Search results for: Desert flood
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 650

Search results for: Desert flood

410 Palygorskite Bearing Calcic-Soils from Western Thar Desert: Implications for Late Quaternary Monsoonal Fluctuations

Authors: A. Hameed, N. Upreti, P. Srivastava

Abstract:

Main objective the present study is to investigate microscopic, sub-microscopic, clay mineralogical and geochemical characteristics of three calcic soil profiles from the western Thar Desert for the last 30 ka paleoclimatic information. Thin-sections of the soils show weakly to moderately developed pedofeatures dominated by powdery to well-indurated pedogenic calcium carbonate. Sub-microscopy of the representative calcretes show extensive growth of fibrous palygorskite in pore spaces of micritic and sparitic nodules. XRD of the total clay ( < 2 µm) and fine clay ( < 0.2 µm) fractions of the soils show dominance of smectite, palygorskite, chlorite, mica, kaolinite and small amounts of quartz and feldspar. Formation of the palygorskite is attributed to pedogenic processes associated with Bw, Bss and Bwk horizons during drier conditions over the last 30 ka. Formation of palygorskite was mainly favoured by strongly evaporating percolating water and precipitation of secondary calcite, high pH (9-10), high Mg, Si and low Al activities during pedogenesis. Age estimate and distribution of calcretes, palygorskite, and illuvial features indicate fluctuating monsoonal strength during MIS3-MIS1 stages. The pedogenic features in calcic soils of western Thar suggest relatively arid conditions during MIS3-MIS2 transition and LGM time that changed to relatively wetter conditions during post LGM time and again returned to dry conditions at ~4 ka in MIS1.

Keywords: palygorskite, clay minerals, Thar, aridisol, late quaternary

Procedia PDF Downloads 144
409 Impacts of the Mineralogical Composition on the Petrophysical Behavior of the Amygdaloidal and Vesicular Basalts of Wadi Wizr, Eastern Desert, Egypt

Authors: Nadia A. Wassif, Bassem S. Nabawy

Abstract:

This paper gives an account of the petrophysical characteristics and the petrographical descriptions of Tertiary vesicular and amygdaloidal olivine basalt samples from Wadi Wizr in the central Eastern Desert of Egypt. The petrographical studies indicated that the studied vesicular basalt is rich in calcic-plagioclase, augite and olivine in addition to numerous amounts of fine opaque minerals and vesicules filled with carbonate and quartz amygdales. The degree of oxidation and alteration of magnetite and ilmenite were discussed in details. Petrophysically, the studied samples can be grouped into two main groups; the first group of samples is amygdaloidal basalt as the second group is vesicular. The vesicular group (the permeable one) is characterized by fair to very good porosity ‘Φ’, good to very good permeability ‘k’, very low true formation factor ‘F’ and micro to ultra micropores. On the other hand, the amygdaloidal basalt group (impermeable group) is characterized by very low storage capacity properties, fair porosity, negligible permeability, medium to high true formation factor and ultra micorpores. It has been found that; the petrophysical behavior is strongly dependent on the degree of oxidation and alteration; and in particular on the rate of cooling and oxidation of the ore minerals which caused filling in the primarily produced vesicules by low temperature secondary minerals.

Keywords: vesicular, amygdaloidal, basalt, petrophysics, Egypt

Procedia PDF Downloads 331
408 Understanding Social Networks in Community's Coping Capacity with Floods: A Case Study of a Community in Cambodia

Authors: Ourn Vimoil, Kallaya Suntornvongsagul

Abstract:

Cambodia is considered as one of the most disaster prone countries in South East Asia, and most of natural disasters are related to floods. Cambodia, a developing country, faces significant impacts from floods, such as environmental, social, and economic losses. Using data accessed from focus group discussions and field surveys with villagers in Ba Baong commune, prey Veng province, Cambodia, the research would like to examine roles of social networks in raising community’s coping capacity with floods. The findings indicate that social capital play crucial roles in three stages of floods, namely preparedness, response, and recovery to overcome the crisis. People shared their information and resources, and extent their assistances to one another in order to adapt to floods. The study contribute to policy makers, national and international agencies working on this issue to pay attention on social networks as one factors to accelerate flood coping capacity at community level.

Keywords: social network, community, coping capacity, flood, Cambodia

Procedia PDF Downloads 339
407 [Keynote Talk]: Unlocking Transformational Resilience in the Aftermath of a Flood Disaster: A Case Study from Cumbria

Authors: Kate Crinion, Martin Haran, Stanley McGreal, David McIlhatton

Abstract:

Past research has demonstrated that disasters are continuing to escalate in frequency and magnitude worldwide, representing a key concern for the global community. Understanding and responding to the increasing risk posed by disaster events has become a key concern for disaster managers. An emerging trend within literature, acknowledges the need to move beyond a state of coping and reinstatement of the status quo, towards incremental adaptive change and transformational actions for long-term sustainable development. As such, a growing interest in research concerns the understanding of the change required to address ever increasing and unpredictable disaster events. Capturing transformational capacity and resilience, however is not without its difficulties and explains the dearth in attempts to capture this capacity. Adopting a case study approach, this research seeks to enhance an awareness of transformational resilience by identifying key components and indicators that determine the resilience of flood-affected communities within Cumbria. Grounding and testing a theoretical resilience framework within the case studies, permits the identification of how perceptions of risk influence community resilience actions. Further, it assesses how levels of social capital and connectedness impacts upon the extent of interplay between resources and capacities that drive transformational resilience. Thus, this research seeks to expand the existing body of knowledge by enhancing the awareness of resilience in post-disaster affected communities, by investigating indicators of community capacity building and resilience actions that facilitate transformational resilience during the recovery and reconstruction phase of a flood disaster.

Keywords: capacity building, community, flooding, transformational resilience

Procedia PDF Downloads 266
406 Conflation Methodology Applied to Flood Recovery

Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong

Abstract:

Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.

Keywords: community resilience, conflation, flood risk, nuisance flooding

Procedia PDF Downloads 67
405 Application of Satellite Remote Sensing in Support of Water Exploration in the Arab Region

Authors: Eman Ghoneim

Abstract:

The Arabian deserts include some of the driest areas on Earth. Yet, its landforms reserved a record of past wet climates. During humid phases, the desert was green and contained permanent rivers, inland deltas and lakes. Some of their water would have seeped and replenished the groundwater aquifers. When the wet periods came to an end, several thousand years ago, the entire region transformed into an extended band of desert and its original fluvial surface was totally covered by windblown sand. In this work, radar and thermal infrared images were used to reveal numerous hidden surface/subsurface features. Radar long wavelength has the unique ability to penetrate surface dry sands and uncover buried subsurface terrain. Thermal infrared also proven to be capable of spotting cooler moist areas particularly in hot dry surfaces. Integrating Radarsat images and GIS revealed several previously unknown paleoriver and lake basins in the region. One of these systems, known as the Kufrah, is the largest yet identified river basin in the Eastern Sahara. This river basin, which straddles the border between Egypt and Libya, flowed north parallel to the adjacent Nile River with an extensive drainage area of 235,500 km2 and massive valley width of 30 km in some parts. This river was most probably served as a spillway for an overflow from Megalake Chad to the Mediterranean Sea and, thus, may have acted as a natural water corridor used by human ancestors to migrate northward across the Sahara. The Gilf-Kebir is another large paleoriver system located just east of Kufrah and emanates from the Gilf Plateau in Egypt. Both river systems terminate with vast inland deltas at the southern margin of the Great Sand Sea. The trends of their distributary channels indicate that both rivers drained to a topographic depression that was periodically occupied by a massive lake. During dry climates, the lake dried up and roofed by sand deposits, which is today forming the Great Sand Sea. The enormity of the lake basin provides explanation as to why continuous extraction of groundwater in this area is possible. A similar lake basin, delimited by former shorelines, was detected by radar space data just across the border of Sudan. This lake, called the Northern Darfur Megalake, has a massive size of 30,750 km2. These former lakes and rivers could potentially hold vast reservoirs of groundwater, oil and natural gas at depth. Similar to radar data, thermal infrared images were proven to be useful in detecting potential locations of subsurface water accumulation in desert regions. Analysis of both Aster and daily MODIS thermal channels reveal several subsurface cool moist patches in the sandy desert of the Arabian Peninsula. Analysis indicated that such evaporative cooling anomalies were resulted from the subsurface transmission of the Monsoonal rainfall from the mountains to the adjacent plain. Drilling a number of wells in several locations proved the presence of productive water aquifers confirming the validity of the used data and the adopted approaches for water exploration in dry regions.

Keywords: radarsat, SRTM, MODIS, thermal infrared, near-surface water, ancient rivers, desert, Sahara, Arabian peninsula

Procedia PDF Downloads 221
404 Risk Issues for Controlling Floods through Unsafe, Dual Purpose, Gated Dams

Authors: Gregory Michael McMahon

Abstract:

Risk management for the purposes of minimizing the damages from the operations of dams has met with opposition emerging from organisations and authorities, and their practitioners. It appears that the cause may be a misunderstanding of risk management arising from exchanges that mix deterministic thinking with risk-centric thinking and that do not separate uncertainty from reliability and accuracy from probability. This paper sets out those misunderstandings that arose from dam operations at Wivenhoe in 2011, using a comparison of outcomes that have been based on the methodology and its rules and those that have been operated by applying misunderstandings of the rules. The paper addresses the performance of one risk-centric Flood Manual for Wivenhoe Dam in achieving a risk management outcome. A mixture of engineering, administrative, and legal factors appear to have combined to reduce the outcomes from the risk approach. These are described. The findings are that a risk-centric Manual may need to assist administrations in the conduct of scenario training regimes, in responding to healthy audit reporting, and in the development of decision-support systems. The principal assistance needed from the Manual, however, is to assist engineering and the law to a good understanding of how risks are managed – do not assume that risk management is understood. The wider findings are that the critical profession for decision-making downstream of the meteorologist is not dam engineering or hydrology, or hydraulics; it is risk management. Risk management will provide the minimum flood damage outcome where actual rainfalls match or exceed forecasts of rainfalls, that therefore risk management will provide the best approach for the likely history of flooding in the life of a dam, and provisions made for worst cases may be state of the art in risk management. The principal conclusion is the need for training in both risk management as a discipline and also in the application of risk management rules to particular dam operational scenarios.

Keywords: risk management, flood control, dam operations, deterministic thinking

Procedia PDF Downloads 54
403 The Rehabilitation Solutions for the Hydraulic Jump Sweepout: A Case Study from India

Authors: Ali Heidari, Hany Saleem

Abstract:

The tailwater requirements are important criteria in the design of the stilling basins as energy dissipation of the spillways. The adequate tailwater level that ensures the hydraulic jump inside the basin should be fulfilled by the river's natural water level and the apron depth downstream of the chute. The requirements of the hydraulic jump should mainly be checked for the design flood, however, the drawn jump condition should not be critical in the discharges lesser than the design flood. The tailwater requirement is not met in Almatti dam, built in 2005 in India, and the jump sweep out from the basin, resulting in significant scour in the apron and end sill of the basin. This paper discusses different hydraulic solutions as sustainable solutions for the rehabilitation program. The deep apron alternative is proposed for the fewer bays of the spillway as the most cost-effective, sustainable solution. The apron level of 15 gates out of 26 gates should decrease by 5.4 m compared to the existing design to ensure a safe hydraulic jump up to the discharge of 10,000 m3/s i.e. 30% of the updated PMF.

Keywords: dam, spillway, stilling basin, Almatti

Procedia PDF Downloads 19
402 From Ondoy to Habagat: Comparison of the Community Coping Strategies between Barangay Tumana and Provident Village, Marikina City

Authors: Dinnah Feye H. Andal, Ann Laurice V. Salonga

Abstract:

The paper investigates the flooding event that was experienced by Marikina City residents during the onslaught of Tropical Storm Ondoy on September 26, 2009 and during the heavy downpour caused by the southwest monsoon (Habagat) on August 1-8, 2012. Typhoon Ketsana, locally known as Tropical Storm Ondoy, devastated the whole of Marikina City, displacing a lot of people from their homes and damages properties as well, as flood rose at a very short period of time. Meanwhile, the massive amount of rain water brought by the southwest monsoon lasted for a week that also caused flooding to different parts of Metro Manila including Marikina City. This paper examines how the respondents’ experiences of the flooding caused by Tropical Storm Ondoy informed the coping strategies that the households in Barangay Tumana and Provident Village employed during the flooding brought by the southwest monsoon rains. Specifically, the research compares the coping strategies to flood hazards between residents of Barangay Tumana and Provident Village before, during and after the flooding caused by the southwest monsoon rains. Both study sites have relatively low elevation and are located along rivers and creeks which make them highly susceptible to flood. Interviews with affected residents were undertaken to understand how a household's coping strategies contribute to the development of community coping strategies at the respective neighborhood level. Based from the findings, income levels, local politics, religion and social relations between and among neighbors affect the way household and community coping strategies differ in the two case study sites.

Keywords: community coping strategies, Habagat, Marikina, Ondoy

Procedia PDF Downloads 296
401 Flood Risk Management in the Semi-Arid Regions of Lebanon - Case Study “Semi Arid Catchments, Ras Baalbeck and Fekha”

Authors: Essam Gooda, Chadi Abdallah, Hamdi Seif, Safaa Baydoun, Rouya Hdeib, Hilal Obeid

Abstract:

Floods are common natural disaster occurring in semi-arid regions in Lebanon. This results in damage to human life and deterioration of environment. Despite their destructive nature and their immense impact on the socio-economy of the region, flash floods have not received adequate attention from policy and decision makers. This is mainly because of poor understanding of the processes involved and measures needed to manage the problem. The current understanding of flash floods remains at the level of general concepts; most policy makers have yet to recognize that flash floods are distinctly different from normal riverine floods in term of causes, propagation, intensity, impacts, predictability, and management. Flash floods are generally not investigated as a separate class of event but are rather reported as part of the overall seasonal flood situation. As a result, Lebanon generally lacks policies, strategies, and plans relating specifically to flash floods. Main objective of this research is to improve flash flood prediction by providing new knowledge and better understanding of the hydrological processes governing flash floods in the East Catchments of El Assi River. This includes developing rainstorm time distribution curves that are unique for this type of study region; analyzing, investigating, and developing a relationship between arid watershed characteristics (including urbanization) and nearby villages flow flood frequency in Ras Baalbeck and Fekha. This paper discusses different levels of integration approach¬es between GIS and hydrological models (HEC-HMS & HEC-RAS) and presents a case study, in which all the tasks of creating model input, editing data, running the model, and displaying output results. The study area corresponds to the East Basin (Ras Baalbeck & Fakeha), comprising nearly 350 km2 and situated in the Bekaa Valley of Lebanon. The case study presented in this paper has a database which is derived from Lebanese Army topographic maps for this region. Using ArcMap to digitizing the contour lines, streams & other features from the topographic maps. The digital elevation model grid (DEM) is derived for the study area. The next steps in this research are to incorporate rainfall time series data from Arseal, Fekha and Deir El Ahmar stations to build a hydrologic data model within a GIS environment and to combine ArcGIS/ArcMap, HEC-HMS & HEC-RAS models, in order to produce a spatial-temporal model for floodplain analysis at a regional scale. In this study, HEC-HMS and SCS methods were chosen to build the hydrologic model of the watershed. The model then calibrated using flood event that occurred between 7th & 9th of May 2014 which considered exceptionally extreme because of the length of time the flows lasted (15 hours) and the fact that it covered both the watershed of Aarsal and Ras Baalbeck. The strongest reported flood in recent times lasted for only 7 hours covering only one watershed. The calibrated hydrologic model is then used to build the hydraulic model & assessing of flood hazards maps for the region. HEC-RAS Model is used in this issue & field trips were done for the catchments in order to calibrated both Hydrologic and Hydraulic models. The presented models are a kind of flexible procedures for an ungaged watershed. For some storm events it delivers good results, while for others, no parameter vectors can be found. In order to have a general methodology based on these ideas, further calibration and compromising of results on the dependence of many flood events parameters and catchment properties is required.

Keywords: flood risk management, flash flood, semi arid region, El Assi River, hazard maps

Procedia PDF Downloads 460
400 Cenomanian-Turonian Oceanic Anoxic Event, Palynofacies and Optical Kerogen Analysis in Abu Gharadig Basin, Egypt

Authors: Mohamed Ibrahim, Suzan Kholeif

Abstract:

The Cenomanian-Turonian boundary was a ‘greenhouse’ period. The atmosphere at that time was characterized by high CO₂; in addition, there was the widespread deposition of organic-rich sediments anomalously rich in organic carbon. The sediments, palynological, total organic carbon (TOC), stable carbon and oxygen isotopes (δ¹³C, δ¹⁸O, organic) of the Cenomanian-Turonian Bahariya and basal Abu Roash formations at the southern Tethys margin were studied in two deep wells (AG5 and AG-13), Abu Gharadig Oil Field, North Western Desert, Egypt. Some of the marine (dinoflagellate cysts), as well as the terrestrial palynoflora (spores and pollen grains), reveal extinction and origination patterns that are known elsewhere, although other species may be survived across the Cenomanian-Turonian boundary. This implies control of global changes on the palynoflora, i.e., impact of Oceanic Anoxic Event OAE2 (Bonarelli Event), rather than changes in the local environmental conditions. The basal part of the Abu Roach Formation ('G' and 'F' members, late Cenomanian) shows a positive δ ¹³C excursion of the organic fraction. The TOC is generally high between 2.20 and 3.04 % in the basal Abu Roash Formation: shale of 'G' and carbonate of 'F' members, which indicates that these two members are the main Cretaceous source rocks in the Abu Gharadig Basin and have a type I-II kerogen composition. They are distinguished by an abundance of amorphous organic matter AOM and Chlorococcalean algae, mainly Pediastrum and Scenedesmus, along with subordinate dinoflagellate cysts.

Keywords: oceanic anoxic event, cenomanian-turonian, palynofacies, western desert, Egypt

Procedia PDF Downloads 97
399 A Pathway to Sustainable Agriculture through Protection and Propagation of Indigenous Livestock Breeds of Pakistan-Cholistani Cattle as a Case Study

Authors: Umer Farooq

Abstract:

The present work is being presented with a general aim of highlighting the role of protection/propagation of indigenous breeds of livestock in an area as a sustainable tool for poverty alleviation. Specifically, the aim is to introduce a formerly neglected Cholistani breed of cattle being reared by the Cholistani desert nomads of Pakistan. The said work will present a detaile account of research work conducted during the last five years by the author. Furthermore, it will present the performance (productive and reproductive traits) of this breed as being reared under various nomadic systems of the desert. Results will be deducted on the basis of the research work conducted on Cholistani cattle and keeping abreast the latest reforms being provided by the Food and Agriculture Organization (FAO) and World Initiative to Support Pastoralism (WISP) of the UN. The timely attention towards the protection and propagation of this neglected breed of cattle will pave a smoother way towards poverty alleviation of rural/suburban areas and a successful sustainable agriculture in low input production systems such as Pakistan. The 15 recognized indigenous breeds of cattle constitute 43% of the total livestock population in Pakistan and belong to Zebu cattle. These precious breeds are currently under threat and might disappear even before proper documentation until and unless streamlined efforts are diverted towards them. This horrific state is due to many factors such as epidemic diseases, urbanization, indiscriminate crossing with native stock, misdirected cross breeding with exotic stock/semen, inclined livestock systems from extensive (subsistence) to intensive (commercial), lack of valuation of local breeds, decreasing natural resources, environmental degradation and global warming. Hefty work has been documented on many aspects of Sahiwal and Red Sindhi breeds of cattle in their respective local climates which have rightly gained them an international fame as being the vital tropical milk breeds of Pakistan. However, many other indigenous livestock breeds such as Cholistani cattle being reared under pastoral systems of Cholistan are yet unexplored. The productive and reproductive traits under their local climatic conditions need to be studied and the future researches may be streamlined to manipulate their indigenous potential. The timely attention will pave a smoother way towards poverty alleviation of rural/suburban areas and a successful sustainable agriculture in low input production systems.

Keywords: Cholistan desert, Pakistan, indigenous cattle, Sahiwal cattle, pastoralism

Procedia PDF Downloads 521
398 Tidal Current Behaviors and Remarkable Bathymetric Change in the South-Western Part of Khor Abdullah, Kuwait

Authors: Ahmed M. Al-Hasem

Abstract:

A study of the tidal current behavior and bathymetric changes was undertaken in order to establish an information base for future coastal management. The average velocity for tidal current was 0.46 m/s and the maximum velocity was 1.08 m/s during ebb tide. During spring tides, maximum velocities range from 0.90 m/s to 1.08 m/s, whereas maximum velocities vary from 0.40 m/s to 0.60 m/s during neap tides. Despite greater current velocities during flood tide, the bathymetric features enhance the dominance of the ebb tide. This can be related to the abundance of fine sediments from the ebb current approaching the study area, and the relatively coarser sediment from the approaching flood current. Significant bathymetric changes for the period from 1985 to 1998 were found with dominance of erosion process. Approximately 96.5% of depth changes occurred within the depth change classes of -5 m to 5 m. The high erosion processes within the study area will subsequently result in high accretion processes, particularly in the north, the location of the proposed Boubyan Port and its navigation channel.

Keywords: bathymetric change, Boubyan island, GIS, Khor Abdullah, tidal current behavior

Procedia PDF Downloads 263
397 Development a Forecasting System and Reliable Sensors for River Bed Degradation and Bridge Pier Scouring

Authors: Fong-Zuo Lee, Jihn-Sung Lai, Yung-Bin Lin, Xiaoqin Liu, Kuo-Chun Chang, Zhi-Xian Yang, Wen-Dar Guo, Jian-Hao Hong

Abstract:

In recent years, climate change is a major factor to increase rainfall intensity and extreme rainfall frequency. The increased rainfall intensity and extreme rainfall frequency will increase the probability of flash flood with abundant sediment transport in a river basin. The floods caused by heavy rainfall may cause damages to the bridge, embankment, hydraulic works, and the other disasters. Therefore, the foundation scouring of bridge pier, embankment and spur dike caused by floods has been a severe problem in the worldwide. This severe problem has happened in many East Asian countries such as Taiwan and Japan because of these areas are suffered in typhoons, earthquakes, and flood events every year. Results from the complex interaction between fluid flow patterns caused by hydraulic works and the sediment transportation leading to the formation of river morphology, it is extremely difficult to develop a reliable and durable sensor to measure river bed degradation and bridge pier scouring. Therefore, an innovative scour monitoring sensor using vibration-based Micro-Electro Mechanical Systems (MEMS) was developed. This vibration-based MEMS sensor was packaged inside a stainless sphere with the proper protection of the full-filled resin, which can measure free vibration signals to detect scouring/deposition processes at the bridge pier. In addition, a friendly operational system includes rainfall runoff model, one-dimensional and two-dimensional numerical model, and the applicability of sediment transport equation and local scour formulas of bridge pier are included in this research. The friendly operational system carries out the simulation results of flood events that includes the elevation changes of river bed erosion near the specified bridge pier and the erosion depth around bridge piers. In addition, the system is developed with easy operation and integrated interface, the system can supplies users to calibrate and verify numerical model and display simulation results through the interface comparing to the scour monitoring sensors. To achieve the forecast of the erosion depth of river bed and main bridge pier in the study area, the system also connects the rainfall forecast data from Taiwan Typhoon and Flood Research Institute. The results can be provided available information for the management unit of river and bridge engineering in advance.

Keywords: flash flood, river bed degradation, bridge pier scouring, a friendly operational system

Procedia PDF Downloads 167
396 The Impact of Land Cover Change on Stream Discharges and Water Resources in Luvuvhu River Catchment, Vhembe District, Limpopo Province, South Africa

Authors: P. M. Kundu, L. R. Singo, J. O. Odiyo

Abstract:

Luvuvhu River catchment in South Africa experiences floods resulting from heavy rainfall of intensities exceeding 15 mm per hour associated with the Inter-tropical Convergence Zone (ITCZ). The generation of runoff is triggered by the rainfall intensity and soil moisture status. In this study, remote sensing and GIS techniques were used to analyze the hydrologic response to land cover changes. Runoff was calculated as a product of the net precipitation and a curve number coefficient. It was then routed using the Muskingum-Cunge method using a diffusive wave transfer model that enabled the calculation of response functions between start and end point. Flood frequency analysis was determined using theoretical probability distributions. Spatial data on land cover was obtained from multi-temporal Landsat images while data on rainfall, soil type, runoff and stream discharges was obtained by direct measurements in the field and from the Department of Water. A digital elevation model was generated from contour maps available at http://www.ngi.gov.za. The results showed that land cover changes had impacted negatively to the hydrology of the catchment. Peak discharges in the whole catchment were noted to have increased by at least 17% over the period while flood volumes were noted to have increased by at least 11% over the same period. The flood time to peak indicated a decreasing trend, in the range of 0.5 to 1 hour within the years. The synergism between remotely sensed digital data and GIS for land surface analysis and modeling was realized, and it was therefore concluded that hydrologic modeling has potential for determining the influence of changes in land cover on the hydrologic response of the catchment.

Keywords: catchment, digital elevation model, hydrological model, routing, runoff

Procedia PDF Downloads 541
395 Collective Potential: A Network of Acupuncture Interventions for Flood Resilience

Authors: Sachini Wickramanayaka

Abstract:

The occurrence of natural disasters has increased in an alarming rate in recent times due to escalating effects of climate change. One such natural disaster that has continued to grow in frequency and intensity is ‘flooding’, adversely affecting communities around the globe. This is an exploration on how architecture can intervene and facilitate in preserving communities in the face of disaster, specifically in battling floods. ‘Resilience’ is one of the concepts that have been brought forward to be instilled in vulnerable communities to lower the impact from such disasters as a preventative and coping mechanism. While there are number of ways to achieve resilience in the built environment, this paper aims to create a synthesis between resilience and ‘urban acupuncture’. It will consider strengthening communities from within, by layering a network of relatively small-scale, fast phased interventions on pre-existing conventional flood preventative large-scale engineering infrastructure.By investigating ‘The Woodlands’, a planned neighborhood as a case study, this paper will argue that large-scale water management solutions while extremely important will not suffice as a single solution particularly during a time of frequent and extreme weather events. The different projects will try to synthesize non-architectural aspects such as neighborhood aspirations, requirements, potential and awareness into a network of architectural forms that would collectively increase neighborhood resiliency to floods. A mapping study of the selected study area will identify the problematic areas that flood in the neighborhood while the empirical data from previously implemented case studies will assess the success of each solution.If successful the different solutions for each of the identified problem areas will exhibithow flooding and water management can be integrated as part and parcel of daily life.

Keywords: acupuncture, architecture, resiliency, micro-interventions, neighborhood

Procedia PDF Downloads 135
394 Low-Impact Development Strategies Assessment for Urban Design

Authors: Y. S. Lin, H. L. Lin

Abstract:

Climate change and land-use change caused by urban expansion increase the frequency of urban flooding. To mitigate the increase in runoff volume, low-impact development (LID) is a green approach for reducing the area of impervious surface and managing stormwater at the source with decentralized micro-scale control measures. However, the current benefit assessment and practical application of LID in Taiwan is still tending to be development plan in the community and building site scales. As for urban design, site-based moisture-holding capacity has been common index for evaluating LID’s effectiveness of urban design, which ignore the diversity, and complexity of the urban built environments, such as different densities, positive and negative spaces, volumes of building and so on. Such inflexible regulations not only probably make difficulty for most of the developed areas to implement, but also not suitable for every different types of built environments, make little benefits to some types of built environments. Looking toward to enable LID to strength the link with urban design to reduce the runoff in coping urban flooding, the research consider different characteristics of different types of built environments in developing LID strategy. Classify the built environments by doing the cluster analysis based on density measures, such as Ground Space Index (GSI), Floor Space Index (FSI), Floors (L), and Open Space Ratio (OSR), and analyze their impervious surface rates and runoff volumes. Simulate flood situations by using quasi-two-dimensional flood plain flow model, and evaluate the flood mitigation effectiveness of different types of built environments in different low-impact development strategies. The information from the results of the assessment can be more precisely implement in urban design. In addition, it helps to enact regulations of low-Impact development strategies in urban design more suitable for every different type of built environments.

Keywords: low-impact development, urban design, flooding, density measures

Procedia PDF Downloads 309
393 Ancient Iran Water Technologies

Authors: Akbar Khodavirdizadeh, Ali Nemati Babaylou, Hassan Moomivand

Abstract:

The history of human access to water technique has been one of the factors in the formation of human civilizations in the ancient world. The technique that makes surface water and groundwater accessible to humans on the ground has been a clever technique in human life to reach the water. In this study, while examining the water technique of ancient Iran using the Qanats technique, the water supply system of different regions of the ancient world were also studied and compared. Six groups of the ancient region of ancient Greece (Archaic 480-750 BC and Classical 223-480 BC), Urartu in Tuspa (600-850 BC), Petra (106-168 BC), Ancient Rome (265 BC), and the ancient United States (1450 BC) and ancient Iranian water technologies were studied under water supply systems. Past water technologies in these areas: water transmission systems in primary urban centers, use of water structures in water control, use of bridges in water transfer, construction of waterways for water transfer, storage of rainfall, construction of various types of pottery- ceramic, lead, wood and stone pipes have been used in water transfer, flood control, water reservoirs, dams, channel, wells, and Qanat. The central plateau of Iran is one of the arid and desert regions. Archaeological, geomorphological, and paleontological studies of the central region of the Iranian plateau showed that without the use of Qanats, the possibility of urban civilization in this region was difficult and even impossible. Zarch aqueduct is the most important aqueduct in Yazd region. Qanat of Zarch is a plain Qanat with a gallery length of 80 km; its mother well is 85 m deep and has 2115 well shafts. The main purpose of building the Qanat of Zārch was to access the groundwater source and transfer it to the surface of the ground. Regarding the structure of the aqueduct and the technique of transferring water from the groundwater source to the surface, it has a great impact on being different from other water techniques in the ancient world. The results show that the use of water technologies in ancient is very important to understand the history of humanity in the use of hydraulic techniques.

Keywords: ancient water technologies, groundwaters, qanat, human history, Ancient Iran

Procedia PDF Downloads 86
392 The Implication of Disaster Risk Identification to Cultural Heritage-The Scenarios of Flood Risk in Taiwan

Authors: Jieh-Jiuh Wang

Abstract:

Disasters happen frequently due to the global climate changes today. The cultural heritage conservation should be considered from the perspectives of surrounding environments and large-scale disasters. Most current thoughts about the disaster prevention of cultural heritages in Taiwan are single-point thoughts emphasizing firefighting, decay prevention, and construction reinforcement and ignoring the whole concept of the environment. The traditional conservation cannot defend against more and more tremendous and frequent natural disasters caused by climate changes. More and more cultural heritages are confronting the high risk of disasters. This study adopts the perspective of risk identification and takes flood as the main disaster category. It analyzes the amount and categories of cultural heritages that might suffer from disasters with the geographic information system integrating the latest flooding potential data from National Fire Agency and Water Resources Agency and the basic data of cultural heritages. It examines the actual risk of cultural heritages confronting floods and serves as the accordance for future considerations of risk measures and preparation for reducing disasters. The result of the study finds the positive relationship between the disaster affected situation of national cultural heritages and the rainfall intensity. The order of impacted level by floods is historical buildings, historical sites indicated by municipalities and counties, and national historical sites and relics. However, traditional settlements and cultural landscapes are not impacted. It might be related to the taboo space in the traditional culture of site selection (concepts of disaster avoidance). As for the regional distribution on the other hand, cultural heritages in central and northern Taiwan suffer from more shocking floods, while the heritages in northern and eastern Taiwan suffer from more serious flooding depth.

Keywords: cultural heritage, flood, preventive conservation, risk management

Procedia PDF Downloads 314
391 Rainfall–Runoff Simulation Using WetSpa Model in Golestan Dam Basin, Iran

Authors: M. R. Dahmardeh Ghaleno, M. Nohtani, S. Khaledi

Abstract:

Flood simulation and prediction is one of the most active research areas in surface water management. WetSpa is a distributed, continuous, and physical model with daily or hourly time step that explains precipitation, runoff, and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave equation which depends on the slope, velocity, and flow route characteristics. Golestan Dam Basin is located in Golestan province in Iran and it is passing over coordinates 55° 16´ 50" to 56° 4´ 25" E and 37° 19´ 39" to 37° 49´ 28"N. The area of the catchment is about 224 km2, and elevations in the catchment range from 414 to 2856 m at the outlet, with average slope of 29.78%. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe model efficiency coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 59% and 80.18%, respectively.

Keywords: watershed simulation, WetSpa, stream flow, flood prediction

Procedia PDF Downloads 224
390 Surveying Coastal Society Perception on Giant Sea Wall Jakarta Development Planning

Authors: Ammar Asfari, Faizah Finur Fithriah, Shighia Ajeng Savitri

Abstract:

Jakarta as the capital city of Indonesia held an important role for the country, that is being the city where central government is located. But its topographic character which categorized as lowland area is causing an ultimate trouble. With average height of 7 meters above the sea level, flood keeps occurring in this city. On the other hand, water exploitation that caused land subsidence and sea-levels increasing by global warming make it even worse. Giant Sea Wall Development is a project created by Jakarta’s government to overcome flood, which is inspired by Saemangeum Dam in South Korea. For further planning, Giant Sea Wall is planned to be water reservoir for Jakarta’s inhabitants. This research’s aim is to fully understand the knowledge and opinion of people living in North Jakarta (Jakarta’s Coastal Area) on Giant Sea Wall development planning using qualitative method analysis with descriptive approach. The result of this research will be one of the determining factors in Giant Sea Wall Jakarta development planning continuance.

Keywords: descriptive approach, Giant Sea Wall Jakarta, qualitative method analysis, society perception

Procedia PDF Downloads 256
389 Species Composition of Lepidoptera (Insecta: Lepidoptera) Inhabited on the Saxaul (Chenopodiáceae: Haloxylon spp.) in the Desert Area of South-East Kazakhstan

Authors: N. Tumenbayeva

Abstract:

At the present time in Kazakhstan, the area for saxaul growing is strongly depopulateddue to anthropogenic and other factors. To prevent further reduction of natural haloxylon forest area their artificial crops are offered. Seed germination and survival of young plants in such haloxylon crops are very low. Insects, as one of the most important nutrient factors have appreciable effect on seed germination and saxaul productivity at the all stages of its formation. Insects, feeding on leaves, flowers, seeds and developing inside the trunk, branches, twigs, roots have a change in its formation and influence on the lifespan of saxaul. Representatives of Lepidoptera troop (Lepidopteraare the most harmful pests forsaxaul. As a result of our research we have identified 15 species of Lepidoptera living on haloxylon which display very different cycles and different types of food relations. It allows them to inhabit a variety of habitats, and feeding on various parts of saxaul. Some of them cause significant and sometimes very heavy damage for saxaul. There are 17identified species of Lepidoptera from the Coleophoridaefamily - 1, Gelechidae - 5, Pyralidae - 4, Noctuidae - 4, Lymantridae- 1, Cossidae - 2 species. At the same time we found 8 species for the first time, which have not been mentioned in the literature before. According to food specialization they are divided into monophages (2 types), oligophages (6 species) and polyphages (3 species). By affinity to plant parts, leaves and seeds are fed by 8 species, shoots by 1 specie, scions by 5 species, flowers, scions, seeds by 1, and 2species damage the roots and trunks. In whole installed seasonal groups of Lepidoptera - saxaul pests in the desert area, confined to the certain parts of the year, as well as certain parts of the plant for feeding. Harmfulness, depending on their activity appear during the growing season is also different.

Keywords: saxaul, Lepidoptera, insecta, haloxylon

Procedia PDF Downloads 303
388 The Role of Cornulaca aucheri in Stabilization of Degraded Sandy Soil in Kuwait

Authors: Modi M. Ahmed, Noor Al-Dousari, Ali M. Al-Dousari

Abstract:

Cornulaca aucheri is an annual herb consider as disturbance indicator currently visible and widely distributed in disturbed lands in Liyah area. Such area is suffered from severe land degradation due to multiple interacting factors such as, overgrazing, gravel and sand quarrying, military activities and natural process. The restoration program is applied after refilled quarries sites and levelled the surface irregularities in order to rehabilitate the natural vegetation and wildlife to its original shape. During the past 10 years of rehabilitation, noticeable greenery healthy cover of Cornulaca sp. are shown specially around artificial lake and playas. The existence of such species in high density it means that restoration program has succeeded and transit from bare ground state to Cornulaca and annual forb state. This state is lower state of Range State Transition Succession model, but it is better than bare soil. Cornulaca spp is native desert plant grows in arid conditions on sandy, stony ground, near oasis, on sand dunes and in sandy depressions. The sheep and goats are repulsive of it. Despite its spiny leaves, it provides good grazing for camels and is said to increase the milk supply produced by lactating females. It is about 80 cm tall and has stems that branched from the base with new faster greenery growth in the summer. It shows good environmental potential to be managed as natural types used for the restoration of degraded lands in desert areas.

Keywords: land degradation, range state transition succession model, rehabilitation, restoration program

Procedia PDF Downloads 332
387 Case Studies of Mitigation Methods against the Impacts of High Water Levels in the Great Lakes

Authors: Jennifer M. Penton

Abstract:

Record high lake levels in 2017 and 2019 (2017 max lake level = 75.81 m; 2018 max lake level = 75.26 m; 2019 max lake level = 75.92 m) combined with a number of severe storms in the Great Lakes region, have resulted in significant wave generation across Lake Ontario. The resulting large wave heights have led to erosion of the natural shoreline, overtopping of existing revetments, backshore erosion, and partial and complete failure of several coastal structures, which in turn have led to further erosion of the shoreline and damaged existing infrastructure. Such impacts can be seen all along the coast of Lake Ontario. Three specific locations have been chosen as case studies for this paper, each addressing erosion and/or flood mitigation methods, such as revetments and sheet piling with increased land levels. Varying site conditions and the resulting shoreline damage are compared herein. The results are reflected in the case-specific design components of the mitigation and adaptation methods and are presented in this paper.

Keywords: erosion mitigation, flood mitigation, great lakes, high water levels

Procedia PDF Downloads 143
386 Bathymetric Change of Brahmaputra River and Its Influence on Flooding Scenario

Authors: Arup Kumar Sarma, Rohan Kar

Abstract:

The development of physical model of River like Brahmaputra, which finds its origin in the Chema Yundung glacier of Tibet and flows through India and Bangladesh, is always expensive and very much time consuming. With the advancement of computational technique, mathematical modeling has found wide application. MIKE 21C is one such commercial software, developed by Danish Hydraulic Institute (DHI), with the depth-averaged approach and a two-dimensional curvilinear finite-difference model, which is capable of modeling hydrodynamic and morphological processes with some limitations. The main purpose of this study are to generate bathymetry of the River Brahmaputra starting from “Sadia” at upstream to “Dhubri,” at downstream stretching a distance of approximately 695 km, for four different years: 1957, 1971, 1977, and 1981 over the grid generated in the MIKE 21C and to carry out the hydrodynamic simulation for these years to analyze the effect of bathymetry change on the surface water elevation. The study has established that bathymetric change can influence the flood level significantly in some of the river reaches and therefore the modification or updating of regular bathymetry is very much essential for the reliable flood routing in alluvial rivers.

Keywords: bathymetry, brahmaputra river, hydrodynamic model, surface water elevation

Procedia PDF Downloads 426
385 Digitization and Morphometric Characterization of Botanical Collection of Indian Arid Zones as Informatics Initiatives Addressing Conservation Issues in Climate Change Scenario

Authors: Dipankar Saha, J. P. Singh, C. B. Pandey

Abstract:

Indian Thar desert being the seventh largest in the world is the main hot sand desert occupies nearly 385,000km2 and about 9% of the area of the country harbours several species likely the flora of 682 species (63 introduced species) belonging to 352 genera and 87 families. The degree of endemism of plant species in the Thar desert is 6.4 percent, which is relatively higher than the degree of endemism in the Sahara desert which is very significant for the conservationist to envisage. The advent and development of computer technology for digitization and data base management coupled with the rapidly increasing importance of biodiversity conservation resulted in the invention of biodiversity informatics as discipline of basic sciences with multiple applications. Aichi Target 19 as an outcome of Convention of Biological Diversity (CBD) specifically mandates the development of an advanced and shared biodiversity knowledge base. Information on species distributions in space is the crux of effective management of biodiversity in the rapidly changing world. The efficiency of biodiversity management is being increased rapidly by various stakeholders like researchers, policymakers, and funding agencies with the knowledge and application of biodiversity informatics. Herbarium specimens being a vital repository for biodiversity conservation especially in climate change scenario the digitization process usually aims to improve access and to preserve delicate specimens and in doing so creating large sets of images as a part of the existing repository as arid plant information facility for long-term future usage. As the leaf characters are important for describing taxa and distinguishing between them and they can be measured from herbarium specimens as well. As a part of this activity, laminar characterization (leaves being the most important characters in assessing climate change impact) initially resulted in classification of more than thousands collections belonging to ten families like Acanthaceae, Aizoaceae, Amaranthaceae, Asclepiadaceae, Anacardeaceae, Apocynaceae, Asteraceae, Aristolochiaceae, Berseraceae and Bignoniaceae etc. Taxonomic diversity indices has also been worked out being one of the important domain of biodiversity informatics approaches. The digitization process also encompasses workflows which incorporate automated systems to enable us to expand and speed up the digitisation process. The digitisation workflows used to be on a modular system which has the potential to be scaled up. As they are being developed with a geo-referencing tool and additional quality control elements and finally placing specimen images and data into a fully searchable, web-accessible database. Our effort in this paper is to elucidate the role of BIs, present effort of database development of the existing botanical collection of institute repository. This effort is expected to be considered as a part of various global initiatives having an effective biodiversity information facility. This will enable access to plant biodiversity data that are fit-for-use by scientists and decision makers working on biodiversity conservation and sustainable development in the region and iso-climatic situation of the world.

Keywords: biodiversity informatics, climate change, digitization, herbarium, laminar characters, web accessible interface

Procedia PDF Downloads 203
384 Evaluation of Best-Fit Probability Distribution for Prediction of Extreme Hydrologic Phenomena

Authors: Karim Hamidi Machekposhti, Hossein Sedghi

Abstract:

The probability distributions are the best method for forecasting of extreme hydrologic phenomena such as rainfall and flood flows. In this research, in order to determine suitable probability distribution for estimating of annual extreme rainfall and flood flows (discharge) series with different return periods, precipitation with 40 and discharge with 58 years time period had been collected from Karkheh River at Iran. After homogeneity and adequacy tests, data have been analyzed by Stormwater Management and Design Aid (SMADA) software and residual sum of squares (R.S.S). The best probability distribution was Log Pearson Type III with R.S.S value (145.91) and value (13.67) for peak discharge and Log Pearson Type III with R.S.S values (141.08) and (8.95) for maximum discharge in Jelogir Majin and Pole Zal stations, respectively. The best distribution for maximum precipitation in Jelogir Majin and Pole Zal stations was Log Pearson Type III distribution with R.S.S values (1.74&1.90) and then Pearson Type III distribution with R.S.S values (1.53&1.69). Overall, the Log Pearson Type III distributions are acceptable distribution types for representing statistics of extreme hydrologic phenomena in Karkheh River at Iran with the Pearson Type III distribution as a potential alternative.

Keywords: Karkheh River, Log Pearson Type III, probability distribution, residual sum of squares

Procedia PDF Downloads 175
383 Taleghan Dam Break Numerical Modeling

Authors: Hamid Goharnejad, Milad Sadeghpoor Moalem, Mahmood Zakeri Niri, Leili Sadeghi Khalegh Abadi

Abstract:

While there are many benefits to using reservoir dams, their break leads to destructive effects. From the viewpoint of International Committee of Large Dams (ICOLD), dam break means the collapse of whole or some parts of a dam; thereby the dam will be unable to hold water. Therefore, studying dam break phenomenon and prediction of its behavior and effects reduces losses and damages of the mentioned phenomenon. One of the most common types of reservoir dams is embankment dam. Overtopping in embankment dams occurs because of flood discharge system inability in release inflows to reservoir. One of the most important issues among managers and engineers to evaluate the performance of the reservoir dam rim when sliding into the storage, creating waves is large and long. In this study, the effects of floods which caused the overtopping of the dam have been investigated. It was assumed that spillway is unable to release the inflow. To determine outflow hydrograph resulting from dam break, numerical model using Flow-3D software and empirical equations was used. Results of numerical models and their comparison with empirical equations show that numerical model and empirical equations can be used to study the flood resulting from dam break.

Keywords: embankment dam break, empirical equations, Taleghan dam, Flow-3D numerical model

Procedia PDF Downloads 296
382 Estimation of the Parameters of Muskingum Methods for the Prediction of the Flood Depth in the Moudjar River Catchment

Authors: Fares Laouacheria, Said Kechida, Moncef Chabi

Abstract:

The objective of the study was based on the hydrological routing modelling for the continuous monitoring of the hydrological situation in the Moudjar river catchment, especially during floods with Hydrologic Engineering Center–Hydrologic Modelling Systems (HEC-HMS). The HEC-GeoHMS was used to transform data from geographic information system (GIS) to HEC-HMS for delineating and modelling the catchment river in order to estimate the runoff volume, which is used as inputs to the hydrological routing model. Two hydrological routing models were used, namely Muskingum and Muskingum routing models, for conducting this study. In this study, a comparison between the parameters of the Muskingum and Muskingum-Cunge routing models in HEC-HMS was used for modelling flood routing in the Moudjar river catchment and determining the relationship between these parameters and the physical characteristics of the river. The results indicate that the effects of input parameters such as the weighting factor "X" and travel time "K" on the output results are more significant, where the Muskingum routing model was more sensitive to input parameters than the Muskingum-Cunge routing model. This study can contribute to understand and improve the knowledge of the mechanisms of river floods, especially in ungauged river catchments.

Keywords: HEC-HMS, hydrological modelling, Muskingum routing model, Muskingum-Cunge routing model

Procedia PDF Downloads 243
381 The Quality Assessment of Seismic Reflection Survey Data Using Statistical Analysis: A Case Study of Fort Abbas Area, Cholistan Desert, Pakistan

Authors: U. Waqas, M. F. Ahmed, A. Mehmood, M. A. Rashid

Abstract:

In geophysical exploration surveys, the quality of acquired data holds significant importance before executing the data processing and interpretation phases. In this study, 2D seismic reflection survey data of Fort Abbas area, Cholistan Desert, Pakistan was taken as test case in order to assess its quality on statistical bases by using normalized root mean square error (NRMSE), Cronbach’s alpha test (α) and null hypothesis tests (t-test and F-test). The analysis challenged the quality of the acquired data and highlighted the significant errors in the acquired database. It is proven that the study area is plain, tectonically least affected and rich in oil and gas reserves. However, subsurface 3D modeling and contouring by using acquired database revealed high degrees of structural complexities and intense folding. The NRMSE had highest percentage of residuals between the estimated and predicted cases. The outcomes of hypothesis testing also proved the biasness and erraticness of the acquired database. Low estimated value of alpha (α) in Cronbach’s alpha test confirmed poor reliability of acquired database. A very low quality of acquired database needs excessive static correction or in some cases, reacquisition of data is also suggested which is most of the time not feasible on economic grounds. The outcomes of this study could be used to assess the quality of large databases and to further utilize as a guideline to establish database quality assessment models to make much more informed decisions in hydrocarbon exploration field.

Keywords: Data quality, Null hypothesis, Seismic lines, Seismic reflection survey

Procedia PDF Downloads 118