Search results for: solar salt
1949 Optimization of the Energy Management for a Solar System of an Agricultural Greenhouse
Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume
Abstract:
To improve the climatic conditions and increase production in the greenhouse during the winter season under the Mediterranean climate, this thesis project proposes a design of an integrated and autonomous solar system for heating, cooling, and conservation of production in an agricultural greenhouse. To study the effectiveness of this system, experiments are conducted in two similar agricultural greenhouses oriented north-south. The first greenhouse is equipped with an active solar system integrated into the double glazing of the greenhouse’s roof, while the second greenhouse has no system, it serves as a controlled greenhouse for comparing thermal and agronomic performance The solar system allowed for an average increase in the indoor temperature of the experimental greenhouse of 6°C compared to the outdoor environment and 4°C compared to the control greenhouse. This improvement in temperature has a favorable effect on the plants' climate and subsequently positively affects their development, quality, and production.Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying
Procedia PDF Downloads 991948 Heat Transfer Augmentation in Solar Air Heater Using Fins and Twisted Tape Inserts
Authors: Rajesh Kumar, Prabha Chand
Abstract:
Fins and twisted tape inserts are widely used passive elements to enhance heat transfer rate in various engineering applications. The present paper describes the theoretical analysis of solar air heater fitted with fins and twisted tape inserts. Mathematical model is develop for this novel design of solar air heater and a MATLAB code is generated for the solution of the model. The effect of twist ratio, mass flow rate and inlet temperature on the thermal efficiency and exit air temperature has been investigated. The results are compared with the results of plane solar air heater. Results show a substantial enhancement in heat transfer rate, efficiency and exit air temperature.Keywords: solar air heater, thermal efficiency, twisted tape, twist ratio
Procedia PDF Downloads 2551947 Sensitivity Studies for a Pin Homojunction a-Si:H Solar Cell
Authors: Leila Ayat, Afak Meftah
Abstract:
Amorphous-silicon alloys have great promise as low cost solar cell materials. They have excellent photo-conductivity and high optical absorption to sunlight. Now PIN a-Si:H based solar cells are widely used in power generation modules. However, to improve the performance of these cells further, a better fundamental under-standing of the factors limiting cell performance in the homo junction PIN structure is necessary. In this paper we discuss the sensitivity of light J-V characteristics to various device and material parameters in PIN homo junction solar cells. This work is a numerical simulation of the output parameters of a PIN a-Si:H solar cell under AM1.5 spectrum. These parameters are the short circuit current (Jsc), the open circuit voltage (Voc), the fill factor (FF), the conversion efficiency. The simulation was performed with SCAPS-1D software version 3.3 developed at ELIS in Belgium by Marc Burgelman et al. The obtained results are in agreement with experiment. In addition, the effect of the thickness, doping density, capture cross sections of the gap states and the band microscopic mobilities on the output parameters of the cell are also presented.Keywords: amorphous silicon p-i-n junctions, thin film, solar cells, sensitivity
Procedia PDF Downloads 5191946 Hysteresis Effect in Organometallic Perovskite Solar Cells with Mesoscopic NiO as a Hole Transport Layer
Authors: D. C. Asebiah, D. Saranin, S. Karazhanov, A. R. Tameev, M. Kah
Abstract:
In this paper, the mesoscopic NiO was used as a hole transport layer in the inverted planar organometallic hybrid perovskite solar cell to study the effect of hysteresis. The devices we fabricated have the structures Fluorine Tin Oxide (FTO)/mesoscopic NiO/perovskite/[6,6]-phenyl C₆₁-butyric acid methyl ester (PC₆₁BM) photovoltaic device. The perovskite solar cell was done by toluene air (TLA) method and horn sonication for the dispersion of the NiO nanoparticles in deionized water. The power conversion efficiency was 12.07% under 1.5 AM illumination. We report hysteresis in the in current-voltage dependence of the solar cells with mesoscopic NiO as a hole transport layer.Keywords: perovskite, mesoscopic, hysteresis, toluene air
Procedia PDF Downloads 1691945 Design of a Solar Water Heating System with Thermal Storage for a Three-Bedroom House in Newfoundland
Authors: Ahmed Aisa, Tariq Iqbal
Abstract:
This letter talks about the ready-to-use design of a solar water heating system because, in Canada, the average consumption of hot water per person is approximately 50 to 75 L per day and the average Canadian household uses 225 L. Therefore, this paper will demonstrate the method of designing a solar water heating system with thermal storage. It highlights the renewable hybrid power system, allowing you to obtain a reliable, independent system with the optimization of the ingredient size and at an improved capital cost. The system can provide hot water for a big building. The main power for the system comes from solar panels. Solar Advisory Model (SAM) and HOMER are used. HOMER and SAM are design models that calculate the consumption of hot water and cost for a house. Some results, obtained through simulation, were for monthly energy production, annual energy production, after tax cash flow, the lifetime of the system and monthly energy usage represented by three types of energy. These are system energy, electricity load electricity and net metering credit.Keywords: water heating, thermal storage, capital cost solar, consumption
Procedia PDF Downloads 4281944 Solar Technology: A Review of Government-Sponsored Green Energy
Authors: Christopher Battle
Abstract:
The pursuit of a sustainable future is dependent on the ability of governments from the national to municipal level. The politics of energy and the development of state-sponsored photovoltaic cell expansion can nebulize in several ways based on a state or nation's physical and human geography. This study conducts a comparative analysis of the energy and solar program of Turkey, Pennsylvania, and Philadelphia. The study aims to assess the city of Philadelphia's solar policies in contrast with both its political history and the photovoltaic programs of Turkey, a world leader in solar system development, and Pennsylvania's history of energy regulation. This comparative study found that after hundreds of bills and regulations over decades, sustainable energy development in affordable housing and new construction is the next phase of State-Sponsored Green energy for the city of Philadelphia.Keywords: Turkey, solar power, Philadelphia, affordable energy development
Procedia PDF Downloads 941943 The Influence of Salt Body of J. Ech Cheid on the Maturity History of the Cenomanian: Turonian Source Rock
Authors: Mohamed Malek Khenissi, Mohamed Montassar Ben Slama, Anis Belhaj Mohamed, Moncef Saidi
Abstract:
Northern Tunisia is well known by its different and complex structural and geological zones that have been the result of a geodynamic history that extends from the early Mesozoic era to the actual period. One of these zones is the salt province, where the Halokinesis process is manifested by a number of NE/SW salt structures such as Jebel Ech-Cheid which represents masses of materials characterized by a high plasticity and low density. The salt masses extrusions that have been developed due to an extension that started from the late Triassic to late Cretaceous. The evolution of salt bodies within sedimentary basins have not only contributed to modify the architecture of the basin, but it also has certain geochemical effects which touch mainly source rocks that surround it. It has been demonstrated that the presence of salt structures within sedimentary basins can influence its temperature distribution and thermal history. Moreover, it has been creating heat flux anomalies that may affect the maturity of organic matter and the timing of hydrocarbon generation. Field samples of the Bahloul source rock (Cenomanan-Tunonian) were collected from different sights from all around Ech Cheid salt structure and evaluated using Rock-eval pyrolysis and GC/MS techniques in order to assess the degree of maturity evolution and the heat flux anomalies in the different zones analyze. The Total organic Carbon (TOC) values range between 1 to 9% and the (Tmax) ranges between 424 and 445°C, also the distribution of the source rock biomarkers both saturated and aromatic changes in a regular fashions with increasing maturity and this are shown in the chromatography results such as Ts/(Ts+Tm) ratios, 22S/(22S+22R) values for C31 homohopanes, ββ/(ββ+αα)20R and 20S/(20S+20R) ratios for C29 steranes which gives a consistent maturity indications and assessment of the field samples. These analyses are carried to interpret the maturity evolution and the heat flux around Ech Cheid salt structure through the geological history. These analyses also aim to demonstrate that the salt structure can have a direct effect on the geothermal gradient of the basin and on the maturity of the Bahloul Formation source rock. The organic matter has reached different stages of thermal maturity, but delineate a general increasing maturity trend. Our study confirms that the J. Ech Cheid salt body have on the first hand: a huge influence on the local distribution of anoxic depocentre at least within Cenomanian-Turonian time. In the second hand, the thermal anomaly near the salt mass has affected the maturity of Bahloul Formation.Keywords: Bahloul formation, depocentre, GC/MS, rock-eval
Procedia PDF Downloads 2391942 Solar Calculations of Modified Arch (Semi-Spherical) Type Greenhouse System for Bayburt City
Authors: Uğur Çakir, Erol Şahin, Kemal Çomakli, Ayşegül Çokgez Kuş
Abstract:
Solar energy is thought as main source of all energy sources on the world and it can be used in many applications like agricultural areas, heating cooling or direct electricity production directly or indirectly. Greenhousing is the first one of the agricultural activities that solar energy can be used directly in. Greenhouses offer us suitable conditions which can be controlled easily for the growth of the plant and they are made by using a covering material that allows the sun light entering into the system. Covering material can be glass, fiber glass, plastic or another transparent element. This study investigates the solar energy usability rates and solar energy benefiting rates of a semi-spherical (modified arch) type greenhouse system according to different orientations and positions which exists under climatic conditions of Bayburt. In the concept of this study it is tried to determine the best direction and best sizes of a semi-spherical greenhouse to get best solar benefit from the sun. To achieve this aim a modeling study is made by using MATLAB. However this modeling study is running for some determined shapes and greenhouses it can be used for different shaped greenhouses or buildings. The basic parameters are determined as greenhouse azimuth angle, the rate of size of long edge to short and seasonal solar energy gaining of greenhouse.Keywords: greenhousing, solar energy, direct radiation, renewable energy
Procedia PDF Downloads 4761941 Investigation on The Feasibility of a Solar Desiccant Cooling System in Libya
Authors: A. S. Zgalei, B. T. Al-Mabrouk
Abstract:
With a particularly significant growth rate observed in the Libyan commercial and residential buildings coupled with a growth in energy demand, solar desiccant evaporative cooling offers energy savings and promises a good sharing for sustainable buildings where the availability of solar radiation matches with the cooling load demand. The paper presents a short introduction for the desiccant systems. A mathematical model of a selected system has been developed and a simulation has been performed in order to investigate the system performance at different working conditions and an optimum design of the system structure is established. The results showed a technical feasibility of the system working under the Libyan climatic conditions with a reasonable COP at temperatures that can be obtained through the solar reactivation system. Discussion of the results and the recommendations for future work are proposed.Keywords: computer program, solar desiccant wheel cooling, system modelling, simulation, technical feasibility
Procedia PDF Downloads 5391940 Mathematical Model for Output Yield Obtained by Single Slope Solar Still
Authors: V. Nagaraju, G. Murali, Nagarjunavarma Ganna, Atluri Pavan Kalyan, N. Sree Sai Ganesh, V. S. V. S. Badrinath
Abstract:
The present work focuses on the development of a mathematical model for the yield obtained by single slope solar still incorporated with cylindrical pipes filled with sand. The mathematical results obtained were validated with the experimental results for the 3 cm of water level at the basin. The mathematical model and results obtained with the experimental investigation are within 11% of deviation. The theoretical model to predict the yield obtained due to the capillary effect was proposed first. And then, to predict the total yield obtained, the thermal effect model was integrated with the capillary effect model. With the obtained results, it is understood that the yield obtained is more in the case of solar stills with sand-filled cylindrical pipes when compared to solar stills without sand-filled cylindrical pipes. And later model was used for predicting yield for 1 cm and 2 cm of water levels at the basin. And it is observed that the maximum yield was obtained for a 1 cm water level at the basin. It means solar still produces better yield with the lower depth of water level at the basin; this may be because of the availability of more space in the sand for evaporation.Keywords: solar still, cylindrical pipes, still efficiency, mathematical modeling, capillary effect model, yield, solar desalination
Procedia PDF Downloads 1181939 A Technical and Economic Feasibility Study of the Use of Concentrating Solar Power (CSP) in Desalination Plants on the Kenyan Coast
Authors: Kathy Mwende Kiema, Remember Samu, Murat Fahrioglu
Abstract:
Despite the implementation of a Feed in Tariff (FiT) for solar power plants in Kenya, the uptake and subsequent development of utility scale power plants has been slow. This paper, therefore, proposes a Concentrating Solar Power (CSP) plant configuration that can supply both power to the grid and operate a sea water desalination plant, thus providing an economically viable alternative to Independent Power Producers (IPPs). The largest city on the coast, Mombasa, has a chronic water shortage and authorities are looking to employ desalination plants to supply a deficit of up to 100 million cubic meters of fresh water per day. In this study the desalination plant technology was selected based on an analysis of operational costs in $/m3 of plants that are already running. The output of the proposed CSP plant, Net Present Value (NPV), plant capacity factor, thermal efficiency and quantity of CO2 emission avoided were simulated using Greenius software (Green energy system analysis tool) developed by the institute of solar research at the German Aerospace Center (DLR). Data on solar irradiance were derived from the Solar and Wind Energy Resource Assessment (SWERA) for Kenya.Keywords: desalination, feed in tariff, independent power producer, solar CSP
Procedia PDF Downloads 2841938 Identification of Potential Large Scale Floating Solar Sites in Peninsular Malaysia
Authors: Nur Iffika Ruslan, Ahmad Rosly Abbas, Munirah Stapah@Salleh, Nurfaziera Rahim
Abstract:
Increased concerns and awareness of environmental hazards by fossil fuels burning for energy have become the major factor driving the transition toward green energy. It is expected that an additional of 2,000 MW of renewable energy is to be recorded from the renewable sources by 2025 following the implementation of Large Scale Solar projects in Peninsular Malaysia, including Large Scale Floating Solar projects. Floating Solar has better advantages over its landed counterparts such as the requirement for land acquisition is relatively insignificant. As part of the site selection process established by TNB Research Sdn. Bhd., a set of mandatory and rejection criteria has been developed in order to identify only sites that are feasible for the future development of Large Scale Floating Solar power plant. There are a total of 85 lakes and reservoirs identified within Peninsular Malaysia. Only lakes and reservoirs with a minimum surface area of 120 acres will be considered as potential sites for the development of Large Scale Floating Solar power plant. The result indicates a total of 10 potential Large Scale Floating Solar sites identified which are located in Selangor, Johor, Perak, Pulau Pinang, Perlis and Pahang. This paper will elaborate on the various mandatory and rejection criteria, as well as on the various site selection process required to identify potential (suitable) Large Scale Floating Solar sites in Peninsular Malaysia.Keywords: Large Scale Floating Solar, Peninsular Malaysia, Potential Sites, Renewable Energy
Procedia PDF Downloads 1771937 Treatment of Oil Recovery Water Using Direct and Indirect Electrochemical Oxidation
Authors: Tareg Omar Mansour, Khaled Omar Elhaji
Abstract:
Model solutions of pentanol in the salt water of various concentrations were subjected to electrochemical oxidation using a dimensionally stable anode (DSA) and a platinised titanium cathode. The removal of pentanol was analysed over time using gas chromatography (GC) and by monitoring the total organic carbon (TOC) concentration of the reaction mixture. It was found that the removal of pentanol occurred more efficiently at higher salinities and higher applied electrical current values. When using a salt concentration of 20,000 ppm and an applied current of 100 mA there was a decrease in concentration of pentanol of 15 %. When the salt concentration and applied current were increased to 58,000 ppm and 500 mA respectively, the decrease in concentration was improved to 64 %.Keywords: dimensionally stable anode (DSA), total organic hydrocarbon (TOC), gas chromatography mass spectrometry (GCMS), electrochemical oxidation
Procedia PDF Downloads 3821936 Numerical Analysis of a Pilot Solar Chimney Power Plant
Authors: Ehsan Gholamalizadeh, Jae Dong Chung
Abstract:
Solar chimney power plant is a feasible solar thermal system which produces electricity from the Sun. The objective of this study is to investigate buoyancy-driven flow and heat transfer through a built pilot solar chimney system called 'Kerman Project'. The system has a chimney with the height and diameter of 60 m and 3 m, respectively, and the average radius of its solar collector is about 20 m, and also its average collector height is about 2 m. A three-dimensional simulation was conducted to analyze the system, using computational fluid dynamics (CFD). In this model, radiative transfer equation was solved using the discrete ordinates (DO) radiation model taking into account a non-gray radiation behavior. In order to modelling solar irradiation from the sun’s rays, the solar ray tracing algorithm was coupled to the computation via a source term in the energy equation. The model was validated with comparing to the experimental data of the Manzanares prototype and also the performance of the built pilot system. Then, based on the numerical simulations, velocity and temperature distributions through the system, the temperature profile of the ground surface and the system performance were presented. The analysis accurately shows the flow and heat transfer characteristics through the pilot system and predicts its performance.Keywords: buoyancy-driven flow, computational fluid dynamics, heat transfer, renewable energy, solar chimney power plant
Procedia PDF Downloads 2601935 Parametric Study of a Solar-Heating-And-Cooling System with Hybrid Photovoltaic/Thermal Collectors in North China
Authors: Ruobing Liang, Jili Zhang, Chao Zhou
Abstract:
A solar-heating-and-cooling (SHC) system, consisting of a hybrid photovoltaic/ thermal collector array, a hot water storage tank, and an absorption chiller unit is designed and modeled to satisfy thermal loads (space heating, domestic hot water, and space cooling). The system is applied for Dalian, China, a location with cold climate conditions, where cooling demand is moderate, while space heating demand is slightly high. The study investigates the potential of a solar system installed and operated onsite in a detached single-family household to satisfy all necessary thermal loads. The hot water storage tank is also connected to an auxiliary heater (electric boiler) to supplement solar heating, when needed. The main purpose of the study is to model the overall system and contact a parametric study that will determine the optimum economic system performance in terms of design parameters. The system is compared, through a cost analysis, to an electric heat pump (EHP) system. This paper will give the optimum system combination of solar collector area and volumetric capacity of the hot water storage tank, respectively.Keywords: absorption chiller, solar PVT collector, solar heating and cooling, solar air-conditioning, parametric study, cost analysis
Procedia PDF Downloads 4201934 Correlation Between Forbush-Decrease Amplitude Detected by Mountain Chacaltaya Neutron Monitor and Solar Wind Electric Filed
Authors: Sebwato Nasurudiin, Akimasa Yoshikawa, Ahmed Elsaid, Ayman Mahrous
Abstract:
This study examines the correlation between the amplitude of Forbush Decreases (FDs) detected by the Mountain Chacaltaya neutron monitor and the solar wind electric field (E). Forbush Decreases, characterized by sudden drops in cosmic ray intensity, are typically associated with interplanetary coronal mass ejections (ICMEs) and high-speed solar wind streams. The Mountain Chacaltaya neutron monitor, located at a high altitude in Bolivia, offers an optimal setting for observing cosmic ray variations. The solar wind electric field, influenced by the solar wind velocity and interplanetary magnetic field, significantly impacts cosmic ray transport in the heliosphere. By analyzing neutron monitor data alongside solar wind parameters, we found a high correlation between E and FD amplitudes with a correlation factor of nearly 87%. The findings enhance our understanding of space weather processes, cosmic ray modulation, and solar-terrestrial interactions, providing valuable insights for predicting space weather events and mitigating their technological impacts. This study contributes to the broader astrophysics field by offering empirical data on cosmic ray modulation mechanisms.Keywords: cosmic rays, Forbush decrease, solar wind, neutron monitor
Procedia PDF Downloads 451933 Comparative Analysis of Short and Long Term Salt Stress on the Photosynthetic Apparatus and Chloroplast Ultrastructure of Thellungiella salsuginea
Authors: Rahma Goussi, Walid Derbali, Arafet Manaa, Simone Cantamessa, Graziella Berta, Chedly Abdelly, Roberto Barbato
Abstract:
Salinity is one of the most important abiotic affecting plant growth and productivity worldwide. Photosynthesis, together with cell growth, is among the primary processes to be affected by salinity. Here, we report the effects of salinity stress on the primary processes of photosynthesis in a model halophyte Thellungiella Salsuginea. Plants were cultivated in hydroponic system with different NaCl concentrations (0, 100, 200 and 400 mM) during 2 weeks. The obtained results showed an obvious change in the photosynthetic efficiency of photosystem I (PSI) and phostosytem II (PSII), related to NaCl concentration supplemented to the medium and the stress duration considered. With moderate salinity (100 and 200 mM NaCl), no significant variation was observed in photosynthetic parameters of PSI and PSII and Chl fluorescence whatever the time of stress application. Also, the photosynthesis apparatus Fo, Fm and Fv fluorescence, as well as Fv/Fm were not affected by salt stress. While a significant decrease was observed on quantum yields Y(I), Y(II) and electron transport rate ETR(I), ETR(II) under high salt treatment (400 mM NaCl) with prolonged period (15 days). This reduction is quantitatively compensated by a corresponding increase of energy dissipation Y(NPQ) and a progressive decrease in Fv/Fm under salt treatment. The intensity of the OJIP fluorescence transient decreased with increase in NaCl concentration, with a major effect observed during prolonged period of salt stress. Ultrastructural analysis with Light Microscopy and Transmission Electron Microscopy of T. salsuginea chloroplasts showed some cellular changes, such as the shape of the mesophyll cells and number of chloroplast/cell only under higher NaCl concentration. Salt-stress caused the swelling of thylakoids in T. Salsuginea mesophyll with more accumulation of starch as compared to control plant.Keywords: fluorescence, halophyte, photosynthesis, salt stress
Procedia PDF Downloads 3751932 Performance and Lifetime of Tandem Organic Solar Cells
Authors: Guillaume Schuchardt, Solenn Berson, Gerard Perrier
Abstract:
Multi-junction solar cell configurations, where two sub-cells with complementary absorption are stacked and connected in series, offer an exciting approach to tackle the single junction limitations of organic solar cells and improve their power conversion efficiency. However, the augmentation of the number of layers has, as a consequence, to increase the risk of reducing the lifetime of the cell due to the ageing phenomena present at the interfaces. In this work, we study the intrinsic degradation mechanisms, under continuous illumination AM1.5G, inert atmosphere and room temperature, in single and tandem organic solar cells using Impedance Spectroscopy, IV Curves, External Quantum Efficiency, Steady-State Photocarrier Grating, Scanning Kelvin Probe and UV-Visible light.Keywords: single and tandem organic solar cells, intrinsic degradation mechanisms, characterization: SKP, EQE, SSPG, UV-Visible, Impedance Spectroscopy, optical simulation
Procedia PDF Downloads 3611931 Stabilization of Displaced Periodic Orbit Using Feedback Linearization Control Scheme
Authors: Arun Kumar Yadav, Badam Singh Kushvah
Abstract:
In the present work, we investigated displaced periodic orbits in the linear order in the circular restricted three-body Sun-Jupiter system, where the third mass-less body utilizes solar electric sail. The electric solar sail is a new space propulsion concept which uses the solar wind momentum for producing thrust, and it is somewhat like to the more well-known solar radiation pressure sail which is often called simply the solar sail. Moreover, we implement the feedback linearization control scheme to perform the stabilization and trajectory tracking for the nonlinear system. Further, we derived periodic orbits analytically in linear order by introducing a first order approximation. These approximate analytic solutions are utilized in a numerical search to determine displaced periodic orbit in the full nonlinear model. We found the displaced periodic orbit for the defined non-linear model and stabilized the model.Keywords: solar electric sail, circular restricted three-body problem (CRTBP), displaced orbit, feedback linearization control
Procedia PDF Downloads 1881930 Nigeria Energy Security: The Role of Solar Batteries
Authors: Ihugba Okezie A., Oguzie Emeka E.
Abstract:
Nigeria's renewable energy market is expanding due to increased environmental awareness, supportive government policies, and the need for energy diversification. This paper examines the role of solar batteries in enhancing Nigeria's energy security. With growing energy demands and frequent power outages, integrating solar batteries presents a viable solution to stabilize the energy supply. The study investigates the current state of solar battery technology in Nigeria, its economic and environmental benefits, and the challenges to implementation. Through a literature review, case studies, and stakeholder interviews, the paper provides a comprehensive analysis of solar batteries' contribution to a resilient energy future. Key players include Engie SA, TotalEnergies SE, Starsight Energy, Enel SpA, and North-South Power Co. Ltd. Challenges include high upfront costs, inadequate policies, weak infrastructure, and security risks. The paper recommends that the government should strengthen policies and incentives to encourage investments through tax breaks, subsidies, and financial incentives.Keywords: renewable energy, solar batteries, energy security, Nigeria’s electricity generation, job creation
Procedia PDF Downloads 351929 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications
Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel
Abstract:
The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.Keywords: concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index
Procedia PDF Downloads 871928 Heating System for Water Pool by Solar Energy
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale
Abstract:
A swimming pool heating system is presented, composed of two alternative collectors with serial PVC absorber tubes that work in regimen of forced stream that is gotten through a bomb. A 500 liters reservoir was used, simulating the swimming pool, being raised some data that show the viability of the considered system. The chosen outflow was corresponding to 100 l/h. In function of the low outflow it was necessary the use of a not popular bomb, choosing the use of a low outflow alternative pumping system, using an air conditioner engine with three different rotations for the desired end. The thermal data related to each collector and their developed system will be presented. The UV and thermal degradations of the PVC exposed to solar radiation will be also boarded, demonstrating the viability of using tubes of this material as absorber elements of radiation in water heating solar collectors.Keywords: solar energy, solar swimming pool, water heating, PVC tubes, alternative system
Procedia PDF Downloads 4621927 Investigation on Choosing the Suitable Geometry of the Solar Air Heater to Certain Conditions
Authors: Abdulrahman M. Homadi
Abstract:
This study focuses on how to control the outlet temperature of a solar air heater in a way simpler than the existing methods. In this work, five cases have been studied by using ANSYS Fluent based on a CFD numerical method. All the cases have been simulated by utilizing the same criteria and conditions like the temperature, materials, areas except the geometry. The case studies are conducted in Little Rock (LR), AR, USA during the winter time supposedly on 15th of December. A fresh air that is flowing with a velocity of 0.5 m/s and a flow rate of 0.009 m3/s. The results prove the possibility of achieving a controlled temperature just by changing the geometric shape of the heater. This geometry guarantees that the absorber plate always has a normal component of the solar radiation at any time during the day. The heater has a sectarian shape with a radius of 150 mm where the outlet temperature remains almost constant for six hours.Keywords: solar energy, air heater, control of temperature, CFD
Procedia PDF Downloads 3341926 Thermo-Ecological Assessment of a Hybrid Solar Greenhouse Dryer for Grape Drying
Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui
Abstract:
The use of solar energy in agricultural applications has gained significant attention in recent years as a sustainable and environmentally friendly alternative to conventional energy sources. In particular, solar drying of crops has been identified as an effective method to preserve agricultural produce while minimizing energy consumption and reducing carbon emissions. In this context, the present study aims to evaluate the thermo-economic and ecological performance of a solar-electric hybrid greenhouse dryer designed for grape drying. The proposed system integrates solar collectors, an electric heater, and a greenhouse structure to create a controlled and energy-efficient environment for grape drying. The thermo-economic assessment involves the analysis of the thermal performance, energy consumption, and cost-effectiveness of the solar-electric hybrid greenhouse dryer. On the other hand, the ecological assessment focuses on the environmental impact of the system in terms of carbon emissions and sustainability. The findings of this study are expected to contribute to the development of sustainable agricultural practices and the promotion of renewable energy technologies in the context of food production. Moreover, the results may serve as a basis for the design and optimization of similar solar drying systems for other crops and regions.Keywords: solar energy, sustainability, agriculture, energy analysis
Procedia PDF Downloads 621925 Solar PV System for Automatic Guideway Transit (AGT) System in BPSU Main Campus
Authors: Nelson S. Andres, Robert O. Aguilar, Mar O. Tapia, Meeko C. Masangcap, John Denver Catapang, Greg C. Mallari
Abstract:
This study focuses on exploring the possibility of using solar PV as an alternative for generating electricity to electrify the AGT System installed in BPSU Main Campus instead of using the power grid. The output of this study gives BPSU the option to invest on solar PV system to pro-actively respond to one of UN’s Sustainable Development Goals of having reliable, sustainable and modern energy sources to reduce energy pollution and climate change impact in the long run. Thus, this study covers the technical as well as the financial studies, which BPSU can also be used to outsource funding from different government agencies. For this study, the electrical design and requirements of the on-going DOST AGT system project are carefully considered. In the proposed design, the AGT station has installed with a rechargeable battery system where the energy harnessed by the solar PV panels installed on the rooftop of the station/NCEA building shall be directed to. The solar energy is then directly supplied to the electric double-layer capacitors (EDLC's) batteries and thus transmitted to other types of equipment in need. When the AGT is not in use, the harnessed energy may be used by NCEA building, thus, lessening the energy consumption of the building from the grid. The use of solar PV system with EDLC is compared with the use of an electric grid for the purpose of electrifying the AGT or the NCEA building (when AGT is not in use). This is to figure how much solar energy are accumulated by the solar PV to accommodate the need for coaches’ motors, lighting, air-conditioning units, door sensor, panel display, etc. The proposed PV Solar design, as well as the data regarding the charging and discharging of batteries and the power consumption of all AGT components, are simulated for optimization, analysis and validation through the use of PVSyst software.Keywords: AGT, Solar PV, railway, EDLC
Procedia PDF Downloads 801924 Study on Surface Morphology and Reflectance of Solar Cells Applied in Pyramid Structures
Authors: Zong-Sheng Chen
Abstract:
With the advancement of technology, human activities have increased greenhouse gas emissions and fossil fuel energy production, leading to increasingly severe global warming. To mitigate global warming, energy conservation and carbon reduction have become global goals. Solar energy, a renewable energy source, not only helps achieve energy conservation and carbon reduction but also serves as an efficient energy generation method. Solar energy, derived from sunlight, is an endless and promising energy source capable of meeting high energy demands sustainably. In recent years, many countries around the world have been developing the solar energy industry, and Taiwan is no exception. Positioned in the subtropical region, Taiwan possesses geographical advantages conducive to solar energy utilization. Furthermore, Taiwan's well-developed semiconductor technology and sophisticated equipment make it highly suitable for the development of high-efficiency solar cells. This study focuses on investigating the anti-reflection properties of solar cells. Through metal-assisted chemical etching, pyramid structures are etched to allow sunlight to pass through, achieving secondary or higher-order reflections on the surface of these structures. This trapping of light within the substrate reduces reflection rates and increases conversion efficiency.Keywords: solar cell, reflectance, pyramidal structure, potassium hydroxide
Procedia PDF Downloads 661923 Theoretical Analysis of Graded Interface CdS/CIGS Solar Cell
Authors: Hassane Ben Slimane, Dennai Benmoussa, Abderrachid Helmaoui
Abstract:
We have theoretically calculated the photovoltaic conversion efficiency of a graded interface CdS/CIGS solar cell, which can be experimentally fabricated. Because the conduction band discontinuity or spike in an abrupt heterojunction CdS/CIGS solar cell can hinder the separation of hole-electron by electric field, a graded interface layer is uses to eliminate the spike and reduces recombination in space charge region. This paper describes the role of the graded band gap interface layer in decreasing the performance of the heterojunction cell. By optimizing the thickness of the graded region, an improvement of conversion efficiency has been observed in comparison to the conventional CIGS system.Keywords: heterojunction, solar cell, graded interface, CIGS
Procedia PDF Downloads 4011922 Application of Arbuscular Mycorrhizal Fungi as Biologically Based Strategy for Mitigation of Adverse Impact of Salt Stress on Wheat
Authors: Abeer Hashem, Khalid F. Almutairi, Ulkar Ibrahimova, Elsayed Fathi Abdallah
Abstract:
Salinity poses a significant challenge to wheat production, necessitating the exploration of strategies to mitigate its adverse effects. The present investigation aims to study the impact of arbuscular mycorrhizal fungi (AMF) application to improve plant tolerance in terms of growth, carbohydrate, photosynthetic characteristics, and antioxidant enzyme activities under salt stress conditions. So, a randomized complete block design with five replications was employed comprising various treatments of AMF application under salinity stress (200mM), and control samples were used for each treatment. The obtained results demonstrated significantly that AMF used in this study showed beneficial impacts in all parameters used as sensitive monitor for relation of plant-salt microbe interaction. The root colonization by AMF showed the highest plant growth criteria, relative water content, soluble sugar, starch, and total non-structural carbohydrates under both control and salinity stress conditions. Moreover, the application of AMF-treated plants showed the highest soluble protein concentration and activity in leaves and antioxidant enzymes (catalase, superoxide dismutase, guaiacol peroxidase). These findings highlight the potential impact of AMF application as a biologically based strategy to manage the mitigation of salt stress on wheat, which increases the availability of many salt marsh habitats for sustainable agriculture of such strategy crops.Keywords: arbuscular mycorrhizal fungi, salt stress, plant growth criteria, soluble protein, antioxidant enzymes, wheat plant
Procedia PDF Downloads 461921 Thermal Analysis of Photovoltaic Integrated Greenhouse Solar Dryer
Authors: Sumit Tiwari, Rohit Tripathi, G. N. Tiwari
Abstract:
Present study focused on the utilization of solar energy by the help of photovoltaic greenhouse solar dryer under forced mode. A single slope photovoltaic greenhouse solar dryer has been proposed and thermal modelling has been developed. Various parameters have been calculated by thermal modelling such as greenhouse room temperature, cell temperature, crop temperature and air temperature at exit of greenhouse. Further cell efficiency, thermal efficiency, and overall thermal efficiency have been calculated for a typical day of May and November. It was found that system can generate equivalent thermal energy up to 7.65 kW and 6.66 kW per day for clear day of May and November respectively.Keywords: characteristics curve, photovoltaic, thermal modelling, thermal efficiency
Procedia PDF Downloads 4551920 Current Developments in Flat-Plate Vacuum Solar Thermal Collectors
Authors: Farid Arya, Trevor Hyde, Paul Henshall, Phillip Eames, Roger Moss, Stan Shire
Abstract:
Vacuum flat plate solar thermal collectors offer several advantages over other collectors namely the excellent optical and thermal characteristics they exhibit due to a combination of their wide surface area and high vacuum thermal insulation. These characteristics can offer a variety of applications for industrial process heat as well as for building integration as they are much thinner than conventional collectors making installation possible in limited spaces. However, many technical challenges which need to be addressed to enable wide scale adoption of the technology still remain. This paper will discuss the challenges, expectations and requirements for the flat-plate vacuum solar collector development. In addition, it will provide an overview of work undertaken in Ulster University, Loughborough University, and the University of Warwick on flat-plate vacuum solar thermal collectors. Finally, this paper will present a detailed experimental investigation on the development of a vacuum panel with a novel sealing method which will be used to accommodate a novel slim hydroformed solar absorber.Keywords: hot box calorimeter, infrared thermography, solar thermal collector, vacuum insulation
Procedia PDF Downloads 310