooled naturally to room temperature, resulting in the formation of anticorrosive films on Al alloys. The resultant films were characterized by XRD, FT-IR, FE-SEM and electrochemical measurements. FE-SEM image of film surface treated at 180 °C for 48 h demonstrated that needle-like nanostructure was densely formed on the surface. XRD patterns revealed that the film formed on the Al alloys by steam coating was composed of crystal AlOOH and Mg-Al LDH. The corrosion resistance of the film was evaluated using electrochemical measurements. The potentiodynamic polarization curves of the film coated and uncoated substrates of Al-Mg-Si alloy after immersion in the 5 wt% NaCl aqueous solution for 30 min revealed that the corrosion current density, jcorr, of the film coated sample decreased by more than two orders of magnitude as compared to the uncoated sample, indicating that the corrosion resistance of the substrates of Al-Mg-Si alloy were improved by the formation of the anticorrosive film via steam coating.

Keywords: aluminum alloy, boehmite, corrosion resistance, steam process

Procedia PDF Downloads 288
260 The Dressing Field Method of Gauge Symmetries Reduction: Presentation and Examples

Authors: Jeremy Attard, Jordan François, Serge Lazzarini, Thierry Masson

Abstract:

Gauge theories are the natural background for describing geometrically fundamental interactions using principal and associated fiber bundles as dynamical entities. The central notion of these theories is their local gauge symmetry implemented by the local action of a Lie group H. There exist several methods used to reduce the symmetry of a gauge theory, like gauge fixing, bundle reduction theorem or spontaneous symmetry breaking mechanism (SSBM). This paper is a presentation of another method of gauge symmetry reduction, distinct from those three. Given a symmetry group H acting on a fiber bundle and its naturally associated fields (Ehresmann (or Cartan) connection, curvature, matter fields, etc.) there sometimes exists a way to erase (in whole or in part) the H-action by just reconfiguring these fields, i.e. by making a mere change of field variables in order to get new (‘composite‘) fields on which H (in whole or in part) does not act anymore. Two examples: the re-interpretation of the BEHGHK (Higgs) mechanism, on the one hand, and the top-down construction of Tractor and Penrose's Twistor spaces and connections in the framework of conformal Cartan geometry, one the other, will be discussed. They have, of course, nothing to do with each other but the dressing field method can be applied on both to get a new insight. In the first example, it turns out, indeed, that generation of masses in the Standard Model can be separated from the symmetry breaking, the latter being a mere change of field variables, i.e. a dressing. This offers an interpretation in opposition with the one usually found in textbooks. In the second case, the dressing field method applied to the conformal Cartan geometry offer a way of understanding the deep geometric nature of the so-called Tractors and Twistors. The dressing field method, distinct from a gauge transformation (even if it can have apparently the same form), is a systematic way of finding and erasing artificial symmetries of a theory, by a mere change of field variables which redistributes the degrees of freedom of the theories.

Keywords: BEHGHK (Higgs) mechanism, conformal gravity, gauge theory, spontaneous symmetry breaking, symmetry reduction, twistors and tractors

Procedia PDF Downloads 237
259 Covalent Binding of Cysteine to a Sol-Gel Material for Cadmium Biosorption from Aqueous Solutions

Authors: Claudiu Marcu, Cristina Paul, Adelina Andelescu, Corneliu Mircea Davidescu, Francisc Péter

Abstract:

Heavy metal pollution has become a more serious environmental problem in the last several decades as a result of its toxicity and insusceptibility to the environment. Methods for removing metal ions from aqueous solution mainly consist of physical, chemical and biochemical procedures. Biosorption is defined as the removal of metal or metalloid species, compounds and particulates from solution by a biological material. Biosorption represents a very attractive method for the removal of toxic metal ions from aqueous effluents because it uses the ability of various biomass to bind the metal ions without the risk of releasing other toxic chemical compounds into the environment. The problem with using biomass or living cells as biosorbents is that their regeneration/reuse is often either impossible or very laborious. One of the most common chelating group found in biosorbents is the thiol group in cysteine. Therefore, we immobilized cysteine using covalent binding using glutaraldehyde as a linker on a synthetic sol-gel support obtained using 3-amino-propyl-trimetoxysilane and trimetoxysilane as precursors. The obtained adsorbents were used for removal of cadmium from aqueous solutions and the removal capacity was investigated in relation to the composition of the sol-gel hybrid composite, the loading of the biomolecule and the physical parameters of the biosorption process. In the same conditions, the bare sol-gel support without cysteine had no Cd removal effect, while the adsorbent with cysteine had an adsorption capacity up to 25.8 mg Cd/g adsorbent at pH 2.0 and 119 mg Cd/g adsorbent at pH 6.6, depending on cadmium concentration and adsorption conditions. We used atomic adsorption spectrometry to assess the cadmium concentration in the samples after the biosorbtion process. The parameters for the Freundlich and Langmuir adsorption isotherms where calculated from plotting the results of the adsorption experiments. The results for cysteine immobilization show a good loading capacity of the sol-gel support which indicates it could be used to immobilize metal binding proteins and by doing so boosting the heavy metal adsorption capacity of the biosorbent.

Keywords: biosorbtion, cadmium, cysteine covalent binding, sol-gel

Procedia PDF Downloads 293
258 Enhancing Institutional Roles and Managerial Instruments for Irrigation Modernization in Sudan: The Case of Gezira Scheme

Authors: Mohamed Ahmed Abdelmawla

Abstract:

Calling to achieve Millennium Development Goals (MDGs) engaged with agriculture, i.e. poverty alleviation targets, human resources involved in agricultural sectors with special emphasis on irrigation must receive wealth of practical experience and training. Increased food production, including staple food, is needed to overcome the present and future threats to food security. This should happen within a framework of sustainable management of natural resources, elimination of unsustainable methods of production and poverty reduction (i.e. axes of modernization). A didactic tool to confirm the task of wise and maximum utility is the best management and accurate measurement, as major requisites for modernization process. The key component to modernization as a warranted goal is adhering great attention to management and measurement issues via capacity building. As such, this paper stressed the issues of discharge management and measurement by Field Outlet Pipes (FOP) for selected ones within the Gezira Scheme, where randomly nine FOPs were selected as representative locations. These FOPs extended along the Gezira Main Canal at Kilo 57 areas in the South up to Kilo 194 in the North. The following steps were followed during the field data collection and measurements: For each selected FOP, a 90 v- notch thin plate weir was placed in such away that the water was directed to pass only through the notch. An optical survey level was used to measure the water head of the notch and FOP. Both calculated discharge rates as measured by the v – notch, denoted as [Qc], and the adopted discharges given by (MOIWR), denoted as [Qa], are tackled for the average of three replicated readings undertaken at each location. The study revealed that the FOP overestimates and sometimes underestimates the discharges. This is attributed to the fact that the original design specifications were not fulfilled or met at present conditions where water is allowed to flow day and night with high head fluctuation, knowing that the FOP is non modular structure, i.e. the flow depends on both levels upstream and downstream and confirmed by the results of this study. It is convenient and formative to quantify the discharge in FOP with weirs or Parshall flumes. Cropping calendar should be clearly determined and agreed upon before the beginning of the season in accordance and consistency with the Sudan Gezira Board (SGB) and Ministry of Irrigation and Water Resources. As such, the water indenting should be based on actual Crop Water Requirements (CWRs), not on rules of thumb (420 m3/feddan, irrespective of crop or time of season).

Keywords: management, measurement, MDGs, modernization

Procedia PDF Downloads 250
257 Effect of Gravity on the Controlled Cooling of a Steel Block by Impinging Water Jets

Authors: E.K.K. Agyeman, P. Mousseau, A. Sarda, D. Edelin

Abstract:

The uniform and controlled cooling of hot metals by the circulation of water in canals remains a challenge due to the phase change of the water and the high heat fluxes associated with the phase change. This is because, during the cooling process, the phases are not uniformly distributed along the canals with the liquid phase dominating at the entrances of the canals and the gaseous phase dominating towards the exits. The difference in thermal properties between both phases leads to a heterogeneous temperature distribution in the part being cooled. Slowing down the cooling process is also a challenge due to the high heat fluxes associated with the phase change of water. This study investigates the use of multiple water jets for the controlled and homogenous cooling of hot metal parts and the effect of gravity on the effectiveness of the cooling process with a potential application in the cooling of composite forming moulds. A hole is bored at the centre of a steel block along its length. The jets are generated from the holes of a perforated steel pipe which is placed along the centre of the hole bored in the steel block. The evolution of the temperature with respect to time on the external surface of the steel block is measured simultaneously by thermocouples and an infrared camera. Different jet positions are tested in order to identify the jet placement configuration that ensures the most homogenous cooling of the block while the cooling speed is controlled by an intermittent impingement of the jets. In order to study the effect of gravity on the cooling process, a scenario where the jets are oriented in the opposite direction to that of gravity is compared to one where the jets are aligned in the same direction as gravity. It’s observed that orienting the jets in the direction of gravity reduces the effectiveness of the cooling process on the face of the block facing the impinging jets. This is due to the formation of a deeper pool of water due to the effect gravity and of the curved surface of the canal. This deeper pool of water influences the boiling regime characterized by a slower bubble evacuation when compared to the scenario where the jets are opposed to gravity.

Keywords: cooling speed, gravity, homogenous cooling, jet impingement

Procedia PDF Downloads 120
256 Jute Based Biocomposites: The Future of Automobiles

Authors: D. P. Ray, L. Ammayappan, S. Debnath, R. K. Ghosh, D. Mondal, S. Dasgupta, S. Islam, S. Chakroborty, P. K. Ganguly, D. Nag

Abstract:

Nature being bountiful is generous enough to provide rich resources to mankind. These resources can be used as an alternative to synthetics, thereby reducing the chances of environmental pollution. Natural fibre based composites have emerged as a successful trend in recent automobile industry. Natural fibre based composites used in automobile industries not only reduces their fuel consumption but also do not pose any health hazards. In spite of the use of natural fibre based bio composite in automobile industries, its use is only being limited to interior products. However, its major drawbacks which contributed to limited scope in the field of industry are reduced durability and mechanical strength. Thereby, the use of natural fibre based bio composites as headliner in case of automobile industries is also not successfully deployed. Out of all the natural fibres available, jute can widely be used as automobile parts because of its easy availability, comparatively higher specific strength, lower density, low thermal conductivity and most importantly its non polluting and non abrasive nature. Various research outcomes in the field of jute based biocomposites for the use of automobile industries has not successfully being deployed due to certain inherent problem of the fibre. Jute being hydrophilic in nature is not readily adhered to the hydrophobic polyester resin. Therefore introduction of a chemical compatibilizer, in the preparation of jute based composites have been tested to enhance the mechanical and durable properties of the material to a greater extent. This present work therefore focuses on the synthesis of a suitable compatibilizer, acting as a chemical bridge between the polar jute fabric and the non polar resin matrix. This in turn results in imparting better interfacial bonding between the two, thereby inducing higher mechanical strength. These coupling treated fabrics are casted into composites and tested for their mechanical properties. The test reports show a remarkable change in all of its properties. The durability test was performed by soil burial test method.

Keywords: jute, automobile industry, biodegradability, chemical compatibilizer

Procedia PDF Downloads 456
255 An Investigation on MgAl₂O₄ Based Mould System in Investment Casting Titanium Alloy

Authors: Chen Yuan, Nick Green, Stuart Blackburn

Abstract:

The investment casting process offers a great freedom of design combined with the economic advantage of near net shape manufacturing. It is widely used for the production of high value precision cast parts in particularly in the aerospace sector. Various combinations of materials have been used to produce the ceramic moulds, but most investment foundries use a silica based binder system in conjunction with fused silica, zircon, and alumino-silicate refractories as both filler and coarse stucco materials. However, in the context of advancing alloy technologies, silica based systems are struggling to keep pace, especially when net-shape casting titanium alloys. Study has shown that the casting of titanium based alloys presents considerable problems, including the extensive interactions between the metal and refractory, and the majority of metal-mould interaction is due to reduction of silica, present as binder and filler phases, by titanium in the molten state. Cleaner, more refractory systems are being devised to accommodate these changes. Although yttria has excellent chemical inertness to titanium alloy, it is not very practical in a production environment combining high material cost, short slurry life, and poor sintering properties. There needs to be a cost effective solution to these issues. With limited options for using pure oxides, in this work, a silica-free magnesia spinel MgAl₂O₄ was used as a primary coat filler and alumina as a binder material to produce facecoat in the investment casting mould. A comparison system was also studied with a fraction of the rare earth oxide Y₂O₃ adding into the filler to increase the inertness. The stability of the MgAl₂O₄/Al₂O₃ and MgAl₂O₄/Y₂O₃/Al₂O₃ slurries was assessed by tests, including pH, viscosity, zeta-potential and plate weight measurement, and mould properties such as friability were also measured. The interaction between the face coat and titanium alloy was studied by both a flash re-melting technique and a centrifugal investment casting method. The interaction products between metal and mould were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). The depth of the oxygen hardened layer was evaluated by micro hardness measurement. Results reveal that introducing a fraction of Y₂O₃ into magnesia spinel can significantly increase the slurry life and reduce the thickness of hardened layer during centrifugal casting.

Keywords: titanium alloy, mould, MgAl₂O₄, Y₂O₃, interaction, investment casting

Procedia PDF Downloads 111
254 Effect of Graphene on the Structural and Optical Properties of Ceria:Graphene Nanocomposites

Authors: R. Udayabhaskar, R. V. Mangalaraja, V. T. Perarasu, Saeed Farhang Sahlevani, B. Karthikeyan, David Contreras

Abstract:

Bandgap engineering of CeO₂ nanocrystals is of high interest for many research groups to meet the requirement of desired applications. The band gap of CeO₂ nanostructures can be modified by varying the particle size, morphology and dopants. Anchoring the metal oxide nanostructures on graphene sheets will result in composites with improved properties than the parent materials. The presence of graphene sheets will acts a support for the growth, influences the morphology and provides external paths for electronic transitions. Thus, the controllable synthesis of ceria:graphene composites with various morphologies and the understanding of the optical properties is highly important for the usage of these materials in various applications. The development of ceria and ceria:graphene composites with low cost, rapid synthesis with tunable optical properties is still desirable. By this work, we discuss the synthesis of pure ceria (nanospheres) and ceria:graphene composites (nano-rice like morphology) by using commercial microwave oven as a cost effective and environmentally friendly approach. The influence of the graphene on the crystallinity, morphology, band gap and luminescence of the synthesized samples were analyzed. The average crystallite size obtained by using Scherrer formula of the CeO₂ nanostructures showed a decreasing trend with increasing the graphene loading. The higher graphene loaded ceria composite clearly depicted morphology of nano-rice like in shape with the diameter below 10 nm and the length over 50 nm. The presence of graphene and ceria related vibrational modes (100-4000 cm⁻¹) confirmed the successful formation of composites. We observed an increase in band gap (blue shift) with increasing loading amount of graphene. Further, the luminescence related to various F-centers was quenched in the composites. The authors gratefully acknowledge the FONDECYT Project No.: 3160142 and BECA Conicyt National Doctorado2017 No. 21170851 Government of Chile, Santiago, for the financial assistance.

Keywords: ceria, graphene, luminescence, blue shift, band gap widening

Procedia PDF Downloads 190
253 Investigation of Supercapacitor Properties of Nanocomposites Obtained from Acid and Base-functionalized Multi-walled Carbon Nanotube (MWCNT) and Polypyrrole (PPy)

Authors: Feridun Demir, Pelin Okdem

Abstract:

Polymers are versatile materials with many unique properties, such as low density, reasonable strength, flexibility, and easy processability. However, the mechanical properties of these materials are insufficient for many engineering applications. Therefore, there is a continuous search for new polymeric materials with improved properties. Polymeric nanocomposites are an advanced class of composite materials that have attracted great attention in both academic and industrial fields. Since nano-reinforcement materials are very small in size, they provide ultra-large interfacial area per volume between the nano-element and the polymer matrix. This allows the nano-reinforcement composites to exhibit enhanced toughness without compromising hardness or optical clarity. PPy and MWCNT/PPy nanocomposites were synthesized by the chemical oxidative polymerization method and the supercapacitor properties of the obtained nanocomposites were investigated. In addition, pure MWCNT was functionalized with acid (H₂SO₄/H₂O₂) and base (NH₄OH/H₂O₂) solutions at a ratio of 3:1 and a-MWCNT/d-PPy, and b-MWCNT/d-PPy nanocomposites were obtained. The homogeneous distribution of MWCNTs in the polypyrrole matrix and shell-core type morphological structures of the nanocomposites was observed with SEM images. It was observed with SEM, FTIR and XRD analyses that the functional groups formed by the functionalization of MWCNTs caused the MWCNTs to come together and partially agglomerate. It was found that the conductivity of the nanocomposites consisting of MWCNT and d-PPy was higher than that of pure d-PPy. CV, GCD and EIS results show that the use of a-MWCNT and b-MWCNTs in nanocomposites with low particle content positively affects the supercapacitor properties of the materials but negatively at high particle content. It was revealed that the functional MWCNT particles combined in nanocomposites with high particle content cause a decrease in the conductivity and distribution of ions in the electrodes and, thus, a decrease in their energy storage capacity.

Keywords: polypyrrole, multi-walled carbon nanotube (MWCNT), conducting polymer, chemical oxidative polymerization, nanocomposite, supercapacitor

Procedia PDF Downloads 19
252 Manufacturing New Insulating Materials: A Study on Thermal Properties of Date Palm Wood

Authors: K. Almi, S. Lakel, A. Benchabane, A. Kriker

Abstract:

The fiber–matrix compatibility can be improved if suitable enforcements are chosen. Whenever the reinforcements have more thermal stability, they can resist to the main processes for wood–thermoplastic composites. Several researches are focused on natural resources for the production of biomaterials intended for technical applications. Date palm wood present one of the world’s most important natural resource. Its use as insulating materials will help to solve the severe environmental and recycling problems which other artificial insulating materials caused. This paper reports the results of an experimental investigation on the thermal proprieties of date palm wood from Algeria. A study of physical, chemical and mechanical properties is also carried out. The goal is to use this natural material in the manufacture of thermal insulation materials for buildings. The local natural resources used in this study are the date palm fibers from Biskra oasis in Algeria. The results have shown that there is no significant difference in the morphological proprieties of the four types of residues. Their chemical composition differed slightly; with the lowest amounts of cellulose and lignin content belong to Petiole. Water absorption study proved that Rachis has a low value of sorption whereas Petiole and Fibrillium have a high value of sorption what influenced their mechanical properties. It is seen that the Rachis and leaflets exhibit a high tensile strength values compared to the other residue. On the other hand the low value of bulk density of Petiole and Fibrillium leads to high value of specific tensile strength and young modulus. It was found that the specific young modulus of Petiole and Fibrillium was higher than that of Rachis and Leaflets and that of other natural fibers or even artificial fibers. Compared to the other materials date palm wood provide a good thermal proprieties thus, date palm wood will be a good candidate for the manufacturing efficient and safe insulating materials.

Keywords: composite materials, date palm fiber, natural fibers, tensile tests, thermal proprieties

Procedia PDF Downloads 641
251 Comparative Performance of Retting Methods on Quality Jute Fibre Production and Water Pollution for Environmental Safety

Authors: A. K. M. Zakir Hossain, Faruk-Ul Islam, Muhammad Alamgir Chowdhury, Kazi Morshed Alam, Md. Rashidul Islam, Muhammad Humayun Kabir, Noshin Ara Tunazzina, Taufiqur Rahman, Md. Ashik Mia, Ashaduzzaman Sagar

Abstract:

The jute retting process is one of the key factors for the excellent jute fibre production as well as maintaining water quality. The traditional method of jute retting is time-consuming and hampers the fish cultivation by polluting the water body. Therefore, a low cost, time-saving, environment-friendly, and improved technique is essential for jute retting to overcome this problem. Thus the study was focused to compare the extent of water pollution and fibre quality of two retting systems, i.e., traditional retting practices over-improved retting method (macha retting) by assessing different physico-chemical and microbiological properties of water and fibre quality parameters. Water samples were collected from the top and bottom of the retting place at the early, mid, and final stages of retting from four districts of Bangladesh viz., Gaibandha, Kurigram, Lalmonirhat, and Rangpur. Different physico-chemical parameters of water samples viz., pH, dissolved oxygen (DO), conductivity (CD), total dissolved solids (TDS), hardness, calcium, magnesium, carbonate, bicarbonate, chloride, phosphorus and sulphur content were measured. Irrespective of locations, the DO of the final stage retting water samples was very low as compared to the mid and early stage, and the DO of traditional jute retting method was significantly lower than the improved macha method. The pH of the water samples was slightly more acidic in the traditional retting method than that of the improved macha method. Other physico-chemical parameters of the water sample were found higher in the traditional method over-improved macha retting in all the stages of retting. Bacterial species were isolated from the collected water samples following the dilution plate technique. Microbiological results revealed that water samples of improved macha method contained more bacterial species that are supposed to involve in jute retting as compared to water samples of the traditional retting method. The bacterial species were then identified by the sequencing of 16SrDNA. Most of the bacterial species identified belong to the genera Pseudomonas, Bacillus, Pectobacterium, and Stenotrophomonas. In addition, the tensile strength of the jute fibre was tested, and the results revealed that the improved macha method showed higher mechanical strength than the traditional method in most of the locations. The overall results indicate that the water and fibre quality were found better in the improved macha retting method than the traditional method. Therefore, a time-saving and cost-friendly improved macha retting method can be widely adopted for the jute retting process to get the quality jute fiber and to keep the environment clean and safe.

Keywords: jute retting methods, physico-chemical parameters, retting microbes, tensile strength, water quality

Procedia PDF Downloads 156
250 Application of Response Surface Methodology in Optimizing Chitosan-Argan Nutshell Beads for Radioactive Wastewater Treatment

Authors: F. F. Zahra, E. G. Touria, Y. Samia, M. Ahmed, H. Hasna, B. M. Latifa

Abstract:

The presence of radioactive contaminants in wastewater poses a significant environmental and health risk, necessitating effective treatment solutions. This study investigates the optimization of chitosan-Argan nutshell beads for the removal of radioactive elements from wastewater, utilizing Response Surface Methodology (RSM) to enhance the treatment efficiency. Chitosan, known for its biocompatibility and adsorption properties, was combined with Argan nutshell powder to form composite beads. These beads were then evaluated for their capacity to remove radioactive contaminants from synthetic wastewater. The Box-Behnken design (BBD) under RSM was employed to analyze the influence of key operational parameters, including initial contaminant concentration, pH, bead dosage, and contact time, on the removal efficiency. Experimental results indicated that all tested parameters significantly affected the removal efficiency, with initial contaminant concentration and pH showing the most substantial impact. The optimized conditions, as determined by RSM, were found to be an initial contaminant concentration of 50 mg/L, a pH of 6, a bead dosage of 0.5 g/L, and a contact time of 120 minutes. Under these conditions, the removal efficiency reached up to 95%, demonstrating the potential of chitosan-Argan nutshell beads as a viable solution for radioactive wastewater treatment. Furthermore, the adsorption process was characterized by fitting the experimental data to various isotherm and kinetic models. The adsorption isotherms conformed well to the Langmuir model, indicating monolayer adsorption, while the kinetic data were best described by the pseudo-second-order model, suggesting chemisorption as the primary mechanism. This study highlights the efficacy of chitosan-Argan nutshell beads in removing radioactive contaminants from wastewater and underscores the importance of optimizing treatment parameters using RSM. The findings provide a foundation for developing cost-effective and environmentally friendly treatment technologies for radioactive wastewater.

Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology

Procedia PDF Downloads 29
249 Executive Functions Directly Associated with Severity of Perceived Pain above and beyond Depression in the Context of Medical Rehabilitation

Authors: O. Elkana, O Heyman, S. Hamdan, M. Franko, J. Vatine

Abstract:

Objective: To investigate whether a direct link exists between perceived pain (PP) and executive functions (EF), above and beyond the influence of depression symptoms, in the context of medical rehabilitation. Design: Cross-sectional study. Setting: Rehabilitation Hospital. Participants: 125 medical records of hospitalized patients were screened for matching to our inclusion criteria. Only 60 patients were found fit and were asked to participate. 19 decline to participate on personal basis. The 41 neurologically intact patients (mean age 46, SD 14.96) that participated in this study were in their sub-acute stage of recovery, with fluent Hebrew, with intact upper limb (to neutralize influence on psychomotor performances) and without an organic brain damage. Main Outcome Measures: EF were assessed using the Wisconsin Card Sorting Test (WCST) and the Stop-Signal Test (SST). PP was measured using 3 well-known pain questionnaires: Pain Disability Index (PDI), The Short-Form McGill Questionnaire (SF-MPQ) and the Pain Catastrophizing Scale (PCS). Perceived pain index (PPI) was calculated by the mean score composite from the 3 pain questionnaires. Depression symptoms were assessed using the Patient Health Questionnaire (PHQ-9). Results: The results indicate that irrespective of the presence of depression symptoms, PP is directly correlated with response inhibition (SST partial correlation: r=0.5; p=0.001) and mental flexibility (WSCT partial correlation: r=-0.37; p=0.021), suggesting decreased performance in EF as PP severity increases. High correlations were found between the 3 pain measurements: SF-MPQ with PDI (r=0.62, p<0.001), SF-MPQ with PCS (r=0.58, p<0.001) and PDI with PCS (r=0.38, p=0.016) and each questionnaire alone was also significantly associated with EF; thus, no specific questionnaires ‘pulled’ the results obtained by the general index (PPI). Conclusion: Examining the direct association between PP and EF, beyond the contribution of depression symptoms, provides further clinical evidence suggesting that EF and PP share underlying mediating neuronal mechanisms. Clinically, the importance of assessing patients' EF abilities as well as PP severity during rehabilitation is underscored.

Keywords: depression, executive functions, mental-flexibility, neuropsychology, pain perception, perceived pain, response inhibition

Procedia PDF Downloads 247
248 Synergistic Effect of Chondroinductive Growth Factors and Synovium-Derived Mesenchymal Stem Cells on Regeneration of Cartilage Defects in Rabbits

Authors: M. Karzhauov, А. Mukhambetova, M. Sarsenova, E. Raimagambetov, V. Ogay

Abstract:

Regeneration of injured articular cartilage remains one of the most difficult and unsolved problems in traumatology and orthopedics. Currently, for the treatment of cartilage defects surgical techniques for stimulation of the regeneration of cartilage in damaged joints such as multiple microperforation, mosaic chondroplasty, abrasion and microfractures is used. However, as shown by clinical practice, they can not provide a full and sustainable recovery of articular hyaline cartilage. In this regard, the current high hopes in the regeneration of cartilage defects reasonably are associated with the use of tissue engineering approaches to restore the structural and functional characteristics of damaged joints using stem cells, growth factors and biopolymers or scaffolds. The purpose of the present study was to investigate the effects of chondroinductive growth factors and synovium-derived mesenchymal stem cells (SD-MSCs) on the regeneration of cartilage defects in rabbits. SD-MSCs were isolated from the synovium membrane of Flemish giant rabbits, and expanded in complete culture medium α-MEM. Rabbit SD-MSCs were characterized by CFU-assay and by their ability to differentiate into osteoblasts, chondrocytes and adipocytes. The effects of growth factors (TGF-β1, BMP-2, BMP-4 and IGF-I) on MSC chondrogenesis were examined in micromass pellet cultures using histological and biochemical analysis. Articular cartilage defect (4mm in diameter) in the intercondylar groove of the patellofemoral joint was performed with a kit for the mosaic chondroplasty. The defect was made until subchondral bone plate. Delivery of SD-MSCs and growth factors was conducted in combination with hyaloronic acid (HA). SD-MSCs, growth factors and control groups were compared macroscopically and histologically at 10, 30, 60 and 90 days aftrer intra-articular injection. Our in vitro comparative study revealed that TGF-β1 and BMP-4 are key chondroinductive factors for both the growth and chondrogenesis of SD-MSCs. The highest effect on MSC chondrogenesis was observed with the synergistic interaction of TGF-β1 and BMP-4. In addition, biochemical analysis of the chondrogenic micromass pellets also revealed that the levels of glycosaminoglycans and DNA after combined treatment with TGF-β1 and BMP-4 was significantly higher in comparison to individual application of these factors. In vivo study showed that for complete regeneration of cartilage defects with intra-articular injection of SD-MSCs with HA takes time 90 days. However, single injection of SD-MSCs in combiantion with TGF-β1, BMP-4 and HA significantly promoted regeneration rate of the cartilage defects in rabbits. In this case, complete regeneration of cartilage defects was observed in 30 days after intra-articular injection. Thus, our in vitro and in vivo study demonstrated that combined application of rabbit SD-MSC with chondroinductive growth factors and HA results in strong synergistic effect on the chondrogenesis significantly enhancing regeneration of the damaged cartilage.

Keywords: Mesenchymal stem cells, synovium, chondroinductive factors, TGF-β1, BMP-2, BMP-4, IGF-I

Procedia PDF Downloads 304
247 Polymer-Layered Gold Nanoparticles: Preparation, Properties and Uses of a New Class of Materials

Authors: S. M. Chabane sari S. Zargou, A.R. Senoudi, F. Benmouna

Abstract:

Immobilization of nano particles (NPs) is the subject of numerous studies pertaining to the design of polymer nano composites, supported catalysts, bioactive colloidal crystals, inverse opals for novel optical materials, latex templated-hollow inorganic capsules, immunodiagnostic assays; “Pickering” emulsion polymerization for making latex particles and film-forming composites or Janus particles; chemo- and biosensors, tunable plasmonic nano structures, hybrid porous monoliths for separation science and technology, biocidal polymer/metal nano particle composite coatings, and so on. Particularly, in the recent years, the literature has witnessed an impressive progress of investigations on polymer coatings, grafts and particles as supports for anchoring nano particles. This is actually due to several factors: polymer chains are flexible and may contain a variety of functional groups that are able to efficiently immobilize nano particles and their precursors by dispersive or van der Waals, electrostatic, hydrogen or covalent bonds. We review methods to prepare polymer-immobilized nano particles through a plethora of strategies in view of developing systems for separation, sensing, extraction and catalysis. The emphasis is on methods to provide (i) polymer brushes and grafts; (ii) monoliths and porous polymer systems; (iii) natural polymers and (iv) conjugated polymers as platforms for anchoring nano particles. The latter range from soft bio macromolecular species (proteins, DNA) to metallic, C60, semiconductor and oxide nano particles; they can be attached through electrostatic interactions or covalent bonding. It is very clear that physicochemical properties of polymers (e.g. sensing and separation) are enhanced by anchored nano particles, while polymers provide excellent platforms for dispersing nano particles for e.g. high catalytic performances. We thus anticipate that the synergetic role of polymeric supports and anchored particles will increasingly be exploited in view of designing unique hybrid systems with unprecedented properties.

Keywords: gold, layer, polymer, macromolecular

Procedia PDF Downloads 390
246 Bimetallic MOFs Based Membrane for the Removal of Heavy Metal Ions from the Industrial Wastewater

Authors: Muhammad Umar Mushtaq, Muhammad Bilal Khan Niazi, Nouman Ahmad, Dooa Arif

Abstract:

Apart from organic dyes, heavy metals such as Pb, Ni, Cr, and Cu are present in textile effluent and pose a threat to humans and the environment. Many studies on removing heavy metallic ions from textile wastewater have been conducted in recent decades using metal-organic frameworks (MOFs). In this study new polyether sulfone ultrafiltration membrane, modified with Cu/Co and Cu/Zn-based bimetal-organic frameworks (MOFs), was produced. Phase inversion was used to produce the membrane, and atomic force microscopy (AFM), scanning electron microscopy (SEM) were used to characterize it. The bimetallic MOFs-based membrane structure is complex and can be comprehended using characterization techniques. The bimetallic MOF-based filtration membranes are designed to selectively adsorb specific contaminants while allowing the passage of water molecules, improving the ultrafiltration efficiency. MOFs' adsorption capacity and selectivity are enhanced by functionalizing them with particular chemical groups or incorporating them into composite membranes with other materials, such as polymers. The morphology and performance of the bimetallic MOF-based membrane were investigated regarding pure water flux and metal ion rejection. The advantages of developed bimetallic MOFs based membranes for wastewater treatment include enhanced adsorption capacity because of the presence of two metals in their structure, which provides additional binding sites for contaminants, leading to a higher adsorption capacity and more efficient removal of pollutants from wastewater. Based on the experimental findings, bimetallic MOF-based membranes are more capable of rejecting metal ions from industrial wastewater than conventional membranes that have already been developed. Furthermore, the difficulties associated with operational parameters, including pressure gradients and velocity profiles, are simulated using Ansys Fluent software. The simulation results obtained for the operating parameters are in complete agreement with the experimental results.

Keywords: bimetallic MOFs, heavy metal ions, industrial wastewater treatment, ultrafiltration.

Procedia PDF Downloads 88
245 Hyaluronic Acid - Alginate Hydrogel for the Transdifferentiation of Testis Cells into Erythrocyte and Hepatocyte-like Cells; A Practice Within an Effective Agent Choice

Authors: Leila Rashki Ghaleno, Mohamad Amin Hajari, Leila Montazeri, Abdolhossein Shahverdi, Mojtaba Rezazadeh Valojerdi

Abstract:

Background: Spermatogonia stem cells (SSCs) exhibit pluripotency, enabling them to undergo differentiation into many cell lineages, including neurons, glia, endothelial cells, and hepatocytes when cultured in vitro. Although the specific mechanisms are not yet fully understood, it has been observed that biopolymer agents, such as hyaluronic acid (HA) and alginate (Alg), have the potential to induce transdifferentiation of SSCs. The current work aimed to examine the process of in vitro spermatogenesis and the conversion of mouse testicular cells into hepatocytes and erythrocyte-like cells utilizing the HA-Alg hydrogel. Method: After being extracted from the testes of a 5-day postpartum mouse (5 DPP), the testicular cells were separated into two enzymatic stages and then put into a composite hydrogel containing 0.5% HA and 1% alginate. On days 14 and 28 of culture, the colonies' growth, the cells' viability, and their histology were assessed. Result: Despite observing significant cell proliferation on day 14 and the development of circular-shaped organoids on day 28, it was noted that the organoids generated in the HA-Alg medium tended to maintain their circular morphology on day 28. Notably, the testicular cells underwent transdifferentiation into cell types resembling erythrocytes and hepatocytes. The hepatocyte-like cells exhibited the presence of glycogen and lipid deposits, indicating their hepatocyte-like characteristics. Interestingly, immunostaining analysis revealed the secretion of albumin and the presence of VEGFR on day 14. However, on day 28, albumin expression was not detected, while the expression of Sox9 (a marker for hepatocytes), Vegf, CD34, and C-kit (markers for erythrocytes) showed increased levels in the gene expression evaluation. Conclusion: The present findings indicated that HA-Alg could be a potent and effective agent for the transdifferentiation of testis cells into erythrocyte and hepatocyte-like cells, as recent studies have confirmed the transformation of SSCs into hepatocyte cells during in vitro culture.

Keywords: 3D culture, mouse testicular cell, hyaluronic acid, liver organoids

Procedia PDF Downloads 69
244 Convective Boiling of CO₂/R744 in Macro and Micro-Channels

Authors: Adonis Menezes, J. C. Passos

Abstract:

The current panorama of technology in heat transfer and the scarcity of information about the convective boiling of CO₂ and hydrocarbon in small diameter channels motivated the development of this work. Among non-halogenated refrigerants, CO₂/ R744 has distinct thermodynamic properties compared to other fluids. The R744 presents significant differences in operating pressures and temperatures, operating at higher values compared to other refrigerants, and this represents a challenge for the design of new evaporators, as the original systems must normally be resized to meet the specific characteristics of the R744, which creates the need for a new design and optimization criteria. To carry out the convective boiling tests of CO₂, an experimental apparatus capable of storing (m= 10kg) of saturated CO₂ at (T = -30 ° C) in an accumulator tank was used, later this fluid was pumped using a positive displacement pump with three pistons, and the outlet pressure was controlled and could reach up to (P = 110bar). This high-pressure saturated fluid passed through a Coriolis type flow meter, and the mass velocities varied between (G = 20 kg/m².s) up to (G = 1000 kg/m².s). After that, the fluid was sent to the first test section of circular cross-section in diameter (D = 4.57mm), where the inlet and outlet temperatures and pressures, were controlled and the heating was promoted by the Joule effect using a source of direct current with a maximum heat flow of (q = 100 kW/m²). The second test section used a cross-section with multi-channels (seven parallel channels) with a square cross-section of (D = 2mm) each; this second test section has also control of temperature and pressure at the inlet and outlet as well as for heating a direct current source was used, with a maximum heat flow of (q = 20 kW/m²). The fluid in a biphasic situation was directed to a parallel plate heat exchanger so that it returns to the liquid state, thus being able to return to the accumulator tank, continuing the cycle. The multi-channel test section has a viewing section; a high-speed CMOS camera was used for image acquisition, where it was possible to view the flow patterns. The experiments carried out and presented in this report were conducted in a rigorous manner, enabling the development of a database on the convective boiling of the R744 in macro and micro channels. The analysis prioritized the processes from the beginning of the convective boiling until the drying of the wall in a subcritical regime. The R744 resurfaces as an excellent alternative to chlorofluorocarbon refrigerants due to its negligible ODP (Ozone Depletion Potential) and GWP (Global Warming Potential) rates, among other advantages. The results found in the experimental tests were very promising for the use of CO₂ in micro-channels in convective boiling and served as a basis for determining the flow pattern map and correlation for determining the heat transfer coefficient in the convective boiling of CO₂.

Keywords: convective boiling, CO₂/R744, macro-channels, micro-channels

Procedia PDF Downloads 141
243 Modelling of Air-Cooled Adiabatic Membrane-Based Absorber for Absorption Chillers Using Low Temperature Solar Heat

Authors: M. Venegas, M. De Vega, N. García-Hernando

Abstract:

Absorption cooling chillers have received growing attention over the past few decades as they allow the use of low-grade heat to produce the cooling effect. The combination of this technology with solar thermal energy in the summer period can reduce the electricity consumption peak due to air-conditioning. One of the main components, the absorber, is designed for simultaneous heat and mass transfer. Usually, shell and tubes heat exchangers are used, which are large and heavy. Cooling water from a cooling tower is conventionally used to extract the heat released during the absorption and condensation processes. These are clear inconvenient for the generalization of the absorption technology use, limiting its benefits in the contribution to the reduction in CO2 emissions, particularly for the H2O-LiBr solution which can work with low heat temperature sources as provided by solar panels. In the present work a promising new technology is under study, consisting in the use of membrane contactors in adiabatic microchannel mass exchangers. The configuration here proposed consists in one or several modules (depending on the cooling capacity of the chiller) that contain two vapour channels, separated from the solution by adjacent microporous membranes. The solution is confined in rectangular microchannels. A plastic or synthetic wall separates the solution channels between them. The solution entering the absorber is previously subcooled using ambient air. In this way, the need for a cooling tower is avoided. A model of the configuration proposed is developed based on mass and energy balances and some correlations were selected to predict the heat and mass transfer coefficients. The concentration and temperatures along the channels cannot be explicitly determined from the set of equations obtained. For this reason, the equations were implemented in a computer code using Engineering Equation Solver software, EES™. With the aim of minimizing the absorber volume to reduce the size of absorption cooling chillers, the ratio between the cooling power of the chiller and the absorber volume (R) is calculated. Its variation is shown along the solution channels, allowing its optimization for selected operating conditions. For the case considered the solution channel length is recommended to be lower than 3 cm. Maximum values of R obtained in this work are higher than the ones found in optimized horizontal falling film absorbers using the same solution. Results obtained also show the variation of R and the chiller efficiency (COP) for different ambient temperatures and desorption temperatures typically obtained using flat plate solar collectors. The configuration proposed of adiabatic membrane-based absorber using ambient air to subcool the solution is a good technology to reduce the size of the absorption chillers, allowing the use of low temperature solar heat and avoiding the need for cooling towers.

Keywords: adiabatic absorption, air-cooled, membrane, solar thermal energy

Procedia PDF Downloads 283
242 Optimizing the Pair Carbon Xerogels-Electrolyte for High Performance Supercapacitors

Authors: Boriana Karamanova, Svetlana Veleva, Luybomir Soserov, Ana Arenillas, Francesco Lufrano, Antonia Stoyanova

Abstract:

Supercapacitors have received a lot of research attention and are promising energy storage devices due to their high power and long cycle life. In order to developed an advanced device with significant capacity for storing charge and cheap carbon materials, efforts must focus not only on improving synthesis by controlling the morphology and pore size but also on improving electrode-electrolyte compatibility of the resulting systems. The present study examines the relationship between the surface chemistry of two activated carbon xerogels, the electrolyte type, and the electrochemical properties of supercapacitors. Activated carbon xerogels were prepared by varying the initial pH of the resorcinol-formaldehyde aqueous solution. The materials produced are physicochemical characterized by DTA/TGA, porous characterization, and SEM analysis. The carbon xerogel based electrodes were prepared by spreading over glass plate a slurry containing the carbon gel, graphite, and poly vinylidene difluoride (PVDF) binder. The layer formed was dried consecutively at different temperatures and then detached by water. After, the layer was dried again to improve its mechanical stability. The developed electrode materials and the Aquivion® E87-05S membrane (Solvay Specialty Polymers), socked in Na2SO4 as a polymer electrolyte, were used to assembly the solid-state supercapacitor. Symmetric supercapacitor cells composed by same electrodes and 1 M KOH electrolytes are also assembled and tested for comparison. The supercapacitor performances are verified by different electrochemical methods - cyclic voltammetry, galvanostatic charge/discharge measurements, electrochemical impedance spectroscopy, and long-term durability tests in neutral and alkaline electrolytes. Specific capacitances, energy, and power density, energy efficiencies, and durability were compared into studied supercapacitors. Ex-situ physicochemical analyses on the synthesized materials have also been performed, which provide information about chemical and structural changes in the electrode morphology during charge / discharge durability tests. They are discussed on the basis of electrode-electrolyte interaction. The obtained correlations could be of significance in order to design sustainable solid-state supercapacitors with high power and energy density. Acknowledgement: This research is funded by the Ministry of Education and Science of Bulgaria under the National Program "European Scientific Networks" (Agreement D01-286 / 07.10.2020, D01-78/30.03.2021). Authors gratefully acknowledge.

Keywords: carbon xerogel, electrochemical tests, neutral and alkaline electrolytes, supercapacitors

Procedia PDF Downloads 136
241 Modeling of Void Formation in 3D Woven Fabric During Resin Transfer Moulding

Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Jan Kočí, Andy Long

Abstract:

Resin transfer molding (RTM) is increasingly used for manufacturing high-quality composite structures due to its additional advantages over prepregs of low-cost out-of-autoclave processing. However, to retain the advantages, it is critical to reduce the void content during the injection. Reinforcements commonly used in RTM, such as woven fabrics, have dual-scale porosity with mesoscale pores between the yarns and the micro-scale pores within the yarns. Due to the fabric geometry and the nature of the dual-scale flow, the flow front during injection creates a complicated fingering formation which leads to void formation. Analytical modeling of void formation for woven fabrics has been widely studied elsewhere. However, there is scope for improvement to the reduction in void formation in 3D fabrics wherein the in-plane yarn layers are confined by additional through-thickness binder yarns. In the present study, the structural morphology of the tortuous pore spaces in the 3D fabric has been studied and implemented using open-source software TexGen. An analytical model for the void and the fingering formation has been implemented based on an idealized unit cell model of the 3D fabric. Since the pore spaces between the yarns are free domains, the region is treated as flow-through connected channels, whereas intra-yarn flow has been modeled using Darcy’s law with an additional term to account for capillary pressure. Later the void fraction has been characterised using the criterion of void formation by comparing the fill time for inter and intra yarn flow. Moreover, the dual-scale two-phase flow of resin with air has been simulated in the commercial CFD solver OpenFOAM/ANSYS to predict the probable location of voids and validate the analytical model. The use of an idealised unit cell model will give the insight to optimise the mesoscale geometry of the reinforcement and injection parameters to minimise the void content during the LCM process.

Keywords: 3D fiber, void formation, RTM, process modelling

Procedia PDF Downloads 95
240 Cycle-Oriented Building Components and Constructions Made from Paper Materials

Authors: Rebecca Bach, Evgenia Kanli, Nihat Kiziltoprak, Linda Hildebrand, Ulrich Knaack, Jens Schneider

Abstract:

The building industry has a high demand for resources and at the same time is responsible for a significant amount of waste created worldwide. Today's building components need to contribute to the protection of natural resources without creating waste. This is defined in the product development phase and impacts the product’s degree of being cycle-oriented. Paper-based materials show advantage due to their renewable origin and their ability to incorporate different functions. Besides the ecological aspects like renewable origin and recyclability the main advantages of paper materials are its light-weight but stiff structure, the optimized production processes and good insulation values. The main deficits from building technology’s perspective are the material's vulnerability to humidity and water as well as inflammability. On material level, those problems can be solved by coatings or through material modification. On construction level intelligent setup and layering of a building component can improve and also solve these issues. The target of the present work is to provide an overview of developed building components and construction typologies mainly made from paper materials. The research is structured in four parts: (1) functions and requirements, (2) preselection of paper-based materials, (3) development of building components and (4) evaluation. As part of the research methodology at first the needs of the building sector are analyzed with the aim to define the main areas of application and consequently the requirements. Various paper materials are tested in order to identify to what extent the requirements are satisfied and determine potential optimizations or modifications, also in combination with other construction materials. By making use of the material’s potentials and solving the deficits on material and on construction level, building components and construction typologies are developed. The evaluation and the calculation of the structural mechanics and structural principals will show that different construction typologies can be derived. Profiles like paper tubes can be used at best for skeleton constructions. Massive structures on the other hand can be formed by plate-shaped elements like solid board or honeycomb. For insulation purposes corrugated cardboard or cellulose flakes have the best properties, while layered solid board can be applied to prevent inner condensation. Enhancing these properties by material combinations for instance with mineral coatings functional constructions mainly out of paper materials were developed. In summary paper materials offer a huge variety of possible applications in the building sector. By these studies a general base of knowledge about how to build with paper was developed and is to be reinforced by further research.

Keywords: construction typologies, cycle-oriented construction, innovative building material, paper materials, renewable resources

Procedia PDF Downloads 274
239 Comparison of Microstructure, Mechanical Properties and Residual Stresses in Laser and Electron Beam Welded Ti–5Al–2.5Sn Titanium Alloy

Authors: M. N. Baig, F. N. Khan, M. Junaid

Abstract:

Titanium alloys are widely employed in aerospace, medical, chemical, and marine applications. These alloys offer many advantages such as low specific weight, high strength to weight ratio, excellent corrosion resistance, high melting point and good fatigue behavior. These attractive properties make titanium alloys very unique and therefore they require special attention in all areas of processing, especially welding. In this work, 1.6 mm thick sheets of Ti-5Al-2,5Sn, an alpha titanium (α-Ti) alloy, were welded using electron beam (EBW) and laser beam (LBW) welding processes to achieve a full penetration Bead-on Plate (BoP) configuration. The weldments were studied using polarized optical microscope, SEM, EDS and XRD. Microhardness distribution across the weld zone and smooth and notch tensile strengths of the weldments were also recorded. Residual stresses using Hole-drill Strain Measurement (HDSM) method and deformation patterns of the weldments were measured for the purpose of comparison of the two welding processes. Fusion zone widths of both EBW and LBW weldments were found to be approximately equivalent owing to fairly similar high power densities of both the processes. Relatively less oxide content and consequently high joint quality were achieved in EBW weldment as compared to LBW due to vacuum environment and absence of any shielding gas. However, an increase in heat-affected zone width and partial ά-martensitic transformation infusion zone of EBW weldment were observed because of lesser cooling rates associated with EBW as compared with LBW. The microstructure infusion zone of EBW weldment comprised both acicular α and ά martensite within the prior β grains whereas complete ά martensitic transformation was observed within the fusion zone of LBW weldment. Hardness of the fusion zone in EBW weldment was found to be lower than the fusion zone of LBW weldment due to the observed microstructural differences. Notch tensile specimen of LBW exhibited higher load capacity, ductility, and absorbed energy as compared with EBW specimen due to the presence of high strength ά martensitic phase. It was observed that the sheet deformation and deformation angle in EBW weldment were more than LBW weldment due to relatively more heat retention in EBW which led to more thermal strains and hence higher deformations and deformation angle. The lowest residual stresses were found in LBW weldments which were tensile in nature. This was owing to high power density and higher cooling rates associated with LBW process. EBW weldment exhibited highest compressive residual stresses due to which the service life of EBW weldment is expected to improve.

Keywords: Laser and electron beam welding, Microstructure and mechanical properties, Residual stress and distortions, Titanium alloys

Procedia PDF Downloads 225