Search results for: electrical grid
259 Standard Essential Patents for Artificial Intelligence Hardware and the Implications For Intellectual Property Rights
Authors: Wendy de Gomez
Abstract:
Standardization is a critical element in the ability of a society to reduce uncertainty, subjectivity, misrepresentation, and interpretation while simultaneously contributing to innovation. Technological standardization is critical to codify specific operationalization through legal instruments that provide rules of development, expectation, and use. In the current emerging technology landscape Artificial Intelligence (AI) hardware as a general use technology has seen incredible growth as evidenced from AI technology patents between 2012 and 2018 in the United States Patent Trademark Office (USPTO) AI dataset. However, as outlined in the 2023 United States Government National Standards Strategy for Critical and Emerging Technology the codification through standardization of emerging technologies such as AI has not kept pace with its actual technological proliferation. This gap has the potential to cause significant divergent possibilities for the downstream outcomes of AI in both the short and long term. This original empirical research provides an overview of the standardization efforts around AI in different geographies and provides a background to standardization law. It quantifies the longitudinal trend of Artificial Intelligence hardware patents through the USPTO AI dataset. It seeks evidence of existing Standard Essential Patents from these AI hardware patents through a text analysis of the Statement of patent history and the Field of the invention of these patents in Patent Vector and examines their determination as a Standard Essential Patent and their inclusion in existing AI technology standards across the four main AI standards bodies- European Telecommunications Standards Institute (ETSI); International Telecommunication Union (ITU)/ Telecommunication Standardization Sector (-T); Institute of Electrical and Electronics Engineers (IEEE); and the International Organization for Standardization (ISO). Once the analysis is complete the paper will discuss both the theoretical and operational implications of F/Rand Licensing Agreements for the owners of these Standard Essential Patents in the United States Court and Administrative system. It will conclude with an evaluation of how Standard Setting Organizations (SSOs) can work with SEP owners more effectively through various forms of Intellectual Property mechanisms such as patent pools.Keywords: patents, artifical intelligence, standards, F/Rand agreements
Procedia PDF Downloads 89258 A LED Warning Vest as Safety Smart Textile and Active Cooperation in a Working Group for Building a Normative Standard
Authors: Werner Grommes
Abstract:
The institute of occupational safety and health works in a working group for building a normative standard for illuminated warning vests and did a lot of experiments and measurements as basic work (cooperation). Intelligent car headlamps are able to suppress conventional warning vests with retro-reflective stripes as a disturbing light. Illuminated warning vests are therefore required for occupational safety. However, they must not pose any danger to the wearer or other persons. Here, the risks of the batteries (lithium types), the maximum brightness (glare) and possible interference radiation from the electronics on the implant carrier must be taken into account. The all-around visibility, as well as the required range, play an important role here. For the study, many luminance measurements of already commercially available LEDs and electroluminescent warning vests, as well as their electromagnetic interference fields and aspects of electrical safety, were measured. The results of this study showed that LED lighting is all far too bright and causes strong glare. The integrated controls with pulse modulation and switching regulators cause electromagnetic interference fields. Rechargeable lithium batteries can explode depending on the temperature range. Electroluminescence brings even more hazards. A test method was developed for the evaluation of visibility at distances of 50, 100, and 150 m, including the interview of test persons. A measuring method was developed for the detection of glare effects at close range with the assignment of the maximum permissible luminance. The electromagnetic interference fields were tested in the time and frequency ranges. A risk and hazard analysis were prepared for the use of lithium batteries. The range of values for luminance and risk analysis for lithium batteries were discussed in the standards working group. These will be integrated into the standard. This paper gives a brief overview of the topics of illuminated warning vests, which takes into account the risks and hazards for the vest wearer or othersKeywords: illuminated warning vest, optical tests and measurements, risks, hazards, optical glare effects, LED, E-light, electric luminescent
Procedia PDF Downloads 113257 UV-Enhanced Room-Temperature Gas-Sensing Properties of ZnO-SnO2 Nanocomposites Obtained by Hydrothermal Treatment
Authors: Luís F. da Silva, Ariadne C. Catto, Osmando F. Lopes, Khalifa Aguir, Valmor R. Mastelaro, Caue Ribeiro, Elson Longo
Abstract:
Gas detection is important for controlling industrial, and vehicle emissions, agricultural residues, and environmental control. In last decades, several semiconducting oxides have been used to detect dangerous or toxic gases. The excellent gas-sensing performance of these devices have been observed at high temperatures (~250 °C), which forbids the use for the detection of flammable and explosive gases. In this way, ultraviolet light activated gas sensors have been a simple and promising alternative to achieve room temperature sensitivity. Among the semiconductor oxides which exhibit a good performance as gas sensor, the zinc oxide (ZnO) and tin oxide (SnO2) have been highlighted. Nevertheless, their poor selectivity is the main disadvantage for application as gas sensor devices. Recently, heterostructures combining these two semiconductors (ZnO-SnO2) have been studied as an alternative way to enhance the gas sensor performance (sensitivity, selectivity, and stability). In this work, we investigated the influence of mass ratio Zn:Sn on the properties of ZnO-SnO2 nanocomposites prepared by hydrothermal treatment for 4 hours at 200 °C. The crystalline phase, surface, and morphological features were characterized by X-ray diffraction (XRD), high-resolution transmission electron (HR-TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The gas sensor measurements were carried out at room-temperature under ultraviolet (UV) light irradiation using different ozone levels (0.06 to 0.61 ppm). The XRD measurements indicate the presence of ZnO and SnO2 crystalline phases, without the evidence of solid solution formation. HR-TEM analysis revealed that a good contact between the SnO2 nanoparticles and the ZnO nanorods, which are very important since interface characteristics between nanostructures are considered as challenge to development new and efficient heterostructures. Electrical measurements proved that the best ozone gas-sensing performance is obtained for ZnO:SnO2 (50:50) nanocomposite under UV light irradiation. Its sensitivity was around 6 times higher when compared to SnO2 pure, a traditional ozone gas sensor. These results demonstrate the potential of ZnO-SnO2 heterojunctions for the detection of ozone gas at room-temperature when irradiated with UV light irradiation.Keywords: hydrothermal, zno-sno2, ozone sensor, uv-activation, room-temperature
Procedia PDF Downloads 284256 Supramolecular Approach towards Novel Applications: Battery, Band Gap and Gas Separation
Authors: Sudhakara Naidu Neppalli, Tejas S. Bhosale
Abstract:
It is well known that the block copolymer (BCP) can form a complex molecule, through non-covalent bonds such as hydrogen bond, ionic bond and co-ordination bond, with low molecular weight compound as well as with macromolecules, which provide vast applications, includes the alteration of morphology and properties of polymers. Hence we covered the research that, the importance of non-covalent bonds in increasing the non-favourable segmental interactions of the blocks was well examined by attaching and detaching the bonds between the BCP and additive. We also monitored the phase transition of block copolymer and effective interaction parameter (χeff) for Li-doped polymers using small angle x-ray scattering and transmission electron microscopy. The effective interaction parameter (χeff) between two block components was evaluated using Leibler theory based on the incompressible random phase approximation (RPA) for ionized BCP in a disordered state. Furthermore, conductivity experiments demonstrate that the ionic conductivity in the samples quenched from the different structures is morphology-independent, while it increases with increasing ion salt concentration. Morphological transitions, interaction parameter, and thermal stability also examined in quarternized block copolymer. D-spacing was used to estimate effective interaction parameter (χeff) of block components in weak and strong segregation regimes of ordered phase. Metal-containing polymer has been the topic of great attention in recent years due to their wide range of potential application. Similarly, metal- ligand complex is used as a supramolecular linker between the polymers giving rise to a ‘Metallo-Supramolecule assembly. More precisely, functionalized polymer end capped with 2, 2’:6’, 2”- terpyridine ligand can be selectively complexed with wide range of transition metal ions and then subsequently attached to other terpyridine terminated polymer block. In compare to other supramolecular assembly, BCP involved metallo-supramolecule assembly offers vast applications such as optical activity, electrical conductivity, luminescence and photo refractivity.Keywords: band gap, block copolymer, conductivity, interaction parameter, phase transition
Procedia PDF Downloads 170255 Computational Study of Composite Films
Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova
Abstract:
Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.Keywords: composite films, computer modelling, image analysis, nanocomposite films
Procedia PDF Downloads 393254 Assessment of Water Quality of Euphrates River at Babylon Governorate, for Drinking, Irrigation and general, Using Water Quality Index (Canadian Version) (CCMEWQI)
Authors: Amer Obaid Saud
Abstract:
Water quality index (WQI) is considered as an effective tool in categorization of water resources for its quality and suitability for different uses. The Canadian version of water quality index (CCME WQI) which based on the comparison of the water quality parameters to regulatory standards and give a single value to the water quality of a source was applied in this study to assess the water quality of Euphrates river in Iraq at Babylon Governorate north of Baghdad and determine its suitability for aquatic environment (GWQI), drinking water (PWSI) and irrigation(IWQI). Five stations were selected on the river in Babylon (Euphrates River/AL-Musiab, Hindia barrage, two stations at Hilla city and the fifth station at Al-Hshmeya north of Hilla. Fifteen water samples were collected every month during August 2013 to July 2014 at the study sites and analyzed for the physico-chemical parameters like (Temperature, pH, Electrical Conductivity, Total Dissolved Solids(TDS), Total Suspended Solids(TSS), Total Alkalinity, Total Hardness, Calcium and Magnesium Concentration, some of nutrient like Nitrite, Nitrate, Phosphate also the study of concentration of some heavy metals (Fe, Pb, Zn, Cu, Mn, and Cd) in water and comparison of measures to benchmarks such as guidelines and objectives to assess change in water quality. The result of Canadian version of(CCME .WQI) to assess the irrigation water quality (IWQI) of Euphrates river was (83-good) at site one during second seasonal period while the lowest was (66-Fair) in the second station during the fourth seasonal period, the values of potable water supply index (PWSI)that the highest value was (68-Fair) in the fifth site during the second period while the lowest value (42 -Poor) in the second site during the first seasonal period,the highest value for general water quality (GWQI) was (74-Fair) in site five during the second seasonal period, the lowest value (48-Marginal) in the second site during the first seasonal period. It was observed that the main cause of deterioration in water quality was due to the lack of, unprotected river sites ,high anthropogenic activities and direct discharge of industrial effluent.Keywords: Babylon governorate, Canadian version, water quality, Euphrates river
Procedia PDF Downloads 400253 Investigation of the Mechanical and Thermal Properties of a Silver Oxalate Nanoporous Structured Sintered Joint for Micro-joining in Relation to the Sintering Process Parameters
Authors: L. Vivet, L. Benabou, O. Simon
Abstract:
With highly demanding applications in the field of power electronics, there is an increasing need to have interconnection materials with properties that can ensure both good mechanical assembly and high thermal/electrical conductivities. So far, lead-free solders have been considered an attractive solution, but recently, sintered joints based on nano-silver paste have been used for die attach and have proved to be a promising solution offering increased performances in high-temperature applications. In this work, the main parameters of the bonding process using silver oxalates are studied, i.e., the heating rate and the bonding pressure mainly. Their effects on both the mechanical and thermal properties of the sintered layer are evaluated following an experimental design. Pairs of copper substrates with gold metallization are assembled through the sintering process to realize the samples that are tested using a micro-traction machine. In addition, the obtained joints are examined through microscopy to identify the important microstructural features in relation to the measured properties. The formation of an intermetallic compound at the junction between the sintered silver layer and the gold metallization deposited on copper is also analyzed. Microscopy analysis exhibits a nanoporous structure of the sintered material. It is found that higher temperature and bonding pressure result in higher densification of the sintered material, with higher thermal conductivity of the joint but less mechanical flexibility to accommodate the thermo-mechanical stresses arising during service. The experimental design allows hence the determination of the optimal process parameters to reach sufficient thermal/mechanical properties for a given application. It is also found that the interphase formed between silver and gold metallization is the location where the fracture occurred after the mechanical testing, suggesting that the inter-diffusion mechanism between the different elements of the assembly leads to the formation of a relatively brittle compound.Keywords: nanoporous structure, silver oxalate, sintering, mechanical strength, thermal conductivity, microelectronic packaging
Procedia PDF Downloads 94252 Safe Disposal of Pyrite Rich Waste Rock Using Alkali Phosphate Treatment
Authors: Jae Gon Kim, Yongchan Cho, Jungwha Lee
Abstract:
Acid rock drainage (ARD) is generated by the oxidation of pyrite (FeS₂) contained in the excavated rocks upon its exposure to atmosphere and is an environmental concern at construction site due to its high acidity and high concentration of toxic elements. We developed the safe disposal method with the reduction of ARD generation by an alkali phosphate treatment. A pyrite rich andesite was collected from a railway construction site. The collected rock sample was crushed to be less than 3/8 inches in diameter using a jaw crusher. The crushed rock was filled in an acryl tube with 20 cm in diameter and 40 cm in height. Two treatments for the ARD reduction were conducted with duplicates: 1) the addition of 10mM KH₂PO₄_3% NaHCO₃ and 2) the addition of 10mM KH₂PO₄_3% NaHCO₃ and ordinary portland cement (OPC) on the top of the column. After the treatments, 500 ml of distilled water added to each column for every week for 3 weeks and then the column was flushed with 1,500 ml of distilled water in the 4th week. The pH, electrical conductivity (EC), concentrations of anions and cations of the leachates were monitored for 10 months. The pH of the leachates from the untreated column showed 2.1-3.7, but the leachates from the columns treated with the alkali phosphate solution with or without the OPC addition showed pH 6.7–8.9. The leachates from the treated columns had much lower concentrations of SO₄²⁻ and toxic elements such as Al, Mn, Fe and heavy metals than those from the untreated columns. However, the leachates from the treated columns had a higher As concentration than those from the untreated columns. There was no significant difference in chemical property between the leachates from the treated columns with and without the OPC addition. The chemistry of leachates indicates that the alkali phosphate treatment decreased the oxidation of sulfide and neutralized the acidic pore water. No significant effect of the OPC addition on the leachate chemistry has shown during 10-month experiment. However, we expect a positive effect of the OPC addition on the reduction of ARD generation in terms of long period. According to the results of this experiment, the alkali phosphate treatment of sulfide rich rock can be a promising technology for the safe disposal method with the ARD reduction.Keywords: acid rock drainage, alkali phosphate treatment, pyrite rich rock, safe disposal
Procedia PDF Downloads 155251 Synthesis of Microencapsulated Phase Change Material for Adhesives with Thermoregulating Properties
Authors: Christin Koch, Andreas Winkel, Martin Kahlmeyer, Stefan Böhm
Abstract:
Due to environmental regulations on greenhouse gas emissions and the depletion of fossil fuels, there is an increasing interest in electric vehicles.To maximize their driving range, batteries with high storage capacities are needed. In most electric cars, rechargeable lithium-ion batteries are used because of their high energy density. However, it has to be taken into account that these batteries generate a large amount of heat during the charge and discharge processes. This leads to a decrease in a lifetime and damage to the battery cells when the temperature exceeds the defined operating range. To ensure an efficient performance of the battery cells, reliable thermal management is required. Currently, the cooling is achieved by heat sinks (e.g., cooling plates) bonded to the battery cells with a thermally conductive adhesive (TCA) that directs the heat away from the components. Especially when large amounts of heat have to be dissipated spontaneously due to peak loads, the principle of heat conduction is not sufficient, so attention must be paid to the mechanism of heat storage. An efficient method to store thermal energy is the use of phase change materials (PCM). Through an isothermal phase change, PCM can briefly absorb or release thermal energy at a constant temperature. If the phase change takes place in the transition from solid to liquid, heat is stored during melting and is released to the ambient during the freezing process upon cooling. The presented work displays the great potential of thermally conductive adhesives filled with microencapsulated PCM to limit peak temperatures in battery systems. The encapsulation of the PCM avoids the effects of aging (e.g., migration) and chemical reactions between the PCM and the adhesive matrix components. In this study, microencapsulation has been carried out by in situ polymerization. The microencapsulated PCM was characterized by FT-IR spectroscopy, and the thermal properties were measured by DSC and laser flash method. The mechanical properties, electrical and thermal conductivity, and adhesive toughness of the TCA/PCM composite were also investigated.Keywords: phase change material, microencapsulation, adhesive bonding, thermal management
Procedia PDF Downloads 72250 Ammonia Sensing Properties of Nanostructured Hybrid Halide Perovskite Thin Film
Authors: Nidhi Gupta, Omita Nanda, Rakhi Grover, Kanchan Saxena
Abstract:
Hybrid perovskite is new class of material which has gained much attention due to their different crystal structure and interesting optical and electrical properties. Easy fabrication, high absorption coefficient, and photoluminescence properties make them a strong candidate for various applications such as sensors, photovoltaics, photodetectors, etc. In perovskites, ions arrange themselves in a special type of crystal structure with chemical formula ABX3, where A is organic species like CH3NH3+, B is metal ion (e.g., Pb, Sn, etc.) and X is halide (Cl-, Br-, I-). In crystal structure, A is present at corner position, B at center of the crystal lattice and halide ions at the face centers. High stability and sensitivity of nanostructured perovskite make them suitable for chemical sensors. Researchers have studied sensing properties of perovskites for number of analytes such as 2,4,6-trinitrophenol, ethanol and other hazardous chemical compounds. Ammonia being highly toxic agent makes it a reason of concern for the environment. Thus the detection of ammonia is extremely important. Our present investigation deals with organic inorganic hybrid perovskite based ammonia sensor. Various methods like sol-gel, solid state synthesis, thermal vapor deposition etc can be used to synthesize Different hybrid perovskites. In the present work, a novel hybrid perovskite has been synthesized by a single step method. Ethylenediammnedihalide and lead halide were used as precursor. Formation of hybrid perovskite was confirmed by FT-IR and XRD. Morphological characterization of the synthesized material was performed using scanning electron microscopy (SEM). SEM analysis revealed the formation of one dimensional nanowire perovskite with mean diameter of 200 nm. Measurements for sensing properties of halide perovskite for ammonia vapor were carried out. Perovskite thin films showed a color change from yellow to orange on exposure of ammonia vapor. Electro-optical measurements show that sensor based on lead halide perovskite has high sensitivity towards ammonia with effective selectivity and reversibility. Sensor exhibited rapid response time of less than 20 seconds.Keywords: hybrid perovskite, ammonia, sensor, nanostructure, thin film
Procedia PDF Downloads 276249 The Effects of Addition of Chloride Ions on the Properties of ZnO Nanostructures Grown by Electrochemical Deposition
Authors: L. Mentar, O. Baka, A. Azizi
Abstract:
Zinc oxide as a wide band semiconductor materials, especially nanostructured materials, have potential applications in large-area such as electronics, sensors, photovoltaic cells, photonics, optical devices and optoelectronics due to their unique electrical and optical properties and surface properties. The feasibility of ZnO for these applications is due to the successful synthesis of diverse ZnO nanostructures, including nanorings, nanobows, nanohelixes, nanosprings, nanobelts, nanotubes, nanopropellers, nanodisks, and nanocombs, by different method. Among various synthesis methods, electrochemical deposition represents a simple and inexpensive solution based method for synthesis of semiconductor nanostructures. In this study, the electrodeposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate as TCO from chloride bath. We present a systematic study on the effects of the concentration of chloride anion on the properties of ZnO. The influence of KCl concentrations on the electrodeposition process, morphological, structural and optical properties of ZnO nanostructures was examined. In this research electrochemical deposition of ZnO nanostructures is investigated using conventional electrochemical measurements (cyclic voltammetry and Mott-Schottky), scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. The potentials of electrodeposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. SEM images shows different size and morphology of the nanostructures and depends greatly on the KCl concentrations. The morphology of ZnO nanostructures is determined by the corporated action between [Zn(NO3)2] and [Cl-].Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. XRD studies revealed that the all deposited films were polycrystalline in nature with wurtzite phase. The electrodeposited thin films are found to have preferred oriented along (002) plane of the wurtzite structure of ZnO with c-axis normal to the substrate surface for sample at different concentrations of KCl. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV.Keywords: electrodeposition, ZnO, chloride ions, Mott-Schottky, SEM, XRD
Procedia PDF Downloads 290248 Concepts of Instrumentation Scheme for Thought Transfer
Authors: Rai Sachindra Prasad
Abstract:
Thought is physical force. This has been well recognized but hardly translated visually or otherwise in the sense of its transfer from one individual to another. In the present world of chaos and disorder with yawning gaps between right and wrong thinking individuals, if it is possible to transfer the right thoughts to replace the wrong ones it would indeed be a great achievement in the present situation of the world which is torn with violence with dangerous thoughts of individuals. Moreover, such a possibility would completely remove the barrier of language between two persons, which at times proves to be a great obstacle in realizing a desired purpose. If a proper instrumentation scheme containing appropriate transducers and electronics is designed and implemented to realize this thought ransfer phenomenon, this would prove to be extremely useful when properly used. Considering the advancements already made in recording the nerve impulses in the brain, which are electrical events of very short durations that move along the axon, it is conceivable that this may be used to good effect in implementing the scheme. In such a proposition one shoud consider the roles played by pineal body, pituitary gland and ‘association’ areas. Pioneer students of brain have thought that associations or connections between sensory input and motor output were made in these areas. It is currently believed that rather than being regions of simple sensory-motor connections, the association areas process and integrate sensory information relayed to them from the primary sensory areas of the cortex and from the thalamus, after the information has been processed, it may be sent to motor areas to be acted upon. Again, even though the role played by pineal body is not known fully to neurologists its interconnection with pituitary gland is a matter of great significance to the ‘Rishis’ and; Seers’ s described in Vedas and Puranas- the ancient Holy books of Hindus. If the pineal body is activated through meditation it would control the pituitary gland thereby the individual’s thoughts and acts. Thus, if thoughts can be picked up by special transducers, these can be connected to suitable electronics circuitry to amplify the signals. These signals in the form of electromagnetic waves can then be transmitted using modems for long distance transmission and eventually received by or passed on to a subject of interest through another set of electronics circuit and devices.Keywords: modems, pituitary gland, pineal body, thought transfer
Procedia PDF Downloads 372247 Enhanced Performance of Supercapacitor Based on Boric Acid Doped Polyvinyl Alcohol-H₂SO₄ Gel Polymer Electrolyte System
Authors: Hamide Aydin, Banu Karaman, Ayhan Bozkurt, Umran Kurtan
Abstract:
Recently, Proton Conducting Gel Polymer Electrolytes (GPEs) have drawn much attention in supercapacitor applications due to their physical and electrochemical characteristics and stability conditions for low temperatures. In this research, PVA-H2SO4-H3BO3 GPE has been used for electric-double layer capacitor (EDLCs) application, in which electrospun free-standing carbon nanofibers are used as electrodes. Introduced PVA-H2SO4-H3BO3 GPE behaves as both separator and the electrolyte in the supercapacitor. Symmetric Swagelok cells including GPEs were assembled via using two electrode arrangements and the electrochemical properties were searched. Electrochemical performance studies demonstrated that PVA-H2SO4-H3BO3 GPE had a maximum specific capacitance (Cs) of 134 F g-1 and showed great capacitance retention (%100) after 1000 charge/discharge cycles. Furthermore, PVA-H2SO4-H3BO3 GPE yielded an energy density of 67 Wh kg-1 with a corresponding power density of 1000 W kg-1 at a current density of 1 A g-1. PVA-H2SO4 based polymer electrolyte was produced according to following procedure; Firstly, 1 g of commercial PVA was dissolved in distilled water at 90°C and stirred until getting transparent solution. This was followed by addition of the diluted H2SO4 (1 g of H2SO4 in a distilled water) to the solution to obtain PVA-H2SO4. PVA-H2SO4-H3BO3 based polymer electrolyte was produced by dissolving H3BO3 in hot distilled water and then inserted into the PVA-H2SO4 solution. The mole fraction was arranged to ¼ of the PVA repeating unit. After the stirring 2 h at RT, gel polymer electrolytes were obtained. The final electrolytes for supercapacitor testing included 20% of water in weight. Several blending combinations of PVA/H2SO4 and H3BO3 were studied to observe the optimized combination in terms of conductivity as well as electrolyte stability. As the amount of boric acid increased in the matrix, excess sulfuric acid was excluded due to cross linking, especially at lower solvent content. This resulted in the reduction of proton conductivity. Therefore, the mole fraction of H3BO3 was chosen as ¼ of PVA repeating unit. Within this optimized limits, the polymer electrolytes showed better conductivities as well as stability.Keywords: electrical double layer capacitor, energy density, gel polymer electrolyte, ultracapacitor
Procedia PDF Downloads 227246 The Contact between a Rigid Substrate and a Thick Elastic Layer
Authors: Nicola Menga, Giuseppe Carbone
Abstract:
Although contact mechanics has been widely focused on the study of contacts between half-space, it has been recently pointed out that in presence of finite thickness elastic layers the results of the contact problem show significant difference in terms of the main contact quantities (e.g. contact area, penetration, mean pressure, etc.). Actually, there exist a wide range of industrial application demanding for this kind of studies, such as seals leakage prediction or pressure-sensitive coatings for electrical applications. In this work, we focus on the contact between a rigid profile and an elastic layer of thickness h confined under two different configurations: rigid constrain and applied uniform pressure. The elastic problem at hand has been formalized following Green’s function method and then numerically solved by means of a matrix inversion. We study different contact conditions, both considering and neglecting adhesive interactions at the interface. This leads to different solution techniques: Adhesive contacts equilibrium solution is found, in term of contact area for given penetration, making stationary the total free energy of the system; whereas, adhesiveless contacts are addressed defining an equilibrium criterion, again on the contact area, relying on the fracture mechanics stress intensity factor KI. In particular, we make the KI vanish at the edges of the contact area, as peculiar for adhesiveless elastic contacts. The results are obtained in terms of contact area, penetration, and mean pressure for both adhesive and adhesiveless contact conditions. As expected, in the case of a uniform applied pressure the slab turns out much more compliant than the rigidly constrained one. Indeed, we have observed that the peak value of the contact pressure, for both the adhesive and adhesiveless condition, is much higher for the rigidly constrained configuration than in the case of applied uniform pressure. Furthermore, we observed that, for little contact area, both systems behave the same and the pull-off occurs at approximately the same contact area and mean contact pressure. This is an expected result since in this condition the ratio between the layers thickness and the contact area is very high and both layer configurations recover the half-space behavior where the pull-off occurrence is mainly controlled by the adhesive interactions, which are kept constant among the cases.Keywords: contact mechanics, adhesion, friction, thick layer
Procedia PDF Downloads 513245 Technique for Online Condition Monitoring of Surge Arresters
Authors: Anil S. Khopkar, Kartik S. Pandya
Abstract:
Overvoltage in power systems is a phenomenon that cannot be avoided. However, it can be controlled to a certain extent. Power system equipment is to be protected against overvoltage to avoid system failure. Metal Oxide Surge Arresters (MOSA) are connected to the system for the protection of the power system against overvoltages. The MOSA will behave as an insulator under normal working conditions, where it offers a conductive path under voltage conditions. MOSA consists of zinc oxide elements (ZnO Blocks), which have non-linear V-I characteristics. ZnO blocks are connected in series and fitted in ceramic or polymer housing. This degrades due to the aging effect under continuous operation. Degradation of zinc oxide elements increases the leakage current flowing from the surge arresters. This Increased leakage current results in the increased temperature of the surge arrester, which further decreases the resistance of zinc oxide elements. As a result, leakage current increases, which again increases the temperature of a MOSA. This creates thermal runaway conditions for MOSA. Once it reaches the thermal runaway condition, it cannot return to normal working conditions. This condition is a primary cause of premature failure of surge arresters, as MOSA constitutes a core protective device for electrical power systems against transients. It contributes significantly to the reliable operation of the power system network. Hence, the condition monitoring of surge arresters should be done at periodic intervals. Online and Offline condition monitoring techniques are available for surge arresters. Offline condition monitoring techniques are not very popular as they require removing surge arresters from the system, which requires system shutdown. Hence, online condition monitoring techniques are very popular. This paper presents the evaluation technique for the surge arrester condition based on the leakage current analysis. Maximum amplitude of total leakage current (IT), Maximum amplitude of fundamental resistive leakage current (IR) and maximum amplitude of third harmonic resistive leakage current (I3rd) have been analyzed as indicators for surge arrester condition monitoring.Keywords: metal oxide surge arrester (MOSA), over voltage, total leakage current, resistive leakage current
Procedia PDF Downloads 67244 Synthesis and Characterization of Mixed ligand complexes of Bipyridyl and Glycine with Different Counter Anions as Functional Antioxidant Enzyme Mimics
Authors: Mohamed M. Ibrahim, Gaber A. M. Mersal, Salih Al-Juaid, Samir A. El-Shazly
Abstract:
A series of mixed ligand complexes, viz., [Cu(BPy)(Gly)X]Y {X = Cl (1), Y = 0; X = 0, Y = ClO4- (2); X = H2O, Y = NO3- (3); X = H2O, Y = CH3COO- (4); and [Cu(BPy)(Gly)-(H2O)]2(SO4) (5) have been synthesized. Their structures and properties were characterized by elemental analysis, thermal analaysis, IR, UV–vis, and ESR spectroscopy, as well as electrochemical measurements including cyclic voltammetry, electrical molar conductivity, and magnetic moment measurements. Complexes 1 and 2 formed slightly distorted square-pyramidal coordination geometries of CuN3OCl and CuN3O2, respectively in which the N,O-donor glycine and N,N-donor bipyridyl bind at the basal plane with chloride ion or water as the axial ligand. Complex 3 shows square planar CuN3O coordination geometry, which exhibits chemically significant hydrogen bonding interactions besides showing coordination polymer formation. The superoxide dismutase and catalase-like activities of all complexes were tested and were found to be promising candidates as durable electron-transfer catalyst being close to the efficiency of the mimicking enzymes displaying either catalase or tyrosinase activity to serve for complete reactive oxygen species (ROS) detoxification, both with respect to superoxide radicals and related peroxides. The DNA binding interaction with super coiled pGEM-T plasmid DNA was investigated by using spectral (absorption and emission) titration and electrochemical techniques. The results revealed that DNA intercalate with complexes 1 and 2 through the groove binding mode. The calculated intrinsic binding constant (Kb) of 1 and 2 were 4.71 and 2.429 × 105 M−1, respectively. Gel electrophoresis study reveals the fact that both complexes cleave super coiled pGEM-T plasmid DNA to nicked and linear forms in the absence of any additives. On the other hand, the interaction of both complexes with DNA, the quasi-reversible CuII/CuI redox couple slightly improves its reversibility with considerable decrease in current intensity. All the experimental results indicate that the bipyridyl mixed copper(II) complex (1) intercalate more effectively into the DNA base pairs.Keywords: enzyme mimics, mixed ligand complexes, X-ray structures, antioxidant, DNA-binding, DNA cleavage
Procedia PDF Downloads 544243 The Characteristics of the Operating Parameters of the Vertical Axis Wind Turbine for the Selected Wind Speed
Authors: Zdzislaw Kaminski, Zbigniew Czyz
Abstract:
The paper discusses the results of the research into a wind turbine with a vertical axis of rotation which was performed with the open return wind tunnel, Gunt HM 170, at the laboratory of the Department of Thermodynamics, Fluid Mechanics and Propulsion Aviation Systems of Lublin University of Technology. Wind tunnel experiments are a necessary step to construct any new type of wind turbine, to validate design assumptions and numerical results. This research focused on the rotor with the blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on adjusting angular aperture α of the top and bottom parts of the blades mounted on an axis. If this angle α increases, the working surface which absorbs wind kinetic energy also increases. The study was performed on scaled and geometrically similar models with the criteria of similarity relevant for the type of research preserved. The rotors with varied angular apertures of their blades were printed for the research with a powder 3D printer, ZPrinter® 450. This paper presents the research results for the selected flow speed of 6.5 m/s for the three angular apertures of the rotor blades, i.e. 30°, 60°, 90° at varied speeds. The test stand enables the turbine rotor to be braked to achieve the required speed and airflow speed and torque to be recorded. Accordingly, the torque and power as a function of airflow were plotted. The rotor with its adjustable blades enables turbine power to be adjusted within a wide range of wind speeds. A variable angular aperture of blade working surfaces α in a wind turbine enables us to control the speed of the turbine and consequently its output power. Reducing the angular aperture of working surfaces results in reduced speed, and if a special current generator applied, electrical output power is reduced, too. Speed adjusted by changing angle α enables the maximum load acting on rotor blades to be controlled. The solution under study is a kind of safety against a damage of a turbine due to possible high wind speed.Keywords: drive torque, renewable energy, power, wind turbine, wind tunnel
Procedia PDF Downloads 258242 Predicting Acceptance and Adoption of Renewable Energy Community solutions: The Prosumer Psychology
Authors: Francois Brambati, Daniele Ruscio, Federica Biassoni, Rebecca Hueting, Alessandra Tedeschi
Abstract:
This research, in the frame of social acceptance of renewable energies and community-based production and consumption models, aims at (1) supporting a data-driven approachable to dealing with climate change and (2) identifying & quantifying the psycho-sociological dimensions and factors that could support the transition from a technology-driven approach to a consumer-driven approach throughout the emerging “prosumer business models.” In addition to the existing Social Acceptance dimensions, this research tries to identify a purely individual psychological fourth dimension to understand processes and factors underling individual acceptance and adoption of renewable energy business models, realizing a Prosumer Acceptance Index. Questionnaire data collection has been performed throughout an online survey platform, combining standardized and ad-hoc questions adapted for the research purposes. To identify the main factors (individual/social) influencing the relation with renewable energy technology (RET) adoption, a Factorial Analysis has been conducted to identify the latent variables that are related to each other, revealing 5 latent psychological factors: Factor 1. Concern about environmental issues: global environmental issues awareness, strong beliefs and pro-environmental attitudes rising concern on environmental issues. Factor 2. Interest in energy sharing: attentiveness to solutions for local community’s collective consumption, to reduce individual environmental impact, sustainably improve the local community, and sell extra energy to the general electricity grid. Factor 3. Concern on climate change: environmental issues consequences on climate change awareness, especially on a global scale level, developing pro-environmental attitudes on global climate change course and sensitivity about behaviours aimed at mitigating such human impact. Factor 4. Social influence: social support seeking from peers. With RET, advice from significant others is looked for internalizing common perceived social norms of the national/geographical region. Factor 5. Impact on bill cost: inclination to adopt a RET when economic incentives from the behaviour perception affect the decision-making process could result in less expensive or unvaried bills. Linear regression has been conducted to identify and quantify the factors that could better predict behavioural intention to become a prosumer. An overall scale measuring “acceptance of a renewable energy solution” was used as the dependent variable, allowing us to quantify the five factors that contribute to measuring: awareness of environmental issues and climate change; environmental attitudes; social influence; and environmental risk perception. Three variables can significantly measure and predict the scores of the “Acceptance in becoming a prosumer” ad hoc scale. Variable 1. Attitude: the agreement to specific environmental issues and global climate change issues of concerns and evaluations towards a behavioural intention. Variable 2. Economic incentive: the perceived behavioural control and its related environmental risk perception, in terms of perceived short-term benefits and long-term costs, both part of the decision-making process as expected outcomes of the behaviour itself. Variable 3. Age: despite fewer economic possibilities, younger adults seem to be more sensitive to environmental dimensions and issues as opposed to older adults. This research can facilitate policymakers and relevant stakeholders to better understand which relevant psycho-sociological factors are intervening in these processes and what and how specifically target when proposing change towards sustainable energy production and consumption.Keywords: behavioural intention, environmental risk perception, prosumer, renewable energy technology, social acceptance
Procedia PDF Downloads 132241 Optimal Beam for Accelerator Driven Systems
Authors: M. Paraipan, V. M. Javadova, S. I. Tyutyunnikov
Abstract:
The concept of energy amplifier or accelerator driven system (ADS) involves the use of a particle accelerator coupled with a nuclear reactor. The accelerated particle beam generates a supplementary source of neutrons, which allows the subcritical functioning of the reactor, and consequently a safe exploitation. The harder neutron spectrum realized ensures a better incineration of the actinides. The almost generalized opinion is that the optimal beam for ADS is represented by protons with energy around 1 GeV (gigaelectronvolt). In the present work, a systematic analysis of the energy gain for proton beams with energy from 0.5 to 3 GeV and ion beams from deuteron to neon with energies between 0.25 and 2 AGeV is performed. The target is an assembly of metallic U-Pu-Zr fuel rods in a bath of lead-bismuth eutectic coolant. The rods length is 150 cm. A beryllium converter with length 110 cm is used in order to maximize the energy released in the target. The case of a linear accelerator is considered, with a beam intensity of 1.25‧10¹⁶ p/s, and a total accelerator efficiency of 0.18 for proton beam. These values are planned to be achieved in the European Spallation Source project. The energy gain G is calculated as the ratio between the energy released in the target to the energy spent to accelerate the beam. The energy released is obtained through simulation with the code Geant4. The energy spent is calculating by scaling from the data about the accelerator efficiency for the reference particle (proton). The analysis concerns the G values, the net power produce, the accelerator length, and the period between refueling. The optimal energy for proton is 1.5 GeV. At this energy, G reaches a plateau around a value of 8 and a net power production of 120 MW (megawatt). Starting with alpha, ion beams have a higher G than 1.5 GeV protons. A beam of 0.25 AGeV(gigaelectronvolt per nucleon) ⁷Li realizes the same net power production as 1.5 GeV protons, has a G of 15, and needs an accelerator length 2.6 times lower than for protons, representing the best solution for ADS. Beams of ¹⁶O or ²⁰Ne with energy 0.75 AGeV, accelerated in an accelerator with the same length as 1.5 GeV protons produce approximately 900 MW net power, with a gain of 23-25. The study of the evolution of the isotopes composition during irradiation shows that the increase in power production diminishes the period between refueling. For a net power produced of 120 MW, the target can be irradiated approximately 5000 days without refueling, but only 600 days when the net power reaches 1 GW (gigawatt).Keywords: accelerator driven system, ion beam, electrical power, energy gain
Procedia PDF Downloads 143240 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows
Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham
Abstract:
In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis
Procedia PDF Downloads 66239 Contribution to the Hydrogeochemical Investigations on the Wajid Aquifer System, Southwestern Part of Saudi Arabia
Authors: Mohamed Ahmed, Ezat Korany, Abdelaziz Al Basam, Osama Kasem
Abstract:
The arid climate, low rate of precipitations and population reflect the increasing of groundwater uses as the main source of water in Saudi Arabia. The Wajid Aquifer System represents a regional groundwater aquifer system along the edge of the crystalline Arabian Shield near the southwestern tip of the Arabian Peninsula. The aquifer extends across the border of Saudi Arabia and Yemen from the Asir –Yemen Highlands to the Rub al Khali Depression and possibly to the Gulf coast (at the southwestern tip). The present work is representing a hydrogeochemical investigation on the Wajid Aquifer System. The studied area is being classified into three zones. The 1st zone is West of Wadi Ad Dawasir (Northern part of the studied area), the 2nd is Najran-Asir Zone (southern part of the studied area), and the 3rd zone is the intermediate -central zone (occupying the central area between the last two zones). The groundwater samples were collected and chemically analyzed for physicochemical properties such as pH, electrical conductivity, total hardness (TH), alkalinity (pH), total dissolved solids (TDS), major ions (Ca2+, Mg2+, Na+, K+, HCO3-, SO42- and Cl-), and trace elements. Some parameters such as sodium adsorption ratio (SAR), soluble sodium percentage (Na%), potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio, hydrochemical coefficients, hydrochemical formula, ion dominance, salt combinations and water types were also calculated in order to evaluate the quality of the groundwater resources in the selected areas for different purposes. The distribution of the chemical constituents and their interrelationships are illustrated by different hydrochemical graphs. Groundwater depths and the depth to water were measured to study the effect of discharge on both the water level and the salinity of the studied groundwater wells. A detailed comparison between the three studied zones according to the variations shown by the chemical and field investigations are discussed in detailed within the work.Keywords: Najran-Asir, Wadi Ad Dawasir, Wajid Aquifer System, effect of discharge
Procedia PDF Downloads 137238 Synthesis of Ultra-Small Platinum, Palladium and Gold Nanoparticles by Electrochemically Active Biofilms and Their Enhanced Catalytic Activities
Authors: Elaf Ahmed, Shahid Rasul, Ohoud Alharbi, Peng Wang
Abstract:
Ultra-Small Nanoparticles of metals (USNPs) have attracted the attention from the perspective of both basic and developmental science in a wide range of fields. These NPs exhibit electrical, optical, magnetic, and catalytic phenomena. In addition, they are considered effective catalysts because of their enormously large surface area. Many chemical methods of synthesising USNPs are reported. However, the drawback of these methods is the use of different capping agents and ligands in the process of the production such as Polyvinylpyrrolidone, Thiol and Ethylene Glycol. In this research ultra-small nanoparticles of gold, palladium and platinum metal have been successfully produced using electrochemically active biofilm (EAB) after optimising the pH of the media. The production of ultra-small nanoparticles has been conducted in a reactor using a simple two steps method. Initially biofilm was grown on the surface of a carbon paper for 7 days using Shewanella Loihica bacteria. Then, biofilm was employed to synthesise platinum, palladium and gold nanoparticles in water using sodium lactate as electron donor without using any toxic chemicals at mild operating conditions. Electrochemically active biofilm oxidise the electron donor and produces electrons in the solution. Since these electrons are a strong reducing agent, they can reduce metal precursors quite effectively and quickly. The As-synthesized ultra-small nanoparticles have a size range between (2-7nm) and showed excellent catalytic activity on the degradation of methyl orange. The growth of metal USNPs is strongly related to the condition of the EAB. Where using low pH for the synthesis was not successful due to the fact that it might affect and destroy the bacterial cells. However, increasing the pH to 7 and 9, led to the successful formation of USNPs. By changing the pH value, we noticed a change in the size range of the produced NPs. The EAB seems to act as a Nano factory for the synthesis of metal nanoparticles by offering a green, sustainable and toxic free synthetic route without the use of any capping agents or ligands and depending only on their respiration pathway.Keywords: electrochemically active biofilm, electron donor, shewanella loihica, ultra-small nanoparticles
Procedia PDF Downloads 193237 The Application of Transcranial Direct Current Stimulation (tDCS) Combined with Traditional Physical Therapy to Address Upper Limb Function in Chronic Stroke: A Case Study
Authors: Najmeh Hoseini
Abstract:
Strokerecovery happens through neuroplasticity, which is highly influenced by the environment, including neuro-rehabilitation. Transcranial direct current stimulation (tDCS) may enhance recovery by modulating neuroplasticity. With tDCS, weak direct currents are applied noninvasively to modify excitability in the cortical areas under its electrodes. Combined with functional activities, this may facilitate motor recovery in neurologic disorders such as stroke. The purpose of this case study was to examine the effect of tDCS combined with 30 minutes of traditional physical therapy (PT)on arm function following a stroke. A 29-year-old male with chronic stroke involving the left middle cerebral artery territory went through the treatment protocol. Design The design included 5 weeks of treatment: 1 week of traditional PT, 2 weeks of sham tDCS combined with traditional PT, and 2 weeks of tDCS combined with traditional PT. PT included functional electrical stimulation (FES) of wrist extensors followed by task-specific functional training. Dual hemispheric tDCS with 1 mA intensity was applied on the sensorimotor cortices for the first 20 min of the treatment combined with FES. Assessments before and after each treatment block included Modified Ashworth Scale, ChedokeMcmaster Arm and Hand inventory, Action Research Arm Test (ARAT), and the Box and Blocks Test. Results showed reduced spasticity in elbow and wrist flexors only after tDCS combination weeks (+1 to 0). The patient demonstrated clinically meaningful improvements in gross motor and fine motor control over the duration of the study; however, components of the ARAT that require fine motor control improved the greatest during the experimental block. Average time improvement compared to baseline was26.29 s for tDCS combination weeks, 18.48 s for sham tDCS, and 6.83 for PT standard of care weeks. Combining dual hemispheric tDCS with the standard of care PT demonstrated improvements in hand dexterity greater than PT alone in this patient case.Keywords: tDCS, stroke, case study, physical therapy
Procedia PDF Downloads 96236 Influence of Crystal Orientation on Electromechanical Behaviors of Relaxor Ferroelectric P(VDF-TRFE-CTFE) Terpolymer
Authors: Qing Liu, Jean-fabien Capsal, Claude Richard
Abstract:
In this current contribution, authors are dedicated to investigate influence of the crystal lamellae orientation on electromechanical behaviors of relaxor ferroelectric Poly (vinylidene fluoride –trifluoroethylene -chlorotrifluoroethylene) (P(VDF-TrFE-CTFE)) films by control of polymer microstructure, aiming to picture the full map of structure-property relationship. In order to define their crystal orientation films, terpolymer films were fabricated by solution-casting, stretching and hot-pressing process. Differential scanning calorimetry, impedance analyzer, and tensile strength techniques were employed to characterize crystallographic parameters, dielectric permittivity, and elastic Young’s modulus respectively. In addition, large electrical induced out-of-plane electrostrictive strain was obtained by cantilever beam mode. Consequently, as-casted pristine films exhibited surprisingly high electrostrictive strain 0.1774% due to considerably small value of elastic Young’s modulus although relatively low dielectric permittivity. Such reasons contributed to large mechanical elastic energy density. Instead, due to 2 folds increase of elastic Young’s modulus and less than 50% augmentation of dielectric constant, fully-crystallized film showed weak electrostrictive behavior and mechanical energy density as well. And subjected to mechanical stretching process, Film C exhibited stronger dielectric constant and out-performed electrostrictive strain over Film B because edge-on crystal lamellae orientation induced by uniaxially mechanical stretch. Hot-press films were compared in term of cooling rate. Rather large electrostrictive strain of 0.2788% for hot-pressed Film D in quenching process was observed although its dielectric permittivity equivalent to that of pristine as-casted Film A, showing highest mechanical elastic energy density value of 359.5 J/m^3. In hot-press cooling process, dielectric permittivity of Film E saw values at 48.8 concomitant with ca.100% increase of Young’s modulus. Films with intermediate mechanical energy density were obtained.Keywords: crystal orientation, electrostroctive strain, mechanical energy density, permittivity, relaxor ferroelectric
Procedia PDF Downloads 376235 Ground Water Pollution Investigation around Çorum Stream Basin in Turkey
Authors: Halil Bas, Unal Demiray, Sukru Dursun
Abstract:
Water and ground water pollution at the most of the countries is important problem. Investigation of water pollution source must be carried out to save fresh water. Because fresh water sources are very limited and recent sources are not enough for increasing population of world. In this study, investigation was carried out on pollution factors effecting the quality of the groundwater in Çorum Stream Basin in Turkey. Effect of geological structure of the region and the interaction between the stream and groundwater was researched. For the investigation, stream and groundwater sampling were performed at rainy and dry seasons to see if there is a change on quality parameters. The results were evaluated by the computer programs and then graphics, distribution maps were prepared. Thus, degree of the quality and pollution were tried to understand. According to analysis results, because the results of streams and the ground waters are not so close to each other we can say that there is no interaction between the stream and the groundwater. As the irrigation water, the stream waters are generally in the range between C3S1 region and the ground waters are generally in the range between C3S1 and C4S2 regions according to US Salinity Laboratory Diagram. According to Wilcox diagram stream waters are generally good-permissible and ground waters are generally good permissible, doubtful to unsuitable and unsuitable type. Especially ground waters are doubtful to unsuitable and unsuitable types in dry season. It may be assumed that as the result of relative increase in concentration of salt minerals. Especially samples from groundwater wells bored close to gypsium bearing units have high hardness, electrical conductivity and salinity values. Thus for drinking and irrigation these waters are determined as unsuitable. As a result of these studies, it is understood that the groundwater especially was effected by the lithological contamination rather than the anthropogenic or the other types of pollution. Because the alluvium is covered by the silt and clay lithology it is not affected by the anthropogenic and the other foreign factors. The results of solid waste disposal site leachate indicate that this site would have a risk potential for pollution in the future. Although the parameters did not exceed the maximum dangerous values it does not mean that they will not be dangerous in the future, and this case must be taken into account.Keywords: Çorum, environment, groundwater, hydrogeology, geology, pollution, quality, stream
Procedia PDF Downloads 502234 Determination of Cyclic Citrullinated Peptide Antibodies on Quartz Crystal Microbalance Based Nanosensors
Authors: Y. Saylan, F. Yılmaz, A. Denizli
Abstract:
Rheumatoid arthritis (RA) which is the most common autoimmune disorder of the body's own immune system attacking healthy cells. RA has both articular and systemic effects.Until now romatiod factor (RF) assay is used the most commonly diagnosed RA but it is not specific. Anti-cyclic citrullinated peptide (anti-CCP) antibodies are IgG autoantibodies which recognize citrullinated peptides and offer improved specificity in early diagnosis of RA compared to RF. Anti-CCP antibodies have specificity for the diagnosis of RA from 91 to 98% and the sensitivity rate of 41-68%. Molecularly imprinted polymers (MIP) are materials that are easy to prepare, less expensive, stable have a talent for molecular recognition and also can be manufactured in large quantities with good reproducibility. Molecular recognition-based adsorption techniques have received much attention in several fields because of their high selectivity for target molecules. Quartz crystal microbalance (QCM) is an effective, simple, inexpensive approach mass changes that can be converted into an electrical signal. The applications for specific determination of chemical substances or biomolecules, crystal electrodes, cover by the thin films for bind or adsorption of molecules. In this study, we have focused our attention on combining of molecular imprinting into nanofilms and QCM nanosensor approaches and producing QCM nanosensor for anti-CCP, chosen as a model protein, using anti-CCP imprinted nanofilms. For this aim, anti-CCP imprinted QCM nanosensor was characterized by Fourier transform infrared spectroscopy, atomic force microscopy, contact angle measurements and ellipsometry. The non-imprinted nanosensor was also prepared to evaluate the selectivity of the imprinted nanosensor. Anti-CCP imprinted QCM nanosensor was tested for real-time detection of anti-CCP from aqueous solution. The kinetic and affinity studies were determined by using anti-CCP solutions with different concentrations. The responses related with mass shifts (Δm) and frequency shifts (Δf) were used to evaluate adsorption properties and to calculate binding (Ka) and dissociation (Kd) constants. To show the selectivity of the anti-CCP imprinted QCM nanosensor, competitive adsorption of anti-CCP and IgM was investigated.The results indicate that anti-CCP imprinted QCM nanosensor has a higher adsorption capabilities for anti-CCP than for IgM, due to selective cavities in the polymer structure.Keywords: anti-CCP, molecular imprinting, nanosensor, rheumatoid arthritis, QCM
Procedia PDF Downloads 363233 Electrospun Nanofibers from Amphiphlic Block Copolymers and Their Graphene Nanocomposites
Authors: Hussein M. Etmimi, Peter E. Mallon
Abstract:
Electrospinning uses an electrical charge to draw very fine fibers (typically on the micro or nano scale) from a liquid or molten precursor. Over the years, this method has become a widely used and a successful technique to process polymer materials and their composites into nanofibers. The main focus of this work is to study the electrospinning of multi-phase amphiphilic copolymers and their nanocomposites, which contain graphene as the nanofiller material. In such amphiphilic materials, the constituents segments are incompatible and thus the solid state morphology will be determined by the composition of the various constituents as well as the method of preparation. In this study, amphiphilic block copolymers of poly(dimethyl siloxane) and poly(methyl methacrylate) (PDMS-b-PMMA) with well-defined structures were synthesized and the solution electrospinning of these materials and their properties were investigated. Atom transfer radical polymerization (ATRP) was used to obtain the controlled block copolymers with relatively high molar masses and narrow dispersity. First, PDMS macroinitiators with different chain length of 1000, 5000 and 10000 g/mol were synthesized by the reaction of monocarbinol terminated PDMS with α-bromoisobutyryl bromide initiator. The obtained macroinitiators were used for the polymerization of methyl methacrylate monomer to obtain the desired block copolymers using the ATRP process. Graphene oxide (GO) of different loading was then added to the copolymer solution and the resultant nanocomposites were successfully electrospun into nanofibers. The electrospinning was achieved using dimethylformamide/chloroform mixture (60:40 vl%) as electrospinning solution medium. Scanning electron microscopy (SEM) showed the successful formation of the electrospun fibers with dimensions in the nanometer range. X-ray diffraction indicated that the GO nanosheets were of an exfoliated structure, irrespective of the filler loading. Thermogravimetric analysis also showed that the thermal stability of the nanofibers was improved in the presence of GO, which was not a function of the filler loading. Differential scanning calorimetry also showed that the mechanical properties (measured as glass transition temperature) of the nanofibers was improved significantly in the presence of GO, which was a function of the filler loading.Keywords: elctrospinning, graphene oxide, nanofibers, polymethyl methacrylate (PMMA)
Procedia PDF Downloads 306232 Deep Groundwater Potential and Chemical Analysis Based on Well Logging Analysis at Kapuk-Cengkareng, West Jakarta, DKI Jakarta, Indonesia
Authors: Josua Sihotang
Abstract:
Jakarta Capital Special Region is the province that densely populated with rapidly growing infrastructure but less attention for the environmental condition. This makes some social problem happened like lack of clean water supply. Shallow groundwater and river water condition that has contaminated make the layer of deep water carrier (aquifer) should be done. This research aims to provide the people insight about deep groundwater potential and to determine the depth, location, and quality where the aquifer can be found in Jakarta’s area, particularly Kapuk-Cengkareng’s people. This research was conducted by geophysical method namely Well Logging Analysis. Well Logging is the geophysical method to know the subsurface lithology with the physical characteristic. The observation in this research area was conducted with several well devices that is Spontaneous Potential Log (SP Log), Resistivity Log, and Gamma Ray Log (GR Log). The first devices well is SP log which is work by comprising the electrical potential difference between the electrodes on the surface with the electrodes that is contained in the borehole and rock formations. The second is Resistivity Log, used to determine both the hydrocarbon and water zone based on their porosity and permeability properties. The last is GR Log, work by identifying radioactivity levels of rocks which is containing elements of thorium, uranium, or potassium. The observation result is curve-shaped which describes the type of lithological coating in subsurface. The result from the research can be interpreted that there are four of the deep groundwater layer zone with different quality. The good groundwater layer can be found in layers with good porosity and permeability. By analyzing the curves, it can be known that most of the layers which were found in this wellbore are clay stone with low resistivity and high gamma radiation. The resistivity value of the clay stone layers is about 2-4 ohm-meter with 65-80 Cps gamma radiation. There are several layers with high resistivity value and low gamma radiation (sand stone) that can be potential for being an aquifer. This is reinforced by the sand layer with a right-leaning SP log curve proving that this layer is permeable. These layers have 4-9 ohm-meter resistivity value with 40-65 Cps gamma radiation. These are mostly found as fresh water aquifer.Keywords: aquifer, deep groundwater potential, well devices, well logging analysis
Procedia PDF Downloads 254231 The Effects on Hand Function with Robot-Assisted Rehabilitation for Children with Cerebral Palsy: A Pilot Study
Authors: Fen-Ling Kuo, Hsin-Chieh Lee, Han-Yun Hsiao, Jui-Chi Lin
Abstract:
Background: Children with cerebral palsy (CP) usually suffered from mild to maximum upper limb dysfunction such as having difficulty in reaching and picking up objects, which profoundly affects their participation in activities of daily living (ADLs). Robot-assisted rehabilitation provides intensive physical training in improving sensorimotor function of the hand. Many researchers have extensively studied the effects of robot-assisted therapy (RT) for the paretic upper limb in patients with stroke in recent years. However, few studies have examined the effect of RT on hand function in children with CP. The purpose of this study is to investigate the effectiveness of Gloreha Sinfonia, a robotic device with a dynamic arm support system mainly focus on distal upper-limb training, on improvements of hand function and ADLs in children with CP. Methods: Seven children with moderate CP were recruited in this case series study. RT using Gloreha Sinfonia was performed 2 sessions per week, 60 min per session for 6 consecutive weeks, with 12 times in total. Outcome measures included the Fugl-Meyer Assessment-upper extremity (FMA-UE), the Box and Block Test, the electromyography activity of the extensor digitorum communis muscle (EDC) and brachioradialis (BR), a grip dynamometer for motor evaluation, and the ABILHAND-Kids for measuring manual ability to manage daily activities, were performed at baseline, after 12 sessions (end of treatment) and at the 1-month follow-up. Results: After 6 weeks of robot-assisted treatment of hand function, there were significant increases in FMA-UE shoulder/elbow scores (p=0.002), FMA-UE wrist/hand scores (p=0.002), and FMA-UE total scores (p=0.002). There were also significant improvements in the BR mean value (p = 0.015) and electrical agonist-antagonist muscle ratio (p=0.041) in grasping a 1-inch cube task. These gains were maintained for a month after the end of the intervention. Conclusion: RT using Gloreha Sinfonia for hand function training may contribute toward the improvement of upper extremity function and efficacy in recruiting BR muscle in children with CP. The results were maintained at one month after intervention.Keywords: activities of daily living, cerebral palsy, hand function, robotic rehabilitation
Procedia PDF Downloads 116230 Preparation and Characterization of CO-Tolerant Electrocatalyst for PEM Fuel Cell
Authors: Ádám Vass, István Bakos, Irina Borbáth, Zoltán Pászti, István Sajó, András Tompos
Abstract:
Important requirements for the anode side electrocatalysts of polymer electrolyte membrane (PEM) fuel cells are CO-tolerance, stability and corrosion resistance. Carbon is still the most common material for electrocatalyst supports due to its low cost, high electrical conductivity and high surface area, which can ensure good dispersion of the Pt. However, carbon becomes degraded at higher potentials and it causes problem during application. Therefore it is important to explore alternative materials with improved stability. Molybdenum-oxide can improve the CO-tolerance of the Pt/C catalysts, but it is prone to leach in acidic electrolyte. The Mo was stabilized by isovalent substitution of molybdenum into the rutile phase titanium-dioxide lattice, achieved by a modified multistep sol-gel synthesis method optimized for preparation of Ti0.7Mo.3O2-C composite. High degree of Mo incorporation into the rutile lattice was developed. The conductivity and corrosion resistance across the anticipated potential/pH window was ensured by mixed oxide – activated carbon composite. Platinum loading was carried out using NaBH4 and ethylene glycol; platinum content was 40 wt%. The electrocatalyst was characterized by both material investigating methods (i.e. XRD, TEM, EDS, XPS techniques) and electrochemical methods (cyclic-voltammetry, COads stripping voltammetry, hydrogen oxidation reaction on rotating disc electrode). The electrochemical activity of the sample was compared to commercial 40 wt% Pt/C (Quintech) and PtRu/C (Quintech, Pt= 20 wt%, Ru= 10 wt%) references. Enhanced CO tolerance of the electrocatalyst prepared using the Ti0.7Mo.3O2-C composite material was evidenced by the appearance of a CO-oxidation related 'pre-peak' and by the pronounced shift of the maximum of the main CO oxidation peak towards less positive potential compared to Pt/C. Fuel cell polarization measurements were also carried out using Bio-Logic and Paxitech FCT-150S test device. All details on the design, preparation, characterization and testing by both electrochemical measurements and fuel cell test device of electrocatalyst supported on Ti0.7Mo.3O2-C composite material will be presented and discussed.Keywords: anode electrocatalyst, composite material, CO-tolerance, TiMoOx
Procedia PDF Downloads 301