Search results for: artificial stock market
3323 Case-Based Reasoning for Build Order in Real-Time Strategy Games
Authors: Ben G. Weber, Michael Mateas
Abstract:
We present a case-based reasoning technique for selecting build orders in a real-time strategy game. The case retrieval process generalizes features of the game state and selects cases using domain-specific recall methods, which perform exact matching on a subset of the case features. We demonstrate the performance of the technique by implementing it as a component of the integrated agent framework of McCoy and Mateas. Our results demonstrate that the technique outperforms nearest-neighbor retrieval when imperfect information is enforced in a real-time strategy game.Keywords: case based reasoning, real time strategy systems, requirements elicitation, requirement analyst, artificial intelligence
Procedia PDF Downloads 4413322 Augmented Reality Technology for a User Interface in an Automated Storage and Retrieval System
Authors: Wen-Jye Shyr, Chun-Yuan Chang, Bo-Lin Wei, Chia-Ming Lin
Abstract:
The task of creating an augmented reality technology was described in this study to give operators a user interface that might be a part of an automated storage and retrieval system. Its objective was to give graduate engineering and technology students a system of tools with which to experiment with the creation of augmented reality technologies. To collect and analyze data for maintenance applications, the students used augmented reality technology. Our findings support the evolution of artificial intelligence towards Industry 4.0 practices and the planned Industry 4.0 research stream. Important first insights into the study's effects on student learning were presented.Keywords: augmented reality, storage and retrieval system, user interface, programmable logic controller
Procedia PDF Downloads 883321 Artificial Intelligence in Duolingo
Authors: Jwana Khateeb, Lamar Bawazeer, Hayat Sharbatly, Mozoun Alghamdi
Abstract:
This research paper explores the idea of learning new languages through an innovative-mobile based learning technology. Throughout this paper we will discuss and examine a mobile-based application called Duolingo. Duolingo is a college standard application for learning foreign languages such as Spanish and English. It is a smart application where it uses smart adaptive technologies to advance the level of their students at each period of time by offering new tasks. Furthermore, we will discuss the history of the application and the methodology used within it. We have conducted a study in which we surveyed ten people about their experience using Duolingo. The results are examined and analyzed in which it indicates the effectiveness on Duolingo students who are seeking to learn new languages. Thus, the research paper will furthermore discuss the diverse methods and approaches in learning new languages through this mobile-based application.Keywords: Duolingo, AI, personalized, customized
Procedia PDF Downloads 2893320 The Phenomenon of the Seawater Intrusion with Fresh Groundwater in the Arab Region
Authors: Kassem Natouf, Ihab Jnad
Abstract:
In coastal aquifers, the interface between fresh groundwater and salty seawater may shift inland, reaching coastal wells and causing an increase in the salinity of the water they pump, putting them out of service. Many Arab coastal sites suffer from this phenomenon due to the increased pumping of coastal groundwater. This research aims to prepare a comprehensive study describing the common characteristics of the phenomenon of seawater intrusion with coastal freshwater aquifers in the Arab region, its general and specific causes and negative effects, in a way that contributes to overcoming this phenomenon, and to exchanging expertise between Arab countries in studying and analyzing it, leading to overcoming it. This research also aims to build geographical and relational databases for data, information and studies available in Arab countries about seawater intrusion with freshwater so as to provide the data and information necessary for managing groundwater resources on Arab coasts, including studying the effects of climate change on these resources and helping decision-makers in developing executive programs to overcome the seawater intrusion with groundwater. The research relied on the methodology of analysis and comparison, where the available information and data about the phenomenon in the Arab region were collected. After that, the information and data collected were studied and analyzed, and the causes of the phenomenon in each case, its results, and solutions for prevention were stated. Finally, the different cases were compared, and the common causes, results, and methods of treatment between them were deduced, and a technical report summarizing that was prepared. To overcome the phenomenon of seawater intrusion with fresh groundwater: (1) It is necessary to develop efforts to monitor the quantity and quality of groundwater on the coasts and to develop mathematical models to predict the impact of climate change, sea level rise, and human activities on coastal groundwater. (2) Over-pumping of coastal aquifers is an important cause of seawater intrusion. To mitigate this problem, Arab countries should reduce groundwater pumping and promote rainwater harvesting, surface irrigation, and water recycling practices. (3) Artificial recharge of coastal groundwater with various forms of water, whether fresh or treated, is a promising technology to mitigate the effects of seawater intrusion.Keywords: coastal aquifers, seawater intrusion, fresh groundwater, salinity increase, Arab region, groundwater management, climate change effects, sustainable water practices, over-pumping, artificial recharge, monitoring and modeling, data databases, groundwater resources, negative effects, comparative analysis, technical report, water scarcity, groundwater quality, decision-making, environmental impact, agricultural practices
Procedia PDF Downloads 353319 Path Planning for Collision Detection between two Polyhedra
Authors: M. Khouil, N. Saber, M. Mestari
Abstract:
This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision.Keywords: path planning, collision detection, convex polyhedron, neural network
Procedia PDF Downloads 4383318 A Survey on Intelligent Techniques Based Modelling of Size Enlargement Process for Fine Materials
Authors: Mohammad Nadeem, Haider Banka, R. Venugopal
Abstract:
Granulation or agglomeration is a size enlargement process to transform the fine particulates into larger aggregates since the fine size of available materials and minerals poses difficulty in their utilization. Though a long list of methods is available in the literature for the modeling of granulation process to facilitate the in-depth understanding and interpretation of the system, there is still scope of improvements using novel tools and techniques. Intelligent techniques, such as artificial neural network, fuzzy logic, self-organizing map, support vector machine and others, have emerged as compelling alternatives for dealing with imprecision and complex non-linearity of the systems. The present study tries to review the applications of intelligent techniques in the modeling of size enlargement process for fine materials.Keywords: fine material, granulation, intelligent technique, modelling
Procedia PDF Downloads 3743317 The Effect of Artificial Intelligence on Marketing Distribution
Authors: Yousef Wageh Nagy Fahmy
Abstract:
Mobile phones are one of the direct marketing tools used to reach today's hard-to-reach consumers. Cell phones are very personal devices and you can have them with you anytime, anywhere. This offers marketers the opportunity to create personalized marketing messages and send them at the right time and place. The study examined consumer attitudes towards mobile marketing, particularly SMS marketing. Unlike similar studies, this study does not focus on young people, but includes consumers between the ages of 18 and 70 in the field study.The results showed that the majority of participants found SMS marketing disruptive. The biggest problems with SMS marketing are subscribing to message lists without the recipient's consent; large number of messages sent; and the irrelevance of message contentKeywords: direct marketing, mobile phones mobile marketing, sms advertising, marketing sponsorship, marketing communication theories, marketing communication tools
Procedia PDF Downloads 723316 Determinants of Corporate Social Responsibility in Indonesia
Authors: Bela Sulistyaguna, Yuli Chomsatu Samrotun, Endang Masitoh Wahyuningsih
Abstract:
The purpose of this research was to analyze the influence of company size, liquidity, profitability, leverage, company age, industry type, board of director, board of commissioner, audit committee and public ownership on the corporate social responsibility disclosure. The grand theories of this research are agency theory, stakeholders theory, and legitimacy theory. Analysis of data using multiple linear regression method with SPSS 22.0 for mac. The sample consists of companies listed on the Indonesia Stock Exchange (IDX) and disclosed the Global Reporting Initiative (GRI) sustainability reports from 2013 to 2018. The final sample of this research was 19 companies that obtained by purposive sampling. The results of the research showed that, simultaneously, company size, liquidity, profitability, leverage, company age, industry type, board of director, board of commissioner, audit committee and public ownership has an influence on the corporate social responsibility disclosure. Partially, the results showed that liquidity and leverage has an influence on the corporate social responsibility disclosure. Meanwhile, company size, profitability, company age, industry type, board of director, board of commissioner, audit committee and public ownership has no influence on corporate social responsibility disclosure.Keywords: corporate social responsibility, CSR disclosure, Indonesia
Procedia PDF Downloads 1533315 Emerging Identities: A Transformative ‘Green Zone’
Authors: Alessandra Swiny, Yiorgos Hadjichristou
Abstract:
There exists an on-going geographical scar creating a division through the Island of Cyprus and its capital, Nicosia. The currently amputated city center is accessed legally by the United Nations convoys, infiltrated only by Turkish and Greek Cypriot army scouts and illegal traders and scavengers. On Christmas day 1963 in Nicosia, Captain M. Hobden of the British Army took a green chinagraph pencil and on a large scale Joint Army-RAF map ‘marked’ the division. From then on this ‘buffer zone’ was called the ‘green line.' This once dividing form, separating the main communities of Greek and Turkish Cypriots from one another, has now been fully reclaimed by an autonomous intruder. It's currently most captivating inhabitant is nature. She keeps taking over, for the past fifty years indigenous and introduced fauna and flora thrive; trees emerge from rooftops and plants, bushes and flowers grow randomly through the once bustling market streets, allowing this ‘no man’s land’ to teem with wildlife. And where are its limits? The idea of fluidity is ever present; it encroaches into the urban and built environment that surrounds it, and notions of ownership and permanence are questioned. Its qualities have contributed significantly in the search for new ‘identities,' expressed in the emergence of new living conditions, be they real or surreal. Without being physically reachable, it can be glimpsed at through punctured peepholes, military bunker windows that act as enticing portals into an emotional and conceptual level of inhabitation. The zone is mystical and simultaneously suspended in time, it triggers people’s imagination, not just that of the two prevailing communities but also of immigrants, refugees, and visitors; it mesmerizes all who come within its proximity. The paper opens a discussion on the issues and the binary questions raised. What is natural and artificial; what is private and public; what is ephemeral and permanent? The ‘green line’ exists in a central fringe condition and can serve in mixing generations and groups of people; mingling functions of living with work and social interaction; merging nature and the human being in a new-found synergy of human hope and survival, allowing thus for new notions of place to be introduced. Questions seek to be answered, such as, “Is the impossibility of dwelling made possible, by interweaving these ‘in-between conditions’ into eloquently traced spaces?” The methodologies pursued are developed through academic research, professional practice projects, and students’ research/design work. Realized projects, case studies and other examples cited both nationally and internationally hold global and local applications. Both paths of the research deal with the explorative understanding of the impossibility of dwelling, testing the limits of its autonomy. The expected outcome of the experience evokes in the user a sense of a new urban landscape, created from human topographies that echo the voice of an emerging identity.Keywords: urban wildlife, human topographies, buffer zone, no man’s land
Procedia PDF Downloads 1983314 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning
Authors: Saahith M. S., Sivakami R.
Abstract:
In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis
Procedia PDF Downloads 383313 Effect of Hypoxia on AOX2 Expression in Chlamydomonas reinhardtii
Authors: Maria Ostroukhova, Zhanneta Zalutskaya, Elena Ermilova
Abstract:
The alternative oxidase (AOX) mediates cyanide-resistant respiration, which bypasses proton-pumping complexes III and IV of the cytochrome pathway to directly transfer electrons from reduced ubiquinone to molecular oxygen. In Chlamydomonas reinhardtii, AOX is a monomeric protein that is encoded by two genes of discrete subfamilies, AOX1 and AOX2. Although AOX has been proposed to play essential roles in stress tolerance of organisms, the role of subfamily AOX2 is largely unknown. In C. reinhardtii, AOX2 was initially identified as one of constitutively low expressed genes. Like other photosynthetic organisms C. reinhardtii cells frequently experience periods of hypoxia. To examine AOX2 transcriptional regulation and role of AOX2 in hypoxia adaptation, real-time PCR analysis and artificial microRNA method were employed. Two experimental approaches have been used to induce the anoxic conditions: dark-anaerobic and light-anaerobic conditions. C. reinhardtii cells exposed to the oxygen deprivation have shown increased AOX2 mRNA levels. By contrast, AOX1 was not an anoxia-responsive gene. In C. reinhardtii, a subset of genes is regulated by transcription factor CRR1 in anaerobic conditions. Notable, the AOX2 promoter region contains the potential motif for CRR1 binding. Therefore, the role of CRR1 in the control of AOX2 transcription was tested. The CRR1-underexpressing strains, that were generated and characterized in this work, exhibited low levels of AOX2 transcripts under anoxic conditions. However, the transformants still slightly induced AOX2 gene expression in the darkness. These confirmed our suggestions that darkness is a regulatory stimulus for AOX genes in C. reinhardtii. Thus, other factors must contribute to AOX2 promoter activity under dark-anoxic conditions. Moreover, knock-down of CRR1 caused a complete reduction of AOX2 expression under light-anoxic conditions. These results indicate that (1) CRR1 is required for AOX2 expression during hypoxia, and (2) AOX2 gene is regulated by CRR1 together with yet-unknown regulatory factor(s). In addition, the AOX2-underexpressing strains were generated. The analysis of amiRNA-AOX2 strains suggested a role of this alternative oxidase in hypoxia adaptation of the alga. In conclusion, the results reported here show that C. reinhardtii AOX2 gene is stress inducible. CRR1 transcriptional factor is involved in the regulation of the AOX2 gene expression in the absence of oxygen. Moreover, AOX2 but not AOX1 functions under oxygen deprivation. This work was supported by Russian Science Foundation (research grant № 16-14-10004).Keywords: alternative oxidase 2, artificial microRNA approach, chlamydomonas reinhardtii, hypoxia
Procedia PDF Downloads 2413312 The Challenge of Assessing Social AI Threats
Authors: Kitty Kioskli, Theofanis Fotis, Nineta Polemi
Abstract:
The European Union (EU) directive Artificial Intelligence (AI) Act in Article 9 requires that risk management of AI systems includes both technical and human oversight, while according to NIST_AI_RFM (Appendix C) and ENISA AI Framework recommendations, claim that further research is needed to understand the current limitations of social threats and human-AI interaction. AI threats within social contexts significantly affect the security and trustworthiness of the AI systems; they are interrelated and trigger technical threats as well. For example, lack of explainability (e.g. the complexity of models can be challenging for stakeholders to grasp) leads to misunderstandings, biases, and erroneous decisions. Which in turn impact the privacy, security, accountability of the AI systems. Based on the NIST four fundamental criteria for explainability it can also classify the explainability threats into four (4) sub-categories: a) Lack of supporting evidence: AI systems must provide supporting evidence or reasons for all their outputs. b) Lack of Understandability: Explanations offered by systems should be comprehensible to individual users. c) Lack of Accuracy: The provided explanation should accurately represent the system's process of generating outputs. d) Out of scope: The system should only function within its designated conditions or when it possesses sufficient confidence in its outputs. Biases may also stem from historical data reflecting undesired behaviors. When present in the data, biases can permeate the models trained on them, thereby influencing the security and trustworthiness of the of AI systems. Social related AI threats are recognized by various initiatives (e.g., EU Ethics Guidelines for Trustworthy AI), standards (e.g. ISO/IEC TR 24368:2022 on AI ethical concerns, ISO/IEC AWI 42105 on guidance for human oversight of AI systems) and EU legislation (e.g. the General Data Protection Regulation 2016/679, the NIS 2 Directive 2022/2555, the Directive on the Resilience of Critical Entities 2022/2557, the EU AI Act, the Cyber Resilience Act). Measuring social threats, estimating the risks to AI systems associated to these threats and mitigating them is a research challenge. In this paper it will present the efforts of two European Commission Projects (FAITH and THEMIS) from the HorizonEurope programme that analyse the social threats by building cyber-social exercises in order to study human behaviour, traits, cognitive ability, personality, attitudes, interests, and other socio-technical profile characteristics. The research in these projects also include the development of measurements and scales (psychometrics) for human-related vulnerabilities that can be used in estimating more realistically the vulnerability severity, enhancing the CVSS4.0 measurement.Keywords: social threats, artificial Intelligence, mitigation, social experiment
Procedia PDF Downloads 653311 Smart Speed Bump
Authors: Mohammad Rahmani Rezaiyeh, Mojtaba Rahmani Rezaiyeh, Mehrdad Rahmani Rezaiyeh
Abstract:
Smart speed bump is a new invention and I am invented it. Smart speed bump is a system that can change the position of speed bumps either active or passive in necessary situations. The basic system of smart speed bumps is based on a robotic system which includes mechanic, electronic and artificial intelligence. The smart speed bump is capable of smart decision making and can change its position by anticipating the peak of terrific hours. It can be noted to the advantages of this system such as preventing the waste of petrol while crossing speed bumps, traffic management, accelerating, flowing and securing traffic, reducing accidents and judicial records.Keywords: invention, smart, robotic system, speed bump, traffic, management
Procedia PDF Downloads 4183310 Risk Measure from Investment in Finance by Value at Risk
Authors: Mohammed El-Arbi Khalfallah, Mohamed Lakhdar Hadji
Abstract:
Managing and controlling risk is a topic research in the world of finance. Before a risky situation, the stakeholders need to do comparison according to the positions and actions, and financial institutions must take measures of a particular market risk and credit. In this work, we study a model of risk measure in finance: Value at Risk (VaR), which is a new tool for measuring an entity's exposure risk. We explain the concept of value at risk, your average, tail, and describe the three methods for computing: Parametric method, Historical method, and numerical method of Monte Carlo. Finally, we briefly describe advantages and disadvantages of the three methods for computing value at risk.Keywords: average value at risk, conditional value at risk, tail value at risk, value at risk
Procedia PDF Downloads 4413309 Investigating Water-Oxidation Using a Ru(III) Carboxamide Water Coordinated Complex
Authors: Yosra M. Badiei, Evelyn Ortiz, Marisa Portenti, David Szalda
Abstract:
Water-oxidation half-reaction is a critical reaction that can be driven by a sustainable energy source (e.g., solar or wind) and be coupled with a chemical fuel making reaction which stores the released electrons and protons from water (e.g., H₂ or methanol). The use of molecular water-oxidation catalysts (WOC) allow the rationale design of redox active metal centers and provides a better understanding of their structure-activity-relationship. Herein, the structure of a Ru(III) complex bearing a doubly deprotonated N,N'-bis(aryl)pyridine-2,6-dicarboxamide ligand which contains a water molecule in its primary coordination sphere was elucidated by single-crystal X-ray diffraction. Further spectroscopic experimental data and pH-dependent electrochemical studies reveal its water-oxidation reactivity. Emphasis on mechanistic details for O₂ formation of this complex will be addressed.Keywords: water-oxidation, catalysis, ruthenium, artificial photosynthesis
Procedia PDF Downloads 2013308 The Impact of Board Director Characteristics on the Quality of Information Disclosure
Authors: Guo Jinhong
Abstract:
The purpose of this study is to explore the association between board member functions and information disclosure levels. Based on the literature variables, such as the characteristics of the board of directors in the past, a single comprehensive indicator is established as a substitute variable for board functions, and the information disclosure evaluation results published by the Securities and Foundation are used to measure the information disclosure level of the company. This study focuses on companies listed on the Taiwan Stock Exchange from 2006 to 2010 and uses descriptive statistical analysis, univariate analysis, correlation analysis and ordered normal probability (Ordered Probit) regression for empirical analysis. The empirical results show that there is a significant positive correlation between the function of board members and the level of information disclosure. This study also conducts a sensitivity test and draws similar conclusions, showing that boards with better board member functions have higher levels of information disclosure. In addition, this study also found that higher board independence, lower director shareholding pledge ratio, higher director shareholding ratio, and directors with rich professional knowledge and practical experience can help improve the level of information disclosure. The empirical results of this study provide strong support for the "relative regulations to improve the level of information disclosure" formulated by the competent authorities in recent years.Keywords: function of board members, information disclosure, securities, foundation
Procedia PDF Downloads 973307 Leveraging Digital Transformation Initiatives and Artificial Intelligence to Optimize Readiness and Simulate Mission Performance across the Fleet
Authors: Justin Woulfe
Abstract:
Siloed logistics and supply chain management systems throughout the Department of Defense (DOD) has led to disparate approaches to modeling and simulation (M&S), a lack of understanding of how one system impacts the whole, and issues with “optimal” solutions that are good for one organization but have dramatic negative impacts on another. Many different systems have evolved to try to understand and account for uncertainty and try to reduce the consequences of the unknown. As the DoD undertakes expansive digital transformation initiatives, there is an opportunity to fuse and leverage traditionally disparate data into a centrally hosted source of truth. With a streamlined process incorporating machine learning (ML) and artificial intelligence (AI), advanced M&S will enable informed decisions guiding program success via optimized operational readiness and improved mission success. One of the current challenges is to leverage the terabytes of data generated by monitored systems to provide actionable information for all levels of users. The implementation of a cloud-based application analyzing data transactions, learning and predicting future states from current and past states in real-time, and communicating those anticipated states is an appropriate solution for the purposes of reduced latency and improved confidence in decisions. Decisions made from an ML and AI application combined with advanced optimization algorithms will improve the mission success and performance of systems, which will improve the overall cost and effectiveness of any program. The Systecon team constructs and employs model-based simulations, cutting across traditional silos of data, aggregating maintenance, and supply data, incorporating sensor information, and applying optimization and simulation methods to an as-maintained digital twin with the ability to aggregate results across a system’s lifecycle and across logical and operational groupings of systems. This coupling of data throughout the enterprise enables tactical, operational, and strategic decision support, detachable and deployable logistics services, and configuration-based automated distribution of digital technical and product data to enhance supply and logistics operations. As a complete solution, this approach significantly reduces program risk by allowing flexible configuration of data, data relationships, business process workflows, and early test and evaluation, especially budget trade-off analyses. A true capability to tie resources (dollars) to weapon system readiness in alignment with the real-world scenarios a warfighter may experience has been an objective yet to be realized to date. By developing and solidifying an organic capability to directly relate dollars to readiness and to inform the digital twin, the decision-maker is now empowered through valuable insight and traceability. This type of educated decision-making provides an advantage over the adversaries who struggle with maintaining system readiness at an affordable cost. The M&S capability developed allows program managers to independently evaluate system design and support decisions by quantifying their impact on operational availability and operations and support cost resulting in the ability to simultaneously optimize readiness and cost. This will allow the stakeholders to make data-driven decisions when trading cost and readiness throughout the life of the program. Finally, sponsors are available to validate product deliverables with efficiency and much higher accuracy than in previous years.Keywords: artificial intelligence, digital transformation, machine learning, predictive analytics
Procedia PDF Downloads 1603306 Forecasting Residential Water Consumption in Hamilton, New Zealand
Authors: Farnaz Farhangi
Abstract:
Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model
Procedia PDF Downloads 3373305 Characterising Performative Technological Innovation: Developing a Strategic Framework That Incorporates the Social Mechanisms That Promote Change within a Technological Environment
Authors: Joan Edwards, J. Lawlor
Abstract:
Technological innovation is frequently defined in terms of bringing a new invention to market through a relatively straightforward process of diffusion. In reality, this process is complex and non-linear in nature, and includes social and cognitive factors that influence the development of an emerging technology and its related market or environment. As recent studies contend technological trajectory is part of technological paradigms, which arise from the expectations and desires of industry agents and results in co-evolution, it may be realised that social factors play a major role in the development of a technology. It is conjectured that collective social behaviour is fuelled by individual motivations and expectations, which inform the possibilities and uses for a new technology. The individual outlook highlights the issues present at the micro-level of developing a technology. Accordingly, this may be zoomed out to realise how these embedded social structures, influence activities and expectations at a macro level and can ultimately strategically shape the development and use of a technology. These social factors rely on communication to foster the innovation process. As innovation may be defined as the implementation of inventions, technological change results from the complex interactions and feedback occurring within an extended environment. The framework presented in this paper, recognises that social mechanisms provide the basis for an iterative dialogue between an innovator, a new technology, and an environment - within which social and cognitive ‘identity-shaping’ elements of the innovation process occur. Identity-shaping characteristics indicate that an emerging technology has a performative nature that transforms, alters, and ultimately configures the environment to which it joins. This identity–shaping quality is termed as ‘performative’. This paper examines how technologies evolve within a socio-technological sphere and how 'performativity' facilitates the process. A framework is proposed that incorporates the performative elements which are identified as feedback, iteration, routine, expectations, and motivations. Additionally, the concept of affordances is employed to determine how the role of the innovator and technology change over time - constituting a more conducive environment for successful innovation.Keywords: affordances, framework, performativity, strategic innovation
Procedia PDF Downloads 2063304 Gravitational Water Vortex Power Plant: Experimental-Parametric Design of a Hydraulic Structure Capable of Inducing the Artificial Formation of a Gravitational Water Vortex Appropriate for Hydroelectric Generation
Authors: Henrry Vicente Rojas Asuero, Holger Manuel Benavides Muñoz
Abstract:
Approximately 80% of the energy consumed worldwide is generated from fossil sources, which are responsible for the emission of a large volume of greenhouse gases. For this reason, the global trend, at present, is the widespread use of energy produced from renewable sources. This seeks safety and diversification of energy supply, based on social cohesion, economic feasibility and environmental protection. In this scenario, small hydropower systems (P ≤ 10MW) stand out due to their high efficiency, economic competitiveness and low environmental impact. Small hydropower systems, along with wind and solar energy, are expected to represent a significant percentage of the world's energy matrix in the near term. Among the various technologies present in the state of the art, relating to small hydropower systems, is the Gravitational Water Vortex Power Plant, a recent technology that excels because of its versatility of operation, since it can operate with jumps in the range of 0.70 m-2.00 m and flow rates from 1 m3/s to 20 m3/s. Its operating system is based on the utilization of the energy of rotation contained within a large water vortex artificially induced. This paper presents the study and experimental design of an optimal hydraulic structure with the capacity to induce the artificial formation of a gravitational water vortex trough a system of easy application and high efficiency, able to operate in conditions of very low head and minimum flow. The proposed structure consists of a channel, with variable base, vortex inductor, tangential flow generator, coupled to a circular tank with a conical transition bottom hole. In the laboratory test, the angular velocity of the water vortex was related to the geometric characteristics of the inductor channel, as well as the influence of the conical transition bottom hole on the physical characteristics of the water vortex. The results show angular velocity values of greater magnitude as a function of depth, in addition the presence of the conical transition in the bottom hole of the circular tank improves the water vortex formation conditions while increasing the angular velocity values. Thus, the proposed system is a sustainable solution for the energy supply of rural areas near to watercourses.Keywords: experimental model, gravitational water vortex power plant, renewable energy, small hydropower
Procedia PDF Downloads 2903303 Aging Behaviour of 6061 Al-15 vol% SiC Composite in T4 and T6 Treatments
Authors: Melby Chacko, Jagannath Nayak
Abstract:
The aging behaviour of 6061 Al-15 vol% SiC composite was investigated using Rockwell B hardness measurement. The composite was solutionized at 350°C and quenched in water. The composite was aged at room temperature (T4 treatment) and also at 140°C, 160°C, 180°C and 200°C (T6 treatment). The natural and artificial aging behaviour of composite was studied using aging curves determined at different temperatures. The aging period for peak aging for different temperatures was identified. The time required for attaining peak aging decreased with increase in the aging temperature. The peak hardness was found to increase with increase with aging temperature and the highest peak hardness was observed at 180ºC. Beyond 180ºC the peak hardness was found to be decreasing.Keywords: 6061 Al-SiC composite, aging curve, Rockwell B hardness, T4, T6 treatments
Procedia PDF Downloads 2673302 Entrepreneurship under the Effect of Information Technology
Authors: Mohammad Hadi Khorashadi Zadeh
Abstract:
An entrepreneur is a manager or the owner of the commercial company that creates resources and money by risking and initiative. The Netpreneur is the capability to run an online business. It needs only the Connectivity. An Entrepreneur, as long as he has a service which the market demands can set up a feasible and viable trade with his Intellectual Capital as the principle input and the Connectivity Infrastructure as the only physical input. The internet is possibly the most significant revolution in science and technology that our generation could fantasize or imagine. It has introduced in various benefits to the society, culture, economics and politics. The entrepreneur is a premium member in the community. She/he provides services to the society and community including employment.Keywords: entrepreneur, Netpreneur, intellectual capital, infrastructure
Procedia PDF Downloads 3273301 Understanding Willingness to Engage in pro-Environmental Behaviour among Recreational Anglers in South Africa
Authors: Kelvin Mwaba, Nicole Strickland
Abstract:
Background and Objectives: Overexploitation and illegal fishing have been identified as the primary cause of the global decline in the fish stock. While commercial companies and small-scale fishing sectors are strictly regulated in South Africa, recreational anglers are not. The underlying assumption seems to be that recreational anglers can self-regulate. The aim of the present study was to investigate the relationship that recreational anglers have with nature and how this relationship can predict unlawful fishing practices. Methods: Using a survey design, 99 self-identified recreational anglers were recruited through convenient sampling. The anglers were accessed from fishing tackle shops around False Bay in the Western Cape province of South Africa. Data was collected using a self-administered questionnaire that consisted of pro-environmental behavior survey and the Nature Relatedness Scale. Results: Data analyses indicated that significant differences with regard to nature relatedness on the basis of participants’ age and level of education. Older and more educated anglers scored higher on nature relatedness than younger and less educated anglers. Logistic regression analysis showed that nature relatedness was a significant predictor of pro-environmental behaviors (R²= 0.061). Discussion and Conclusion: The findings of the present study provide support regarding the importance of encouraging healthy and sustainable relationships between humans and nature. Combating harmful fishing practices can achieve through understanding and promoting human care for nature among anglers and others involved in fishing.Keywords: pro-environmental, behavior, anglers, South Africa
Procedia PDF Downloads 3693300 The Application of Artificial Neural Network for Bridge Structures Design Optimization
Authors: Angga S. Fajar, A. Aminullah, J. Kiyono, R. A. Safitri
Abstract:
This paper discusses about the application of ANN for optimizing of bridge structure design. ANN has been applied in various field of science concerning prediction and optimization. The structural optimization has several benefit including accelerate structural design process, saving the structural material, and minimize self-weight and mass of structure. In this paper, there are three types of bridge structure that being optimized including PSC I-girder superstructure, composite steel-concrete girder superstructure, and RC bridge pier. The different optimization strategy on each bridge structure implement back propagation method of ANN is conducted in this research. The optimal weight and easier design process of bridge structure with satisfied error are achieved.Keywords: bridge structures, ANN, optimization, back propagation
Procedia PDF Downloads 3733299 Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming
Authors: Rohit Mittal, Bright Keswani, Amit Mithal
Abstract:
This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track.Keywords: evolution algorithm, genetic, optimization, imitation, racing, innovation, gaming
Procedia PDF Downloads 6463298 Visualization of the Mobility Patterns of Public Bike Sharing System in Seoul
Authors: Young-Hyun Seo, Hosuk Shin, Eun-Hak Lee, Seung-Young Kho
Abstract:
This study analyzed and visualized the rental and return data of the public bike sharing system in Seoul, Ttareungyi, from September 2015 to October 2017. With the surge of system users, the number of times of collection and distribution in 2017 increased by three times compared to 2016. The city plans to deploy about 20,000 public bicycles by the end of 2017 to expand the system. Based on about 3.3 million historical data, we calculated the average trip time and the number of trips from one station to another station. The mobility patterns between stations are graphically displayed using R and Tableau. Demand for public bike sharing system is heavily influenced by day and weather. As a result of plotting the number of rentals and returns of some stations on weekdays and weekends at intervals of one hour, there was a difference in rental patterns. As a result of analysis of the rental and return patterns by time of day, there were a lot of returns at the morning peak and more rentals at the afternoon peak at the center of the city. It means that stock of bikes varies largely in the time zone and public bikes should be rebalanced timely. The result of this study can be applied as a primary data to construct the demand forecasting function of the station when establishing the rebalancing strategy of the public bicycle.Keywords: demand forecasting, mobility patterns, public bike sharing system, visualization
Procedia PDF Downloads 1903297 Challenges beyond the Singapore Future-Ready School ‘LEADER’ Qualities
Authors: Zoe Boon Suan Loy
Abstract:
An exploratory research undertaken in 2000 at the beginning of the COVID-19 pandemic examined the changing roles of Singapore school leaders as they lead teachers in developing future-ready learners. While it is evident that ‘LEADER’ qualities epitomize the knowledge, competencies, and skills required, recent events in an increasing VUCA and BANI world characterized by massively disruptive Ukraine -Russian war, unabating tense US-Sino relations, issues related to sustainability, and rapid ageing will have an impact on school leadership. As an increasingly complex endeavour, this requires a relook as they lead teachers in nurturing holistically-developed future-ready students. Digitalisation, new technology, and the push for a green economy will be the key driving forces that will have an impact on job availability. Similarly, the rapid growth of artificial intelligence (AI) capabilities, including ChatGPT, will aggravate and add tremendous stress to the work of school leaders. This paper seeks to explore the key school leadership shifts required beyond the ‘LEADER’ qualities as school leaders respond to the changes, challenges, and opportunities in the 21st C new normal. The research findings for this paper are based on an exploratory qualitative study on the perceptions of 26 school leaders (vice-principals) who were attending a milestone educational leadership course at the National Institute of Education, Nanyang Technological University, Singapore. A structured questionnaire is designed to collect the data, which is then analysed using coding methodology. Broad themes on key competencies and skills of future-ready leaders in the Singapore education system are then identified. Key Findings: In undertaking their leadership roles as leaders of future-ready learners, school leaders need to demonstrate the ‘LEADER’ qualities. They need to have a long-term view, understand the educational imperatives, have a good awareness of self and the dispositions of a leader, be effective in optimizing external leverages and are clear about their role expectations. These ‘LEADER’ qualities are necessary and relevant in the post-Covid era. Beyond this, school leaders with ‘LEADER’ qualities are well supported by the Ministry of Education, which takes cognizance of emerging trends and continually review education policies to address related issues. Concluding Statement: Discussions within the education ecosystem and among other stakeholders on the implications of the use of artificial intelligence and ChatGPT on the school curriculum, including content knowledge, pedagogy, and assessment, are ongoing. This augurs well for school leaders as they undertake their responsibilities as leaders of future-ready learners.Keywords: Singapore education system, ‘LEADER’ qualities, school leadership, future-ready leaders, future-ready learners
Procedia PDF Downloads 723296 Effective Use of X-Box Kinect in Rehabilitation Centers of Riyadh
Authors: Reem Alshiha, Tanzila Saba
Abstract:
Physical rehabilitation is the process of helping people to recover and be able to go back to their former activities that have been delayed due to external factors such as car accidents, old age and victims of strokes (chronic diseases and accidents, and those related to sport activities).The cost of hiring a personal nurse or driving the patient to and from the hospital could be costly and time-consuming. Also, there are other factors to take into account such as forgetfulness, boredom and lack of motivation. In order to solve this dilemma, some experts came up with rehabilitation software to be used with Microsoft Kinect to help the patients and their families for in-home rehabilitation. In home rehabilitation software is becoming more and more popular, since it is more convenient for all parties affiliated with the patient. In contrast to the other costly market-based systems that have no portability, Microsoft’s Kinect is a portable motion sensor that reads body movements and interprets it. New software development has made rehabilitation games available to be used at home for the convenience of the patient. The game will benefit its users (rehabilitation patients) in saving time and money. There are many software's that are used with the Kinect for rehabilitation, but the software that is chosen in this research is Kinectotherapy. Kinectotherapy software is used for rehabilitation patients in Riyadh clinics to test its acceptance by patients and their physicians. In this study, we used Kinect because it was affordable, portable and easy to access in contrast to expensive market-based motion sensors. This paper explores the importance of in-home rehabilitation by using Kinect with Kinectotherapy software. The software targets both upper and lower limbs, but in this research, the main focus is on upper-limb functionality. However, the in-home rehabilitation is applicable to be used by all patients with motor disability, since the patient must have some self-reliance. The targeted subjects are patients with minor motor impairment that are somewhat independent in their mobility. The presented work is the first to consider the implementation of in-home rehabilitation with real-time feedback to the patient and physician. This research proposes the implementation of in-home rehabilitation in Riyadh, Saudi Arabia. The findings show that most of the patients are interested and motivated in using the in-home rehabilitation system in the future. The main value of the software application is due to these factors: improve patient engagement through stimulating rehabilitation, be a low cost rehabilitation tool and reduce the need for expensive one-to-one clinical contact. Rehabilitation is a crucial treatment that can improve the quality of life and confidence of the patient as well as their self-esteem.Keywords: x-box, rehabilitation, physical therapy, rehabilitation software, kinect
Procedia PDF Downloads 3423295 Role of Artificial Intelligence in Nano Proteomics
Authors: Mehrnaz Mostafavi
Abstract:
Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence
Procedia PDF Downloads 953294 The Effects of Branding on Profitability of Banks in Ghana
Authors: Evans Oteng, Clement Yeboah, Alexander Otechere-Fianko
Abstract:
In today’s economy, despite achievements and advances in the banking and financial institutions, there are challenges that will require intensive attempts on the portion of the banks in Ghana. The perceived decline in profitability of banks seems to have emanated from ineffective branding. Hence, the purpose of this quantitative descriptive-correlational study was to examine the effects of branding on the profitability of banks in Ghana. The researchers purposively sampled some 116 banks in Ghana. Self-developed Likert scale questionnaires were administered to the finance officers of the financial institutions. The results were found to be statistically significant, F (1, 114) = 4. 50, p = .036. This indicates that those banks in Ghana with good branding practices have strong marketing tools to identify and sell their products and services and, as such, have a big market share. The correlation coefficients indicate that branding has a positive correlation with profitability and are statistically significant (r=.207, p<0.05), which signifies that as branding increases, the return on equity’s profitability indicator improves and vice versa. Future researchers can consider other factors beyond branding, such as online banking. The study has significant implications for the success and competitive advantage of those banks that effective branding allows them to differentiate themselves from their competitors. A strong and unique brand identity can help a bank stand out in a crowded market, attract customers, and build customer loyalty. This can lead to increased market share and profitability. Branding influences customer perception and trust. A well-established and reputable brand can create a positive image in the minds of customers, enhancing their confidence in the bank's products and services. This can result in increased customer acquisition, customer retention and a positive impact on profitability. Banks with strong brands can leverage their reputation and customer trust to cross-sell additional products and services. When customers have confidence in the brand, they are more likely to explore and purchase other offerings from the same institution. Cross-selling can boost revenue streams and profitability. Successful branding can open up opportunities for brand extensions and diversification into new products or markets. Banks can leverage their trusted brand to introduce new financial products or expand their presence into related areas, such as insurance or investment services. This can lead to additional revenue streams and improved profitability. This study can have implications for education. Thus, increased profitability of banks due to effective branding can result in higher financial resources available for corporate social responsibility (CSR) activities. Banks may invest in educational initiatives, such as scholarships, grants, research projects, and sponsorships, to support the education sector in Ghana. Also, this study can have implications for logistics and supply chain management. Thus, strong branding can create trust and credibility among customers, leading to increased customer loyalty. This loyalty can positively impact the bank's relationships with its suppliers and logistics partners. It can result in better negotiation power, improved supplier relationships, and enhanced supply chain coordination, ultimately leading to more efficient and cost-effective logistics operations.Keywords: branding, profitability, competitors, customer loyalty, customer retention, corporate social responsibility, cost-effective, logistics operations
Procedia PDF Downloads 77