Search results for: mass flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7814

Search results for: mass flow

7574 Direct Visualization of Shear Induced Structures in Wormlike Micellar Solutions by Microfluidics and Advanced Microscopy

Authors: Carla Caiazza, Valentina Preziosi, Giovanna Tomaiuolo, Denis O'Sullivan, Vincenzo Guida, Stefano Guido

Abstract:

In the last decades, wormlike micellar solutions have been extensively used to tune the rheological behavior of home care and personal care products. This and other successful applications underlie the growing attention that both basic and applied research are devoting to these systems, and to their unique rheological and flow properties. One of the key research topics is the occurrence of flow instabilities at high shear rates (such as shear banding), with the possibility of appearance of flow induced structures. In this scenario, microfluidics is a powerful tool to get a deeper insight into the flow behavior of a wormlike micellar solution, as the high confinement of a microfluidic device facilitates the onset of the flow instabilities; furthermore, thanks to its small dimensions, it can be coupled with optical microscopy, allowing a direct visualization of flow structuring phenomena. Here, the flow of a widely used wormlike micellar solution through a glass capillary has been studied, by coupling the microfluidic device with μPIV techniques. The direct visualization of flow-induced structures and the flow visualization analysis highlight a relationship between solution structuring and the onset of discontinuities in the velocity profile.

Keywords: flow instabilities, flow-induced structures, μPIV, wormlike micelles

Procedia PDF Downloads 346
7573 The Incompressible Preference of Turbulence

Authors: Samuel David Dunstan

Abstract:

An elementary observation of a laminar cylindrical Poiseulle-Couette flow profile reveals no distinction in the parabolic streamwise profile from one without a cross-stream flow in whatever reference frame the observation is made. This is because the laminar flow is in solid-body rotation, and there is no intrinsic fluid rotation. Hence the main streamwise Poiseuille flow is unaffected. However, in turbulent (unsteady) cylindrical Poiseuille-Couette flow, the rotational reference frame must be considered, and any observation from an external inertial reference frame can give outright incorrect results. A common misconception in the study of fluid mechanics is the position of the observer does not matter. In this DNS (direct numerical simulation) study, firstly, turbulent flow in a pipe with axial rotation is established. Then in turbulent flow in the concentric pipe, with inner wall rotation, it is shown how the wall streak direction is oriented by the rotational reference frame. The Coriolis force here is not so fictitious after all!

Keywords: concentric pipe, rotational and inertial frames, frame invariance, wall streaks, flow orientation

Procedia PDF Downloads 90
7572 Experimental Investigation and Optimization of Nanoparticle Mass Concentration and Heat Input of Loop Heat Pipe

Authors: P. Gunnasegaran, M. Z. Abdullah, M. Z. Yusoff, Nur Irmawati

Abstract:

This study presents experimental and optimization of nanoparticle mass concentration and heat input based on the total thermal resistance (Rth) of loop heat pipe (LHP), employed for PC-CPU cooling. In this study, silica nanoparticles (SiO2) in water with particle mass concentration ranged from 0% (pure water) to 1% is considered as the working fluid within the LHP. The experimental design and optimization is accomplished by the design of the experimental tool, Response Surface Methodology (RSM). The results show that the nanoparticle mass concentration and the heat input have a significant effect on the Rth of LHP. For a given heat input, the Rth is found to decrease with the increase of the nanoparticle mass concentration up to 0.5% and increased thereafter. It is also found that the Rth is decreased when the heat input is increased from 20W to 60W. The results are optimized with the objective of minimizing the Rt, using Design-Expert software, and the optimized nanoparticle mass concentration and heat input are 0.48% and 59.97W, respectively, the minimum thermal resistance being 2.66(ºC/W).

Keywords: loop heat pipe, nanofluid, optimization, thermal resistance

Procedia PDF Downloads 462
7571 Papillary Thyroid Carcinoma Presenting as a Vascular Left Carotid Sheath Mass: A Case Report

Authors: Karthikeyan M., Paul M. J.

Abstract:

This case report discusses a 54-year-old woman from Salem, Tamilnadu, who presented with a rare case of papillary thyroid carcinoma (PTC), manifesting as a hypervascular mass in the left carotid sheath. The patient had a two-and-a-half-month history of non-progressive neck swelling, with symptoms including dysphagia and a choking sensation. Clinical examination and investigations such as FNAC and CECT revealed a large vascular mass in the left neck region, initially perplexing the diagnosis. The patient underwent total thyroidectomy and excision of the left carotid sheath mass. Histopathology confirmed PTC. Postoperatively, the patient received Iodine-131 ablation and showed good recovery with no recurrence. This case highlights the diagnostic challenge and atypical presentation of PTC as a vascular neck mass, emphasizing the importance of a comprehensive approach in evaluating thyroid and neck lesions.

Keywords: lateral neck vascular mass, lateral aberrant thyroid, thyroid vascular swelling, smooth post op recovery

Procedia PDF Downloads 53
7570 3D Modelling of Fluid Flow in Tunnel Kilns

Authors: Jaber H. Almutairi, Hosny Z. Abou-Ziyan, Issa F. Almesri, Mosab A. Alrahmani

Abstract:

The present work investigates the behavior of fluid flow inside tunnel kilns using 3D-CFD (Computational Fluid Dynamics) simulations. The CFD simulations are carried out with the FLUENT software and validated against experimental results on fluid flow and heat transfer in tunnel kilns. A grid dependency study is conducted in the current work to improve the accuracy of the results. Three turbulence models k–ω, standard k–ε, and RNG k–ε are tested where k–ω model gives the best results in comparison with the experiment. The numerical results reveal an intriguing phenomenon where a long flow separation zone behind the setting is observed under different geometric and operation conditions. It was found that the uniformity of flow distribution can be substantially improved by rearranging the geometrical parameters of brick setting relative to kiln/setting. This improvement of flow distribution plays a critical role to enhance the quality and quantity of the production. It can be concluded that a better design and operation of tunnel kilns in terms of productivity and energy consumption can be obtained by taking into consideration the flow uniformity inside the tunnel kilns using CFD modelling.

Keywords: tunnel kilns, flow separation, flow uniformity, computational fluid dynamics

Procedia PDF Downloads 330
7569 Experimental Investigation of Heat Pipe with Annular Fins under Natural Convection at Different Inclinations

Authors: Gangacharyulu Dasaroju, Sumeet Sharma, Sanjay Singh

Abstract:

Heat pipe is characterised as superconductor of heat because of its excellent heat removal ability. The operation of several engineering system results in generation of heat. This may cause several overheating problems and lead to failure of the systems. To overcome this problem and to achieve desired rate of heat dissipation, there is need to study the performance of heat pipe with annular fins under free convection at different inclinations. This study demonstrates the effect of different mass flow rate of hot fluid into evaporator section on the condenser side heat transfer coefficient with annular fins under natural convection at different inclinations. In this study annular fins are used for the experimental work having dimensions of length of fin, thickness of fin and spacing of fin as 10 mm, 1 mm and 6 mm, respectively. The main aim of present study is to discover at what inclination angles the maximum heat transfer coefficient shall be achieved. The heat transfer coefficient on the external surface of heat pipe condenser section is determined by experimental method and then predicted by empirical correlations. The results obtained from experimental and Churchill and Chu relation for laminar are in fair agreement with not more than 22% deviation. It is elucidated the maximum heat transfer coefficient of 31.2 W/(m2-K) at 25˚ tilt angle and minimal condenser heat transfer coefficient of 26.4 W/(m2-K) is seen at 45˚ tilt angle and 200 ml/min mass flow rate. Inclination angle also affects the thermal performance of heat pipe. Beyond 25o inclination, heat transport rate starts to decrease.

Keywords: heat pipe, annular fins, natural convection, condenser heat transfer coefficient, tilt angle

Procedia PDF Downloads 154
7568 The Effect of Global Solar Radiation on the Thermal and Thermohydraulic Performance of Double Flow Corrugated Absorber Solar Air Heater

Authors: Suresh Prasad Sharma, Som Nath Saha

Abstract:

This paper deals with the effect of Global Solar Radiation (GSR) on the performance of double flow solar air heater having corrugated plate as an absorber. An analytical model of a double flow solar air heater has been presented, and a computer program in C++ language has been developed to calculate the outlet air temperature, heat gain, pressure drop for estimating the thermal and thermohydraulic efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that the double flow arrangement effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results indicate that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies.

Keywords: corrugated absorber, double flow, flat plate, solar air heater

Procedia PDF Downloads 285
7567 Cancellation of Transducer Effects from Frequency Response Functions: Experimental Case Study on the Steel Plate

Authors: P. Zamani, A. Taleshi Anbouhi, M. R. Ashory, S. Mohajerzadeh, M. M. Khatibi

Abstract:

Modal analysis is a developing science in the experimental evaluation of dynamic properties of the structures. Mechanical devices such as accelerometers are one of the sources of lack of quality in measuring modal testing parameters. In this paper, eliminating the accelerometer’s mass effect of the frequency response of the structure is studied. So, a strategy is used for eliminating the mass effect by using sensitivity analysis. In this method, the amount of mass change and the place to measure the structure’s response with least error in frequency correction is chosen. Experimental modal testing is carried out on a steel plate and the effect of accelerometer’s mass is omitted using this strategy. Finally, a good agreement is achieved between numerical and experimental results.

Keywords: accelerometer mass, frequency response function, modal analysis, sensitivity analysis

Procedia PDF Downloads 447
7566 Characterization of Plunging Water Jets in Crossflows: Experimental and Numerical Studies

Authors: Mina Esmi Jahromi, Mehdi Khiadani

Abstract:

Plunging water jets discharging into turbulent crossflows are capable of providing efficient air water interfacial area, which is desirable for the process of mass transfer. Although several studies have been dedicated to the air entrainment by water jets impinging into stagnant water, very few studies have focused on the water jets in crossflows. This study investigates development of the two-phase flow as a result of the jet impingements into crossflows by means of image processing technique and CFD simulations. Investigations are also conducted on the oxygen transfer and a correlation is established between the aeration properties and the oxygenation capacity of water jets in crossflows. This study helps the optimal design and the effective operation of the industrial and the environmental equipment incorporating water jets in crossflows.

Keywords: air entrainment, CFD simulation, image processing, jet in crossflow, oxygen transfer, two-phase flow

Procedia PDF Downloads 238
7565 Modeling of Flows in Porous Materials under Pressure Difference

Authors: Nicoleta O. Tanase, Ciprian S. Mateescu

Abstract:

This paper is concerned with the numerical study of the flow through porous media. The purpose of this project is to determine the permeability of a medium and its connection to porosity to be able to identify how the permeability of said medium can be altered without changing the porosity. The numerical simulations are performed in 2D flow configurations with the laminar solvers implemented in Workbench - ANSYS Fluent. The direction of flow of the working fluid (water) is axial, from left to right, and in steady-state conditions. The working fluid is water. The 2D geometry is a channel with 300 mm length and 30 mm width, with a different number of circles that are positioned differently, modelling a porous medium. The permeability of a porous medium can be altered without changing the porosity by positioning the circles differently (by missing the same number of circles) in the flow domain, which induces a change in the flow spectrum. The main goal of the paper is to investigate the flow pattern and permeability under controlled perturbations induced by the variation of velocity and porous medium. Numerical solutions provide insight into all flow magnitudes, one of the most important being the WSS distribution on the circles.

Keywords: CFD, porous media, permeability, flow spectrum

Procedia PDF Downloads 55
7564 Effect of Helical Flow on Separation Delay in the Aortic Arch for Different Mechanical Heart Valve Prostheses by Time-Resolved Particle Image Velocimetry

Authors: Qianhui Li, Christoph H. Bruecker

Abstract:

Atherosclerotic plaques are typically found where flow separation and variations of shear stress occur. Although helical flow patterns and flow separations have been recorded in the aorta, their relation has not been clearly clarified and especially in the condition of artificial heart valve prostheses. Therefore, an experimental study is performed to investigate the hemodynamic performance of different mechanical heart valves (MHVs), i.e. the SJM Regent bileaflet mechanical heart valve (BMHV) and the Lapeyre-Triflo FURTIVA trileaflet mechanical heart valve (TMHV), in a transparent model of the human aorta under a physiological pulsatile right-hand helical flow condition. A typical systolic flow profile is applied in the pulse-duplicator to generate a physiological pulsatile flow which thereafter flows past an axial turbine blade structure to imitate the right-hand helical flow induced in the left ventricle. High-speed particle image velocimetry (PIV) measurements are used to map the flow evolution. A circular open orifice nozzle inserted in the valve plane as the reference configuration initially replaces the valve under investigation to understand the hemodynamic effects of the entered helical flow structure on the flow evolution in the aortic arch. Flow field analysis of the open orifice nozzle configuration illuminates the helical flow effectively delays the flow separation at the inner radius wall of the aortic arch. The comparison of the flow evolution for different MHVs shows that the BMHV works like a flow straightener which re-configures the helical flow pattern into three parallel jets (two side-orifice jets and the central orifice jet) while the TMHV preserves the helical flow structure and therefore prevent the flow separation at the inner radius wall of the aortic arch. Therefore the TMHV is of better hemodynamic performance and reduces the pressure loss.

Keywords: flow separation, helical aortic flow, mechanical heart valve, particle image velocimetry

Procedia PDF Downloads 175
7563 A Simplified Model of the Control System with PFM

Authors: Bekmurza H. Aitchanov, Sholpan K. Aitchanova, Olimzhon A. Baimuratov, Aitkul N. Aldibekova

Abstract:

This work considers the automated control system (ACS) of milk quality during its magnetic field processing. For achieving high level of quality control methods were applied transformation of complex nonlinear systems in a linearized system with a less complex structure. Presented ACS is adjustable by seven parameters: mass fraction of fat, mass fraction of dry skim milk residues (DSMR), density, mass fraction of added water, temperature, mass fraction of protein, acidity.

Keywords: fluids magnetization, nuclear magnetic resonance, automated control system, dynamic pulse-frequency modulator, PFM, nonlinear systems, structural model

Procedia PDF Downloads 375
7562 Numerical Simulation and Experimental Validation of the Hydraulic L-Shaped Check Ball Behavior

Authors: Shinji Kajiwara

Abstract:

The spring-driven ball-type check valve is one of the most important components of hydraulic systems: it controls the position of the ball and prevents backward flow. To simplify the structure, the spring must be eliminated, and to accomplish this, the flow pattern and the behavior of the check ball in L-shaped pipe must be determined. In this paper, we present a full-scale model of a check ball made of acrylic resin, and we determine the relationship between the initial position of the ball, the position and diameter of the inflow port. The check flow rate increases in a standard center inflow model, and it is possible to greatly decrease the check-flow rate by shifting the inflow from the center.

Keywords: hydraulics, pipe flow, numerical simulation, flow visualization, check ball, L-shaped pipe

Procedia PDF Downloads 301
7561 The Effect of Ambient Temperature on the Performance of the Simple and Modified Cycle Gas Turbine Plants

Authors: Ogbe E. E., Ossia. C. V., Saturday. E. G., Ezekwe M. C.

Abstract:

The disparity in power output between a simple and a modified gas turbine plant is noticeable when the gas turbine functions under local environmental conditions that deviate from the standard ISO specifications. Extensive research and literature have demonstrated a well-known direct correlation between ambient temperature and the power output of a gas turbine plant. In this study, the Omotosho gas turbine plant was modified into three different configurations. The reason for the modification is to improve its performance and reduce the fuel consumption and emission rate. Aspen Hysys software was used to simulate both the simple (Omotosho) and the three modified gas turbine plants. The input parameters considered include ambient temperature, air mass flow rate, fuel mass flow rate, water mass flow rate, turbine inlet temperature, compressor efficiency, and turbine efficiency, while the output parameters considered are thermal efficiency, specific fuel consumption, heat rate, emission rate, compressor power, turbine power and power output. The three modified gas turbine power plants incorporate an inlet air cooling system and a heat recovery steam generator. The variations between the modifications are due to additional components or enhancements alongside the inlet air cooling system and heat recovery steam generator incorporated; the first modification has an additional turbine, the second modification has an additional combustion chamber, and the third modification has an additional turbine and combustion chamber. This paper clearly shows ambient temperature effects on both the simple and three modified gas turbine plants. for every 10-degree kelvin increase in ambient temperature, there is an approximate reduction of 3977 kW, 4795 kW, 4681 kW, and 4793 kW of the power output for the simple gas turbine, first, second, and third modifications, respectively. Also, for every 10-degree kelvin increase in temperature, there is a thermal efficiency decrease of 1.22%, 1.45%, 1.43%, and 1.44% for the simple gas turbine, first, second, and third modifications respectively. Low ambient temperature will help save fuel; looking at the high price of fuel presently in Nigeria for every 10 degrees kelvin increase in temperature, there is a specific fuel consumption increase of 0.0074 kg/kWh, 0.0051 kg/kWh, 0.0061 kg/kWh, and 0.0057 kg/kWh for the simple gas turbine, first, second, and third modifications respectively. These findings will aid in accurately evaluating local power generating plants, particularly in hotter regions, for installing gas turbine inlet air cooling (GTIAC) systems.

Keywords: Aspen HYSYS software, Brayton Cycle, modified gas turbine, power plant, simple gas turbine, thermal efficiency.

Procedia PDF Downloads 35
7560 Causality, Special Relativity and Non-existence of Material Particles of Zero Rest Mass

Authors: Mohammad Saleem, Mujahid Kamran

Abstract:

It is shown that causality, the principle that cause must precede effect, leads inter alia, to highly significant result that the velocity of a material particle cannot be even equal to that of light. Consequently, combined with special relativity, it leads to the conclusion that material particles of zero rest mass cannot exist in nature. Thus, causality, a principle without which nature would be incomprehensible, combined with special relativity, forbids the existence of material particles of zero rest mass. For instance, the neutrinos, as is now known, are material particles of non-zero rest mass. The situation changes when we consider the gauge particles. In fact, when the principle of causality was proposed, the concept of gauge particles had not yet been introduced. Now we know that photon, a gauge particle with zero rest mass does exist in nature. Therefore, principle of causality, as generally stated, is valid only for material particles. For gauge particles, in order to make the statement of causality consistent with experiment, it has to be modified: The cause should either precede or be simultaneous with the effect. Combined with special relativity, it allows gauge particles of zero rest mass.

Keywords: causality, gauge particles, material particles, special relativity

Procedia PDF Downloads 503
7559 Mass Polarization in Three-Body System with Two Identical Particles

Authors: Igor Filikhin, Vladimir M. Suslov, Roman Ya. Kezerashvili, Branislav Vlahivic

Abstract:

The mass-polarization term of the three-body kinetic energy operator is evaluated for different systems which include two identical particles: A+A+B. The term has to be taken into account for the analysis of AB- and AA-interactions based on experimental data for two- and three-body ground state energies. In this study, we present three-body calculations within the framework of a potential model for the kaonic clusters K−K−p and ppK−, nucleus 3H and hypernucleus 6 ΛΛHe. The systems are well clustering as A+ (A+B) with a ground state energy E2 for the pair A+B. The calculations are performed using the method of the Faddeev equations in configuration space. The phenomenological pair potentials were used. We show a correlation between the mass ratio mA/mB and the value δB of the mass-polarization term. For bosonic-like systems, this value is defined as δB = 2E2 − E3, where E3 is three-body energy when VAA = 0. For the systems including three particles with spin(isospin), the models with average AB-potentials are used. In this case, the Faddeev equations become a scalar one like for the bosonic-like system αΛΛ. We show that the additional energy conected with the mass-polarization term can be decomposite to a sum of the two parts: exchenge related and reduced mass related. The state of the system can be described as the following: the particle A1 is bound within the A + B pair with the energy E2, and the second particle A2 is bound with the pair with the energy E3 − E2. Due to the identity of A particles, the particles A1 and A2 are interchangeable in the pair A + B. We shown that the mass polarization δB correlates with a type of AB potential using the system αΛΛ as an example.

Keywords: three-body systems, mass polarization, Faddeev equations, nuclear interactions

Procedia PDF Downloads 377
7558 A Fractional Derivative Model to Quantify Non-Darcy Flow in Porous and Fractured Media

Authors: Golden J. Zhang, Dongbao Zhou

Abstract:

Darcy’s law is the fundamental theory in fluid dynamics and engineering applications. Although Darcy linearity was found to be valid for slow, viscous flow, non-linear and non-Darcian flow has been well documented under both small and large velocity fluid flow. Various classical models were proposed and used widely to quantify non-Darcian flow, including the well-known Forchheimer, Izbash, and Swartzendruber models. Applications, however, revealed limitations of these models. Here we propose a general model built upon the Caputo fractional derivative to quantify non-Darcian flow for various flows (laminar to turbulence).Real-world applications and model comparisons showed that the new fractional-derivative model, which extends the fractional model proposed recently by Zhou and Yang (2018), can capture the non-Darcian flow in the relatively small velocity in low-permeability deposits and the relatively high velocity in high-permeability sand. A scale effect was also identified for non-Darcian flow in fractured rocks. Therefore, fractional calculus may provide an efficient tool to improve classical models to quantify fluid dynamics in aquatic environments.

Keywords: fractional derivative, darcy’s law, non-darcian flow, fluid dynamics

Procedia PDF Downloads 129
7557 Hydrodynamic Simulation of Co-Current and Counter Current of Column Distillation Using Euler Lagrange Approach

Authors: H. Troudi, M. Ghiss, Z. Tourki, M. Ellejmi

Abstract:

Packed columns of liquefied petroleum gas (LPG) consists of separating the liquid mixture of propane and butane to pure gas components by the distillation phenomenon. The flow of the gas and liquid inside the columns is operated by two ways: The co-current and the counter current operation. Heat, mass and species transfer between phases represent the most important factors that influence the choice between those two operations. In this paper, both processes are discussed using computational CFD simulation through ANSYS-Fluent software. Only 3D half section of the packed column was considered with one packed bed. The packed bed was characterized in our case as a porous media. The simulations were carried out at transient state conditions. A multi-component gas and liquid mixture were used out in the two processes. We utilized the Euler-Lagrange approach in which the gas was treated as a continuum phase and the liquid as a group of dispersed particles. The heat and the mass transfer process was modeled using multi-component droplet evaporation approach. The results show that the counter-current process performs better than the co-current, although such limitations of our approach are noted. This comparison gives accurate results for computations times higher than 2 s, at different gas velocity and at packed bed porosity of 0.9.

Keywords: co-current, counter-current, Euler-Lagrange model, heat transfer, mass transfer

Procedia PDF Downloads 212
7556 An Experimental Investigation of Air Entrainment Due to Water Jets in Crossflows

Authors: Mina Esmi Jahromi, Mehdi Khiadani

Abstract:

Vertical water jets discharging into free surface turbulent cross flows result in the ingression of a large amount of air in the body of water and form a region of two-phase air-water flow with a considerable interfacial area. This research presents an experimental study of the two-phase bubbly flow using image processing technique. The air ingression and the trajectories of bubble swarms under different experimental conditions are evaluated. The rate of air entrainment and the bubble characteristics such as penetration depth, and dispersion pattern were found to be affected by the most influential parameters of water jet and cross flow including water jet-to-crossflow velocity ratio, water jet falling height, and cross flow depth. This research improves understanding of the underwater flow structure due to the water jet impingement in crossflow and advances the practical applications of water jets such as artificial aeration, circulation, and mixing where crossflow is present.

Keywords: air entrainment, image processing, jet in cross flow, two-phase flow

Procedia PDF Downloads 369
7555 Study of Flow-Induced Noise Control Effects on Flat Plate through Biomimetic Mucus Injection

Authors: Chen Niu, Xuesong Zhang, Dejiang Shang, Yongwei Liu

Abstract:

Fishes can secrete high molecular weight fluid on their body skin to enable their rapid movement in the water. In this work, we employ a hybrid method that combines Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) to investigate the effects of different mucus viscosities and injection velocities on fluctuation pressure in the boundary layer and flow-induced structural vibration noise of a flat plate model. To accurately capture the transient flow distribution on the plate surface, we use Large Eddy Simulation (LES) while the mucus inlet is positioned at a sufficient distance from the model to ensure effective coverage. Mucus injection is modeled using the Volume of Fluid (VOF) method for multiphase flow calculations. The results demonstrate that mucus control of pulsating pressure effectively reduces flow-induced structural vibration noise, providing an approach for controlling flow-induced noise in underwater vehicles.

Keywords: mucus, flow control, noise control, flow-induced noise

Procedia PDF Downloads 147
7554 Double Diffusive Natural Convection in Horizontal Elliptical Annulus Containing a Fluid-Saturated Porous Medium: Effects of Lewis Number

Authors: Hichem Boulechfar, Mahfoud Djezzar

Abstract:

Two-dimensional double diffusive natural convection in an annular elliptical space filled with fluid-saturated porous medium, is analyzed by solving numerically the mass balance, momentum, energy and concentration equations, using Darcy's law and Boussinesq approximation. Both walls delimiting the annular space are maintained at two uniform different temperatures and concentrations. The external parameter considered is the Lewis number. For the present work, the heat and mass transfer for natural convection is studied for the case of aiding buoyancies, where the flow is generated in a cooperative mode by both temperature and solutal gradients. The local Nusselt and Sherwood numbers are presented in term of the external parameter.

Keywords: double diffusive, natural convection, porous media, elliptical annulus

Procedia PDF Downloads 211
7553 Numerical Simulation of Unsteady Natural Convective Nanofluid Flow within a Trapezoidal Enclosure Using Meshfree Method

Authors: S. Nandal, R. Bhargava

Abstract:

The paper contains a numerical study of the unsteady magneto-hydrodynamic natural convection flow of nanofluids within a symmetrical wavy walled trapezoidal enclosure. The length and height of enclosure are both considered equal to L. Two-phase nanofluid model is employed. The governing equations of nanofluid flow along with boundary conditions are non-dimensionalized and are solved using one of Meshfree technique (EFGM method). Meshfree numerical technique does not require a predefined mesh for discretization purpose. The bottom wavy wall of the enclosure is defined using a cosine function. Element free Galerkin method (EFGM) does not require the domain. The effects of various parameters namely time t, amplitude of bottom wavy wall a, Brownian motion parameter Nb and thermophoresis parameter Nt is examined on rate of heat and mass transfer to get a visualization of cooling and heating effects. Such problems have important applications in heat exchangers or solar collectors, as wavy walled enclosures enhance heat transfer in comparison to flat walled enclosures.

Keywords: heat transfer, meshfree methods, nanofluid, trapezoidal enclosure

Procedia PDF Downloads 158
7552 Effect of Fractional Flow Curves on the Heavy Oil and Light Oil Recoveries in Petroleum Reservoirs

Authors: Abdul Jamil Nazari, Shigeo Honma

Abstract:

This paper evaluates and compares the effect of fractional flow curves on the heavy oil and light oil recoveries in a petroleum reservoir. Fingering of flowing water is one of the serious problems of the oil displacement by water and another problem is the estimation of the amount of recover oil from a petroleum reservoir. To address these problems, the fractional flow of heavy oil and light oil are investigated. The fractional flow approach treats the multi-phases flow rate as a total mixed fluid and then describes the individual phases as fractional of the total flow. Laboratory experiments are implemented for two different types of oils, heavy oil, and light oil, to experimentally obtain relative permeability and fractional flow curves. Application of the light oil fractional curve, which exhibits a regular S-shape, to the water flooding method showed that a large amount of mobile oil in the reservoir is displaced by water injection. In contrast, the fractional flow curve of heavy oil does not display an S-shape because of its high viscosity. Although the advance of the injected waterfront is faster than in light oil reservoirs, a significant amount of mobile oil remains behind the waterfront.

Keywords: fractional flow, relative permeability, oil recovery, water fingering

Procedia PDF Downloads 303
7551 Vibration control of Bridge Super structure using Tuned Mass Damper (TMD)

Authors: Tauhidur Rahman, Dhrubajyoti Thakuria

Abstract:

In this article, vibration caused by earthquake excitation, wind load and the high-speed vehicle in the superstructure has been studied. An attempt has been made to control these vibrations using passive Tuned Mass Dampers (TMD). Tuned mass damper consists of a mass, spring, and viscous damper which dissipates the vibration energy of the primary structure at the damper of the TMD. In the present paper, the concrete box girder bridge superstructure is considered and is modeled using MIDAS software. The bridge is modeled as Euler-Bernoulli beam to study the responses imposed by high-speed vehicle, earthquake excitation and wind load. In the present study, comparative study for the responses has been done considering different velocities of the train. The results obtained in this study are based on Indian standard loadings specified in Indian Railways Board (Bridge Rules). A comparative study has been done for the responses of the high-speed vehicle with and without Tuned Mass Dampers. The results indicate that there is a significant reduction in displacement and acceleration in the bridge superstructure when Tuned Mass Damper is used.

Keywords: bridge superstructure, high speed vehicle, tuned mass damper, TMD, vibration control

Procedia PDF Downloads 404
7550 Load Flow Analysis of 5-IEEE Bus Test System Using Matlab

Authors: H. Abaal, R. Skouri

Abstract:

A power flow analysis is a steady-state study of power grid. The goal of power flow analysis is to determine the voltages, currents, and real and reactive power flows in a system under a given load conditions. In this paper, the load flow analysis program by Newton Raphson polar coordinates Method is developed. The effectiveness of the developed program is evaluated through a simple 5-IEEE test system bus by simulations using MATLAB.

Keywords: power flow analysis, Newton Raphson polar coordinates method

Procedia PDF Downloads 604
7549 An Investigation of System and Operating Parameters on the Performance of Parabolic Trough Solar Collector for Power Generation

Authors: Umesh Kumar Sinha, Y. K. Nayak, N. Kumar, Swapnil Saurav, Monika Kashyap

Abstract:

The authors investigate the effect of system and operating parameters on the performance of high temperature solar concentrator for power generation. The effects of system and operating parameters were investigated using the developed mathematical expressions for collector efficiency, heat removal factor, fluid outlet temperature and power, etc. The results were simulated using C++program. The simulated results were plotted for investigation like effect of thermal loss parameter and radiative loss parameters on the collector efficiency, heat removal factor, fluid outlet temperature, rise of temperature and effect of mass flow rate of the fluid outlet temperature. In connection with the power generation, plots were drawn for the effect of (TM–TAMB) on the variation of concentration efficiency, concentrator irradiance on PM/PMN, evaporation temperature on thermal to electric power efficiency (Conversion efficiency) of the plant and overall efficiency of solar power plant.

Keywords: parabolic trough solar collector, radiative and thermal loss parameters, collector efficiency, heat removal factor, fluid outlet and inlet temperatures, rise of temperature, mass flow rate, conversion efficiency, concentrator irradiance

Procedia PDF Downloads 322
7548 Two-Phase Flow Modelling and Numerical Simulation for Waterflooding in Enhanced Oil Recovery

Authors: Peña A. Roland R., Lozano P. Jean P.

Abstract:

The waterflooding process is an enhanced oil recovery (EOR) method that appears tremendously successful. This paper shows the importance of the role of the numerical modelling of waterflooding and how to provide a better description of the fluid flow during this process. The mathematical model is based on the mass conservation equations for the oil and water phases. Rock compressibility and capillary pressure equations are coupled to the mathematical model. For discretizing and linearizing the partial differential equations, we used the Finite Volume technique and the Newton-Raphson method, respectively. The results of three scenarios for waterflooding in porous media are shown. The first scenario was estimating the water saturation in the media without rock compressibility and without capillary pressure. The second scenario was estimating the front of the water considering the rock compressibility and capillary pressure. The third case is to compare different fronts of water saturation for three fluids viscosity ratios without and with rock compressibility and without and with capillary pressure. Results of the simulation indicate that the rock compressibility and the capillary pressure produce changes in the pressure profile and saturation profile during the displacement of the oil for the water.

Keywords: capillary pressure, numerical simulation, rock compressibility, two-phase flow

Procedia PDF Downloads 124
7547 Virtual Modelling of Turbulent Fibre Flow in a Low Consistency Refiner for a Sustainable and Energy Efficient Process

Authors: Simon Ingelsten, Anton Lundberg, Vijay Shankar, Lars-Olof Landström, Örjan Johansson

Abstract:

The flow in a low consistency disc refiner is simulated with the aim of identifying flow structures possibly being of importance for a future study to optimise the energy efficiency in refining processes. A simplified flow geometry is used, where a single groove of a refiner disc is modelled. Two different fibre models are used to simulate turbulent fibre suspension flow in the groove. The first model is a Bingham viscoplastic fluid model where the fibre suspension is treated as a non-Newtonian fluid with a yield stress. The second model is a new model proposed in a recent study where the suspended fibres effect on flow is accounted for through a modelled orientation distribution function (ODF). Both models yielded similar results with small differences. Certain flow characteristics that were expected and that was found in the literature were identified. Some of these flow characteristics may be of importance in a future process to optimise the refiner geometry to increase the energy efficiency. Further study and a more detailed flow model is; however, needed in order for the simulations to yield results valid for quantitative use in such an optimisation study. An outline of the next steps in such a study is proposed.

Keywords: disc refiner, fibre flow, sustainability, turbulence modelling

Procedia PDF Downloads 408
7546 Relationship between Body Mass Composition and Primary Dysmenorrhoea

Authors: Snehalata Tembhurne

Abstract:

Introduction: A healthy menstrual cycle is a sign of women’s sound health.Various variables may influence the length and regularity of menstrual cycle.Studies have revealed that menstrual cycle abnormalities may be associated with psychological stress,lack of physical exercise, alteration in body composition,endocrine disturbances,higher estrogen levels as seen in obese females.Hence there is an urgent need to find out the relationship between variations in body mass composition(BMI & body fat%) with menstrual abnormalities like primary dysmenorrhoea. Aim: To find out the relationship between body mass composition and primary dysmenorrhea. Objectives: 1.To check whether there is any association between body mass index and primary dysmenorrhoea.2.To check whether there is any association between body fat percentage and primary dysmenorrhoea. NULL HYPOTHESES-There is no relationship between body mass composition and primary dysmenorrhea. Hypothesis: There exists a relationship between body mass composition and primary dysmenorrhea. Materials and Methods: The study was conducted over a period of 6 months with 90 samples selected on random basis. The procedure was explained to the participant and a written consent was taken thereafter. The participant was made to stand on the BODY COMPOSITION SCANNING MONITOR, which scanned the physical profile of the participant (height, weight, BMI, body fat percentage and visceral fat).Thereafter, the candidate was asked about her menstrual irregularities and was asked to grade her level of dysmenorrhoea (if present) using the Verbal Dimensional Dysmenorrhea Scale. Results: Chi square test of association was used to find out the association between body mass composition(body mass index,body fat percentage) and primary dysmenorrhea.The chi-square value for association between body mass index and primary dysmenorrhea was 38.63 p<0.001 which was statistically significant.The chi-square value for the association of body fat % & primary dysmenorrhea was 30.09,p<0.001which was statistically significant. Conclusion: Study shows that there exists a significant relationship between body mass composition and primary dysmenorrhea and as the value of Body mass index and body fat percentages goes on increasing in females, the severity of primary dysmenorrhea also increases.

Keywords: body mass index, body composition screening monitor, primary dysmenorrhea, verbal dimensional dysmenorrhea scale

Procedia PDF Downloads 330
7545 Tuned Mass Damper Vibration Control of Pedestrian Bridge

Authors: Qinglin Shu

Abstract:

Based on the analysis of the structural vibration comfort of a domestic bridge, this paper studies the vibration reduction control principle of TMD, the derivation process of design parameter optimization and how to simulate TMD in the finite element software ANSYS. The research shows that, in view of the problem that the comfort level of a bridge exceeds the limit in individual working conditions, the vibration reduction control design of the bridge can effectively reduce the vibration of the structure by using TMD. Calculations show that when the mass ratio of TMD is 0.01, the vibration reduction rate under different working conditions is more than 90%, and the dynamic displacement of the TMD mass block is within 0.01m, indicating that the design of TMD is reasonable and safe.

Keywords: pedestrian bridges, human-induced vibration, comfort, tuned mass dampers

Procedia PDF Downloads 114