Search results for: mapping algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4637

Search results for: mapping algorithm

2117 Network Based Speed Synchronization Control for Multi-Motor via Consensus Theory

Authors: Liqin Zhang, Liang Yan

Abstract:

This paper addresses the speed synchronization control problem for a network-based multi-motor system from the perspective of cluster consensus theory. Each motor is considered as a single agent connected through fixed and undirected network. This paper presents an improved control protocol from three aspects. First, for the purpose of improving both tracking and synchronization performance, this paper presents a distributed leader-following method. The improved control protocol takes the importance of each motor’s speed into consideration, and all motors are divided into different groups according to speed weights. Specifically, by using control parameters optimization, the synchronization error and tracking error can be regulated and decoupled to some extent. The simulation results demonstrate the effectiveness and superiority of the proposed strategy. In practical engineering, the simplified models are unrealistic, such as single-integrator and double-integrator. And previous algorithms require the acceleration information of the leader available to all followers if the leader has a varying velocity, which is also difficult to realize. Therefore, the method focuses on an observer-based variable structure algorithm for consensus tracking, which gets rid of the leader acceleration. The presented scheme optimizes synchronization performance, as well as provides satisfactory robustness. What’s more, the existing algorithms can obtain a stable synchronous system; however, the obtained stable system may encounter some disturbances that may destroy the synchronization. Focus on this challenging technological problem, a state-dependent-switching approach is introduced. In the presence of unmeasured angular speed and unknown failures, this paper investigates a distributed fault-tolerant consensus tracking algorithm for a group non-identical motors. The failures are modeled by nonlinear functions, and the sliding mode observer is designed to estimate the angular speed and nonlinear failures. The convergence and stability of the given multi-motor system are proved. Simulation results have shown that all followers asymptotically converge to a consistent state when one follower fails to follow the virtual leader during a large enough disturbance, which illustrates the good performance of synchronization control accuracy.

Keywords: consensus control, distributed follow, fault-tolerant control, multi-motor system, speed synchronization

Procedia PDF Downloads 125
2116 Satellites and Drones: Integrating Two Systems for Monitoring Air Quality and the Stress of the Plants

Authors: Bernabeo R. Alberto

Abstract:

Unmanned aerial vehicles (UAV) platforms or remotely piloted aircraft system (Rpas) - with dedicated sensors - are fundamental support to the planning, running, and control of the territory in which public safety is or may be at risk for post-disaster assessments such as flooding or landslides, for searching lost people, for crime and accident scene photography, for assisting traffic control at major events, for teaching geography, history, natural science and all those subjects that require a continuous cyclical process of observation, evaluation and interpretation. Through the use of proximal remote sensing information related to anthropic landscape and nature integration, there is an opportunity to improve knowledge and management decision-making for the safeguarding of the environment, for farming, wildlife management, land management, mapping, glacier monitoring, atmospheric monitoring, for the conservation of archeological, historical, artistic and architectural sites, allowing an exact delimitation of the site in the territory. This paper will go over many different mission types. Within each mission type, it will give a broad overview to familiarize the reader but not make them an expert. It will also give detailed information on the payloads and other testing parameters the Unmanned Aerial Vehicles (UAV) use to complete a mission. The project's goal is to improve satellite maps about the stress of the plants, air quality monitoring, and related health issues.

Keywords: proximal remote sensing, remotely piloted aircraft system, risk, safety, unmanned aerial vehicle

Procedia PDF Downloads 22
2115 OCR/ICR Text Recognition Using ABBYY FineReader as an Example Text

Authors: A. R. Bagirzade, A. Sh. Najafova, S. M. Yessirkepova, E. S. Albert

Abstract:

This article describes a text recognition method based on Optical Character Recognition (OCR). The features of the OCR method were examined using the ABBYY FineReader program. It describes automatic text recognition in images. OCR is necessary because optical input devices can only transmit raster graphics as a result. Text recognition describes the task of recognizing letters shown as such, to identify and assign them an assigned numerical value in accordance with the usual text encoding (ASCII, Unicode). The peculiarity of this study conducted by the authors using the example of the ABBYY FineReader, was confirmed and shown in practice, the improvement of digital text recognition platforms developed by Electronic Publication.

Keywords: ABBYY FineReader system, algorithm symbol recognition, OCR/ICR techniques, recognition technologies

Procedia PDF Downloads 168
2114 The Different Ways to Describe Regular Languages by Using Finite Automata and the Changing Algorithm Implementation

Authors: Abdulmajid Mukhtar Afat

Abstract:

This paper aims at introducing finite automata theory, the different ways to describe regular languages and create a program to implement the subset construction algorithms to convert nondeterministic finite automata (NFA) to deterministic finite automata (DFA). This program is written in c++ programming language. The program reads FA 5tuples from text file and then classifies it into either DFA or NFA. For DFA, the program will read the string w and decide whether it is acceptable or not. If accepted, the program will save the tracking path and point it out. On the other hand, when the automation is NFA, the program will change the Automation to DFA so that it is easy to track and it can decide whether the w exists in the regular language or not.

Keywords: finite automata, subset construction, DFA, NFA

Procedia PDF Downloads 426
2113 Soil Salinity from Wastewater Irrigation in Urban Greenery

Authors: H. Nouri, S. Chavoshi Borujeni, S. Anderson, S. Beecham, P. Sutton

Abstract:

The potential risk of salt leaching through wastewater irrigation is of concern for most local governments and city councils. Despite the necessity of salinity monitoring and management in urban greenery, most attention has been on agricultural fields. This study was defined to investigate the capability and feasibility of monitoring and predicting soil salinity using near sensing and remote sensing approaches using EM38 surveys, and high-resolution multispectral image of WorldView3. Veale Gardens within the Adelaide Parklands was selected as the experimental site. The results of the near sensing investigation were validated by testing soil salinity samples in the laboratory. Over 30 band combinations forming salinity indices were tested using image processing techniques. The outcomes of the remote sensing and near sensing approaches were compared to examine whether remotely sensed salinity indicators could map and predict the spatial variation of soil salinity through a potential statistical model. Statistical analysis was undertaken using the Stata 13 statistical package on over 52,000 points. Several regression models were fitted to the data, and the mixed effect modelling was selected the most appropriate one as it takes to account the systematic observation-specific unobserved heterogeneity. Results showed that SAVI (Soil Adjusted Vegetation Index) was the only salinity index that could be considered as a predictor for soil salinity but further investigation is needed. However, near sensing was found as a rapid, practical and realistically accurate approach for salinity mapping of heterogeneous urban vegetation.

Keywords: WorldView3, remote sensing, EM38, near sensing, urban green spaces, green smart cities

Procedia PDF Downloads 162
2112 A Novel Combination Method for Computing the Importance Map of Image

Authors: Ahmad Absetan, Mahdi Nooshyar

Abstract:

The importance map is an image-based measure and is a core part of the resizing algorithm. Importance measures include image gradients, saliency and entropy, as well as high level cues such as face detectors, motion detectors and more. In this work we proposed a new method to calculate the importance map, the importance map is generated automatically using a novel combination of image edge density and Harel saliency measurement. Experiments of different type images demonstrate that our method effectively detects prominent areas can be used in image resizing applications to aware important areas while preserving image quality.

Keywords: content-aware image resizing, visual saliency, edge density, image warping

Procedia PDF Downloads 582
2111 Seismic Interpretation and Petrophysical Evaluation of SM Field, Libya

Authors: Abdalla Abdelnabi, Yousf Abushalah

Abstract:

The G Formation is a major gas producing reservoir in the SM Field, eastern, Libya. It is called G limestone because it consists of shallow marine limestone. Well data and 3D-Seismic in conjunction with the results of a previous study were used to delineate the hydrocarbon reservoir of Middle Eocene G-Formation of SM Field area. The data include three-dimensional seismic data acquired in 2009. It covers approximately an area of 75 mi² and with more than 9 wells penetrating the reservoir. Seismic data are used to identify any stratigraphic and structural and features such as channels and faults and which may play a significant role in hydrocarbon traps. The well data are used to calculation petrophysical analysis of S field. The average porosity of the Middle Eocene G Formation is very good with porosity reaching 24% especially around well W 6. Average water saturation was calculated for each well from porosity and resistivity logs using Archie’s formula. The average water saturation for the whole well is 25%. Structural mapping of top and bottom of Middle Eocene G formation revealed the highest area in the SM field is at 4800 ft subsea around wells W4, W5, W6, and W7 and the deepest point is at 4950 ft subsea. Correlation between wells using well data and structural maps created from seismic data revealed that net thickness of G Formation range from 0 ft in the north part of the field to 235 ft in southwest and south part of the field. The gas water contact is found at 4860 ft using the resistivity log. The net isopach map using both the trapezoidal and pyramid rules are used to calculate the total bulk volume. The original gas in place and the recoverable gas were calculated volumetrically to be 890 Billion Standard Cubic Feet (BSCF) and 630 (BSCF) respectively.

Keywords: 3D seismic data, well logging, petrel, kingdom suite

Procedia PDF Downloads 150
2110 Handling Patient's Supply during Inpatient Stay: Using Lean Six Sigma Techniques to Implement a Comprehensive Medication Handling Program

Authors: Erika Duggan

Abstract:

A Major Hospital had identified that there was no standard process for handling a patient’s medication that they brought with them to the hospital. It was also identified that each floor was handling the patient’s medication differently and storing it in multiple locations. Based on this disconnect many patients were leaving the hospital without their medication. The project team was tasked with creating a cohesive process to send a patient’s unneeded medication home on admission, storing any of the patient’s medication that could not be sent home, storing any of the patient’s medication for inpatient administration, and sending all of the patient’s medication home on discharge. The project team consisted of pharmacists, RNs, LPNs, members from nursing informatics and a project engineer and followed a DMAIC framework. Working together observations were performed to identify what was working and not working on the different floors which resulted in process maps. Using the multidisciplinary team, brainstorming, including affinity diagramming and other lean six sigma techniques, the best process for receiving, storing, and returning the medication was created. It was highlighted that being able to track the medication throughout the patient’s stay would be beneficial and would help make sure the medication left with the patient on discharge. Using an automated medications dispensing system would help store, and track patient’s medications. Also, the use of a specific order that would show up on the discharge instructions would assist the front line staff in retrieving the medication from a set location and sending it home with the patient. This new process will effectively streamline the admission and discharge process for patients who brought their medication with them as well as effectively tracking the medication during the patient’s stay. As well as increasing patient safety as it relates to medication administration.

Keywords: lean six sigma, medication dispensing, process improvement, process mapping

Procedia PDF Downloads 254
2109 Independent Encryption Technique for Mobile Voice Calls

Authors: Nael Hirzalla

Abstract:

The legality of some countries or agencies’ acts to spy on personal phone calls of the public became a hot topic to many social groups’ talks. It is believed that this act is considered an invasion to someone’s privacy. Such act may be justified if it is singling out specific cases but to spy without limits is very unacceptable. This paper discusses the needs for not only a simple and light weight technique to secure mobile voice calls but also a technique that is independent from any encryption standard or library. It then presents and tests one encrypting algorithm that is based of frequency scrambling technique to show fair and delay-free process that can be used to protect phone calls from such spying acts.

Keywords: frequency scrambling, mobile applications, real-time voice encryption, spying on calls

Procedia PDF Downloads 479
2108 Artificial Intelligence Ethics: What Business Leaders Need to Consider for the Future

Authors: Kylie Leonard

Abstract:

Investment in artificial intelligence (AI) can be an attractive opportunity for business leaders as there are many easy-to-see benefits. These benefits include task completion rates, overall cost, and better forecasting. Business leaders are often unaware of the challenges that can accompany AI, such as data center costs, access to data, employee acceptance, and privacy concerns. In addition to the benefits and challenges of AI, it is important to practice AI ethics to ensure the safe creation of AI. AI ethics include aspects of algorithm bias, limits in transparency, and surveillance. To be a good business leader, it is critical to address all the considerations involving the challenges of AI and AI ethics.

Keywords: artificial intelligence, artificial intelligence ethics, business leaders, business concerns

Procedia PDF Downloads 147
2107 Grid Pattern Recognition and Suppression in Computed Radiographic Images

Authors: Igor Belykh

Abstract:

Anti-scatter grids used in radiographic imaging for the contrast enhancement leave specific artifacts. Those artifacts may be visible or may cause Moiré effect when a digital image is resized on a diagnostic monitor. In this paper, we propose an automated grid artifacts detection and suppression algorithm which is still an actual problem. Grid artifacts detection is based on statistical approach in spatial domain. Grid artifacts suppression is based on Kaiser bandstop filter transfer function design and application avoiding ringing artifacts. Experimental results are discussed and concluded with description of advantages over existing approaches.

Keywords: grid, computed radiography, pattern recognition, image processing, filtering

Procedia PDF Downloads 283
2106 Similarity Based Retrieval in Case Based Reasoning for Analysis of Medical Images

Authors: M. Dasgupta, S. Banerjee

Abstract:

Content Based Image Retrieval (CBIR) coupled with Case Based Reasoning (CBR) is a paradigm that is becoming increasingly popular in the diagnosis and therapy planning of medical ailments utilizing the digital content of medical images. This paper presents a survey of some of the promising approaches used in the detection of abnormalities in retina images as well in mammographic screening and detection of regions of interest in MRI scans of the brain. We also describe our proposed algorithm to detect hard exudates in fundus images of the retina of Diabetic Retinopathy patients.

Keywords: case based reasoning, exudates, retina image, similarity based retrieval

Procedia PDF Downloads 348
2105 An Online 3D Modeling Method Based on a Lossless Compression Algorithm

Authors: Jiankang Wang, Hongyang Yu

Abstract:

This paper proposes a portable online 3D modeling method. The method first utilizes a depth camera to collect data and compresses the depth data using a frame-by-frame lossless data compression method. The color image is encoded using the H.264 encoding format. After the cloud obtains the color image and depth image, a 3D modeling method based on bundlefusion is used to complete the 3D modeling. The results of this study indicate that this method has the characteristics of portability, online, and high efficiency and has a wide range of application prospects.

Keywords: 3D reconstruction, bundlefusion, lossless compression, depth image

Procedia PDF Downloads 82
2104 Descent Algorithms for Optimization Algorithms Using q-Derivative

Authors: Geetanjali Panda, Suvrakanti Chakraborty

Abstract:

In this paper, Newton-like descent methods are proposed for unconstrained optimization problems, which use q-derivatives of the gradient of an objective function. First, a local scheme is developed with alternative sufficient optimality condition, and then the method is extended to a global scheme. Moreover, a variant of practical Newton scheme is also developed introducing a real sequence. Global convergence of these schemes is proved under some mild conditions. Numerical experiments and graphical illustrations are provided. Finally, the performance profiles on a test set show that the proposed schemes are competitive to the existing first-order schemes for optimization problems.

Keywords: Descent algorithm, line search method, q calculus, Quasi Newton method

Procedia PDF Downloads 398
2103 Radio-Frequency Technologies for Sensing and Imaging

Authors: Cam Nguyen

Abstract:

Rapid, accurate, and safe sensing and imaging of physical quantities or structures finds many applications and is of significant interest to society. Sensing and imaging using radio-frequency (RF) techniques, particularly, has gone through significant development and subsequently established itself as a unique territory in the sensing world. RF sensing and imaging has played a critical role in providing us many sensing and imaging abilities beyond our human capabilities, benefiting both civilian and military applications - for example, from sensing abnormal conditions underneath some structures’ surfaces to detection and classification of concealed items, hidden activities, and buried objects. We present the developments of several sensing and imaging systems implementing RF technologies like ultra-wide band (UWB), synthetic-pulse, and interferometry. These systems are fabricated completely using RF integrated circuits. The UWB impulse system operates over multiple pulse durations from 450 to 1170 ps with 5.5-GHz RF bandwidth. It performs well through tests of various samples, demonstrating its usefulness for subsurface sensing. The synthetic-pulse system operating from 0.6 to 5.6 GHz can assess accurately subsurface structures. The synthetic-pulse system operating from 29.72-37.7 GHz demonstrates abilities for various surface and near-surface sensing such as profile mapping, liquid-level monitoring, and anti-personnel mine locating. The interferometric system operating at 35.6 GHz demonstrates its multi-functional capability for measurement of displacements and slow velocities. These RF sensors are attractive and useful for various surface and subsurface sensing applications. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: RF sensors, radars, surface sensing, subsurface sensing

Procedia PDF Downloads 316
2102 Automated Natural Hazard Zonation System with Internet-SMS Warning: Distributed GIS for Sustainable Societies Creating Schema and Interface for Mapping and Communication

Authors: Devanjan Bhattacharya, Jitka Komarkova

Abstract:

The research describes the implementation of a novel and stand-alone system for dynamic hazard warning. The system uses all existing infrastructure already in place like mobile networks, a laptop/PC and the small installation software. The geospatial dataset are the maps of a region which are again frugal. Hence there is no need to invest and it reaches everyone with a mobile. A novel architecture of hazard assessment and warning introduced where major technologies in ICT interfaced to give a unique WebGIS based dynamic real time geohazard warning communication system. A never before architecture introduced for integrating WebGIS with telecommunication technology. Existing technologies interfaced in a novel architectural design to address a neglected domain in a way never done before–through dynamically updatable WebGIS based warning communication. The work publishes new architecture and novelty in addressing hazard warning techniques in sustainable way and user friendly manner. Coupling of hazard zonation and hazard warning procedures into a single system has been shown. Generalized architecture for deciphering a range of geo-hazards has been developed. Hence the developmental work presented here can be summarized as the development of internet-SMS based automated geo-hazard warning communication system; integrating a warning communication system with a hazard evaluation system; interfacing different open-source technologies towards design and development of a warning system; modularization of different technologies towards development of a warning communication system; automated data creation, transformation and dissemination over different interfaces. The architecture of the developed warning system has been functionally automated as well as generalized enough that can be used for any hazard and setup requirement has been kept to a minimum.

Keywords: geospatial, web-based GIS, geohazard, warning system

Procedia PDF Downloads 408
2101 Taleb's Complexity Theory Concept of 'Antifragility' Has a Significant Contribution to Make to Positive Psychology as Applied to Wellbeing

Authors: Claudius Peter Van Wyk

Abstract:

Given the increasingly manifest phenomena, as described in complexity theory, of volatility, uncertainty, complexity and ambiguity (VUCA), Taleb's notion of 'antifragility, has a significant contribution to make to positive psychology applied to wellbeing. Antifragility is argued to be fundamentally different from the concepts of resiliency; as the ability to recover from failure, and robustness; as the ability to resist failure. Rather it describes the capacity to reorganise in the face of stress in such a way as to cope more effectively with systemic challenges. The concept, which has been applied in disciplines ranging from physics, molecular biology, planning, engineering, and computer science, can now be considered for its application in individual human and social wellbeing. There are strong correlations to Antonovsky's model of 'salutogenesis' in which an attitude and competencies are developed of transforming burdening factors into greater resourcefulness. We demonstrate, from the perspective of neuroscience, how technology measuring nervous system coherence can be coupled to acquired psychodynamic approaches to not only identify contextual stressors, utilise biofeedback instruments for facilitating greater coherence, but apply these insights to specific life stressors that compromise well-being. Employing an on-going case study with BMW South Africa, the neurological mapping is demonstrated together with 'reframing' and emotional anchoring techniques from neurolinguistic programming. The argument is contextualised in the discipline of psychoneuroimmunology which describes the stress pathways from the CNS and endocrine systems and their impact on immune function and the capacity to restore homeostasis.

Keywords: antifragility, complexity, neuroscience, psychoneuroimmunology, salutogenesis, volatility

Procedia PDF Downloads 376
2100 Community Engagement Policy for Decreasing Childhood Lead Poisoning in Philadelphia

Authors: Hasibe Caballero-Gomez, Richard Pepino

Abstract:

Childhood lead poisoning is an issue that continues to plague major U.S. cities. Lead poisoning has been linked to decreases in academic achievement and IQ at levels as low as 5 ug/dL. Despite efforts from the Philadelphia Health Department to curtail systemic childhood lead poisoning, children continue to be identified with elevated blood lead levels (EBLLs) above the CDC reference level for diagnosis. This problem disproportionately affects low-income Black communities. At the moment, remediation is costly, and with the current policies in place, comprehensive remediation seems unrealistic. This research investigates community engagement policy and the ways pre-exisiting resources in target communities can be adjusted to decrease childhood lead poisoning. The study was done with two methods: content analysis and case studies. The content analysis includes 12 interviews from stakeholders and five published policy recommendations. The case studies focus on Baltimore, Chicago, Rochester, and St. Louis, four cities with significant childhood lead poisoning. Target communities were identified by mapping five factors that indicate a higher risk for lead poisoning. Seven priority zipcodes were identified for the model developed in this study. For these urban centers, 28 policy solutions and suggestions were identified, with three being identified at least four times in the content analysis and case studies. These three solutions create an interdependent model that offers increased community awareness and engagement with the issue that could potentially improve health and social outcomes for at-risk children.

Keywords: at-risk populations, community engagement, environmental justice, policy translation

Procedia PDF Downloads 120
2099 A Nonlinear Parabolic Partial Differential Equation Model for Image Enhancement

Authors: Tudor Barbu

Abstract:

We present a robust nonlinear parabolic partial differential equation (PDE)-based denoising scheme in this article. Our approach is based on a second-order anisotropic diffusion model that is described first. Then, a consistent and explicit numerical approximation algorithm is constructed for this continuous model by using the finite-difference method. Finally, our restoration experiments and method comparison, which prove the effectiveness of this proposed technique, are discussed in this paper.

Keywords: anisotropic diffusion, finite differences, image denoising and restoration, nonlinear PDE model, anisotropic diffusion, numerical approximation schemes

Procedia PDF Downloads 313
2098 The Effect of Artificial Intelligence on Civil Engineering Outputs and Designs

Authors: Mina Youssef Makram Ibrahim

Abstract:

Engineering identity contributes to the professional and academic sustainability of female engineers. Recognizability is an important factor that shapes an engineer's identity. People who are deprived of real recognition often fail to create a positive identity. This study draws on Hornet’s recognition theory to identify factors that influence female civil engineers' sense of recognition. Over the past decade, a survey was created and distributed to 330 graduate students in the Department of Civil, Civil and Environmental Engineering at Iowa State University. Survey items include demographics, perceptions of a civil engineer's identity, and factors that influence recognition of a civil engineer's identity, such as B. Opinions about society and family. Descriptive analysis of survey responses revealed that perceptions of civil engineering varied significantly. The definitions of civil engineering provided by participants included the terms structure, design and infrastructure. Almost half of the participants said the main reason for studying Civil Engineering was their interest in the subject, and the majority said they were proud to be a civil engineer. Many study participants reported that their parents viewed them as civil engineers. Institutional and operational treatment was also found to have a significant impact on the recognition of women civil engineers. Almost half of the participants reported feeling isolated or ignored at work because of their gender. This research highlights the importance of recognition in developing the identity of women engineers.

Keywords: civil service, hiring, merit, policing civil engineering, construction, surveying, mapping, pile civil service, Kazakhstan, modernization, a national model of civil service, civil service reforms, bureaucracy civil engineering, gender, identity, recognition

Procedia PDF Downloads 62
2097 Mapping Structurally Significant Areas of G-CSF during Thermal Degradation with NMR

Authors: Mark-Adam Kellerman

Abstract:

Proteins are capable of exploring vast mutational spaces. This makes it difficult for protein engineers to devise rational methods to improve stability and function via mutagenesis. Deciding which residues to mutate requires knowledge of the characteristics they elicit. We probed the characteristics of residues in granulocyte-colony stimulating factor (G-CSF) using a thermal melt (from 295K to 323K) to denature it in a 700 MHz Bruker spectrometer. These characteristics included dynamics, micro-environmental changes experienced/ induced during denaturing and structure-function relationships. 15N-1H HSQC experiments were performed at 2K increments along with this thermal melt. We observed that dynamic residues that also undergo a lot of change in their microenvironment were predominantly in unstructured regions. Moreover, we were able to identify four residues (G4, A6, T133 and Q134) that we class as high priority targets for mutagenesis, given that they all appear in both the top 10% of measures for environmental changes and dynamics (∑Δ and ∆PI). We were also able to probe these NMR observables and combine them with molecular dynamics (MD) to elucidate what appears to be an opening motion of G-CSFs binding site III. V48 appears to be pivotal to this opening motion, which also seemingly distorts the loop region between helices A and B. This observation is in agreement with previous findings that the conformation of this loop region becomes altered in an aggregation-prone state of G-CSF. Hence, we present here an approach to profile the characteristics of residues in order to highlight their potential as rational mutagenesis targets and their roles in important conformational changes. These findings present not only an opportunity to effectively make biobetters, but also open up the possibility to further understand epistasis and machine learn residue behaviours.

Keywords: protein engineering, rational mutagenesis, NMR, molecular dynamics

Procedia PDF Downloads 255
2096 A Double Ended AC Series Arc Fault Location Algorithm Based on Currents Estimation and a Fault Map Trace Generation

Authors: Edwin Calderon-Mendoza, Patrick Schweitzer, Serge Weber

Abstract:

Series arc faults appear frequently and unpredictably in low voltage distribution systems. Many methods have been developed to detect this type of faults and commercial protection systems such AFCI (arc fault circuit interrupter) have been used successfully in electrical networks to prevent damage and catastrophic incidents like fires. However, these devices do not allow series arc faults to be located on the line in operating mode. This paper presents a location algorithm for series arc fault in a low-voltage indoor power line in an AC 230 V-50Hz home network. The method is validated through simulations using the MATLAB software. The fault location method uses electrical parameters (resistance, inductance, capacitance, and conductance) of a 49 m indoor power line. The mathematical model of a series arc fault is based on the analysis of the V-I characteristics of the arc and consists basically of two antiparallel diodes and DC voltage sources. In a first step, the arc fault model is inserted at some different positions across the line which is modeled using lumped parameters. At both ends of the line, currents and voltages are recorded for each arc fault generation at different distances. In the second step, a fault map trace is created by using signature coefficients obtained from Kirchhoff equations which allow a virtual decoupling of the line’s mutual capacitance. Each signature coefficient obtained from the subtraction of estimated currents is calculated taking into account the Discrete Fast Fourier Transform of currents and voltages and also the fault distance value. These parameters are then substituted into Kirchhoff equations. In a third step, the same procedure described previously to calculate signature coefficients is employed but this time by considering hypothetical fault distances where the fault can appear. In this step the fault distance is unknown. The iterative calculus from Kirchhoff equations considering stepped variations of the fault distance entails the obtaining of a curve with a linear trend. Finally, the fault distance location is estimated at the intersection of two curves obtained in steps 2 and 3. The series arc fault model is validated by comparing current registered from simulation with real recorded currents. The model of the complete circuit is obtained for a 49m line with a resistive load. Also, 11 different arc fault positions are considered for the map trace generation. By carrying out the complete simulation, the performance of the method and the perspectives of the work will be presented.

Keywords: indoor power line, fault location, fault map trace, series arc fault

Procedia PDF Downloads 137
2095 A 7 Dimensional-Quantitative Structure-Activity Relationship Approach Combining Quantum Mechanics Based Grid and Solvation Models to Predict Hotspots and Kinetic Properties of Mutated Enzymes: An Enzyme Engineering Perspective

Authors: R. Pravin Kumar, L. Roopa

Abstract:

Enzymes are molecular machines used in various industries such as pharmaceuticals, cosmetics, food and animal feed, paper and leather processing, biofuel, and etc. Nevertheless, this has been possible only by the breath-taking efforts of the chemists and biologists to evolve/engineer these mysterious biomolecules to work the needful. Main agenda of this enzyme engineering project is to derive screening and selection tools to obtain focused libraries of enzyme variants with desired qualities. The methodologies for this research include the well-established directed evolution, rational redesign and relatively less established yet much faster and accurate insilico methods. This concept was initiated as a Receptor Rependent-4Dimensional Quantitative Structure Activity Relationship (RD-4D-QSAR) to predict kinetic properties of enzymes and extended here to study transaminase by a 7D QSAR approach. Induced-fit scenarios were explored using Quantum Mechanics/Molecular Mechanics (QM/MM) simulations which were then placed in a grid that stores interactions energies derived from QM parameters (QMgrid). In this study, the mutated enzymes were immersed completely inside the QMgrid and this was combined with solvation models to predict descriptors. After statistical screening of descriptors, QSAR models showed > 90% specificity and > 85% sensitivity towards the experimental activity. Mapping descriptors on the enzyme structure revealed hotspots important to enhance the enantioselectivity of the enzyme.

Keywords: QMgrid, QM/MM simulations, RD-4D-QSAR, transaminase

Procedia PDF Downloads 137
2094 Capacity Optimization in Cooperative Cognitive Radio Networks

Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis

Abstract:

Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.

Keywords: cooperative networks, normalized capacity, sensing time

Procedia PDF Downloads 633
2093 On Improving Breast Cancer Prediction Using GRNN-CP

Authors: Kefaya Qaddoum

Abstract:

The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.

Keywords: neural network, conformal prediction, cancer classification, regression

Procedia PDF Downloads 291
2092 Market Solvency Capital Requirement Minimization: How Non-linear Solvers Provide Portfolios Complying with Solvency II Regulation

Authors: Abraham Castellanos, Christophe Durville, Sophie Echenim

Abstract:

In this article, a portfolio optimization problem is performed in a Solvency II context: it illustrates how advanced optimization techniques can help to tackle complex operational pain points around the monitoring, control, and stability of Solvency Capital Requirement (SCR). The market SCR of a portfolio is calculated as a combination of SCR sub-modules. These sub-modules are the results of stress-tests on interest rate, equity, property, credit and FX factors, as well as concentration on counter-parties. The market SCR is non convex and non differentiable, which does not make it a natural optimization criteria candidate. In the SCR formulation, correlations between sub-modules are fixed, whereas risk-driven portfolio allocation is usually driven by the dynamics of the actual correlations. Implementing a portfolio construction approach that is efficient on both a regulatory and economic standpoint is not straightforward. Moreover, the challenge for insurance portfolio managers is not only to achieve a minimal SCR to reduce non-invested capital but also to ensure stability of the SCR. Some optimizations have already been performed in the literature, simplifying the standard formula into a quadratic function. But to our knowledge, it is the first time that the standard formula of the market SCR is used in an optimization problem. Two solvers are combined: a bundle algorithm for convex non- differentiable problems, and a BFGS (Broyden-Fletcher-Goldfarb- Shanno)-SQP (Sequential Quadratic Programming) algorithm, to cope with non-convex cases. A market SCR minimization is then performed with historical data. This approach results in significant reduction of the capital requirement, compared to a classical Markowitz approach based on the historical volatility. A comparative analysis of different optimization models (equi-risk-contribution portfolio, minimizing volatility portfolio and minimizing value-at-risk portfolio) is performed and the impact of these strategies on risk measures including market SCR and its sub-modules is evaluated. A lack of diversification of market SCR is observed, specially for equities. This was expected since the market SCR strongly penalizes this type of financial instrument. It was shown that this direct effect of the regulation can be attenuated by implementing constraints in the optimization process or minimizing the market SCR together with the historical volatility, proving the interest of having a portfolio construction approach that can incorporate such features. The present results are further explained by the Market SCR modelling.

Keywords: financial risk, numerical optimization, portfolio management, solvency capital requirement

Procedia PDF Downloads 117
2091 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates

Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe

Abstract:

Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.

Keywords: machine learning, MTB, WGS, drug resistant TB

Procedia PDF Downloads 52
2090 Survey on Big Data Stream Classification by Decision Tree

Authors: Mansoureh Ghiasabadi Farahani, Samira Kalantary, Sara Taghi-Pour, Mahboubeh Shamsi

Abstract:

Nowadays, the development of computers technology and its recent applications provide access to new types of data, which have not been considered by the traditional data analysts. Two particularly interesting characteristics of such data sets include their huge size and streaming nature .Incremental learning techniques have been used extensively to address the data stream classification problem. This paper presents a concise survey on the obstacles and the requirements issues classifying data streams with using decision tree. The most important issue is to maintain a balance between accuracy and efficiency, the algorithm should provide good classification performance with a reasonable time response.

Keywords: big data, data streams, classification, decision tree

Procedia PDF Downloads 521
2089 Litho-Structural Variations and Gold Mineralization around Wonaka Schist Belt, North West Nigeria

Authors: Umar Sambo Umar, Ahmad Isah Haruna, Abubakar Sadik Maigari, Muhammad Bello Abubakar

Abstract:

Schist belts in Nigeria occur prominently west of longitude 80 E and sporadic to the east, they are upper Proterozioc low-medium grade deformed metasediments and metavolcanics that were intruded by Pan-African granitoids. The Wonaka schist belt, though reportedly distinctive in composition and metamorphism, is the least understood; the host for primary gold were not defined, structures which may control primary enrichment have not been delineated. The aim of this work is to determine the relationship between litho-structures and the gold around Wonaka schist belt through geological field mapping, petrographic studies and structural data analysis via ArcGis 10.2, Surfer 11.0 and Stereopro 2.0. The results show that the major rock types are mica schist and migmatites, muscovites detected during microstructural analysis suggests low-grade metamorphism in the metapelites. The shear zones identified were trending North Northeast – South Southwest (NNE-SSW), fractures trend mostly Northeast-Southwest (NE-SW) perpendicular to planes of gneissic foliations, these conform to the late Pan-African deformational episode. Pegmatite lodes, net self-cross cutting quartz veins as well as the quartz stringers hosted by both migmatites and schist are delineated as targets for primary gold mineralization, while major confluences of the streams serve as zones for secondary (placer) gold targets since the streams are dendritic and intermittent.

Keywords: gold mineralization, Nigeria, migmatites, Wonaka schist belt

Procedia PDF Downloads 196
2088 Model Predictive Control of Turbocharged Diesel Engine with Exhaust Gas Recirculation

Authors: U. Yavas, M. Gokasan

Abstract:

Control of diesel engine’s air path has drawn a lot of attention due to its multi input-multi output, closed coupled, non-linear relation. Today, precise control of amount of air to be combusted is a must in order to meet with tight emission limits and performance targets. In this study, passenger car size diesel engine is modeled by AVL Boost RT, and then simulated with standard, industry level PID controllers. Finally, linear model predictive control is designed and simulated. This study shows the importance of modeling and control of diesel engines with flexible algorithm development in computer based systems.

Keywords: predictive control, engine control, engine modeling, PID control, feedforward compensation

Procedia PDF Downloads 636