Search results for: erosion modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4391

Search results for: erosion modeling

1901 Modeling Food Popularity Dependencies Using Social Media Data

Authors: DEVASHISH KHULBE, MANU PATHAK

Abstract:

The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.

Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses

Procedia PDF Downloads 118
1900 Numerical Modeling on the Vehicle Interior Noise Produced by Rain-the-Roof Excitation

Authors: Zilong Peng, Jun Fan

Abstract:

With the improvement of the living standards, the requirement on the acoustic comfort of the vehicle interior environment is becoming higher. The rain-the-roof producing interior noise is a common phenomenon for the vehicle, which usually discourages the conversation, especially for the heavy rain. This paper presents some numerical results about the rain-the-roof noise. The impact of each water drop is modeled as a short pulse, and the excitation locations on the roof are generated randomly. The vehicle body is simplified to a box closed with some certain-thickness shells. According to the main frequency components of the rain excitation, the analyzing frequency range is divided as low, high and middle frequency domains, which makes the vehicle body are modeled using finite element method (FEM), statistical energy analysis (SEA) and hybrid FE-SEA method, respectively. Furthermore, the effect of spatial distribution density and size of the rain on the sound pressure level are also discussed. These results may provide a guide for designing a more silent vehicle in the special weather.

Keywords: rain-the-roof noise, vehicle, finite element method, statistical energy analysis

Procedia PDF Downloads 203
1899 Total Quality Management and Competitive Advantage in Companies

Authors: Malki Fatima Zahra Nadia, Kellal Cheiimaa, Brahimi Houria

Abstract:

Total Quality Management (TQM) is one of the most important modern management systems in marketing, that help organizations to survive and remain competitive in the dynamic market with frequent changes. It assists them in gaining a competitive advantage, growth, and excellence compared to their competitors. To understand the impact of TQM on competitive advantage in economic companies, a study was conducted in Ooredoo Telecommunications Company. A questionnaire was designed and distributed to OOredoo' 75 employees in each of the departments of leadership, quality assurance, quality control, research and development, production, customer service, Similarly, resulting in the retrieval of 72 questionnaires. To analyze the descriptive results of the study, the SPSS software version 25 was used. Additionally, Structural Equation Modeling (SEM) with the help of Smart Pls4 software was utilized to test the study's hypotheses. The study concluded that there is an impact between total quality management and competitive advantage in Ooredoo company to different degrees. On this basis, the study recommended the need to implement the total quality management system at the level of all organizations and in various fields.

Keywords: total quality management, ISO system, competitive advantage, competitive strategies

Procedia PDF Downloads 75
1898 Elastic Constants of Fir Wood Using Ultrasound and Compression Tests

Authors: Ergun Guntekin

Abstract:

Elastic constants of Fir wood (Abies cilicica) have been investigated by means of ultrasound and compression tests. Three modulus of elasticity in principal directions (EL, ER, ET), six Poisson’s ratios (ʋLR, ʋLT, ʋRT, ʋTR, ʋRL, ʋTL) and three shear modules (GLR, GRT, GLT) were determined. 20 x 20 x 60 mm samples were conditioned at 65 % relative humidity and 20ºC before testing. Three longitudinal and six shear wave velocities propagating along the principal axes of anisotropy, and additionally, three quasi-shear wave velocities at 45° angle with respect to the principal axes of anisotropy were measured. 2.27 MHz longitudinal and 1 MHz shear sensors were used for obtaining sound velocities. Stress-strain curves of the samples in compression tests were obtained using bi-axial extensometer in order to calculate elastic constants. Test results indicated that most of the elastic constants determined in the study are within the acceptable range. Although elastic constants determined from ultrasound are usually higher than those determined from compression tests, the values of EL and GLR determined from compression tests were higher in the study. The results of this study can be used in the numerical modeling of elements or systems under load using Fir wood.

Keywords: compression tests, elastic constants, fir wood, ultrasound

Procedia PDF Downloads 219
1897 Estimation of Respiratory Parameters in Pressure Controlled Ventilation System with Double Lungs on Secretion Clearance

Authors: Qian Zhang, Dongkai Shen, Yan Shi

Abstract:

A new mechanical ventilator with automatic secretion clearance function can improve the secretion clearance safely and efficiently. However, in recent modeling studies on various mechanical ventilators, it was considered that human had one lung, and the coupling effect of double lungs was never illustrated. In this paper, to expound the coupling effect of double lungs, a mathematical model of a ventilation system of a bi-level positive airway pressure (BiPAP) controlled ventilator with secretion clearance was set up. Moreover, an experimental study about the mechanical ventilation system of double lungs on BiPAP ventilator was conducted to verify the mathematical model. Finally, the coupling effect of double lungs of the mathematical ventilation was studied by simulation and orthogonal experimental design. This paper adds to previous studies and can be referred to optimization methods in medical researches.

Keywords: double lungs, coupling effect, secretion clearance, orthogonal experimental design

Procedia PDF Downloads 609
1896 SVM-Based Modeling of Mass Transfer Potential of Multiple Plunging Jets

Authors: Surinder Deswal, Mahesh Pal

Abstract:

The paper investigates the potential of support vector machines based regression approach to model the mass transfer capacity of multiple plunging jets, both vertical (θ = 90°) and inclined (θ = 60°). The data set used in this study consists of four input parameters with a total of eighty eight cases. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 (root mean square error values of 0.0025 and 0.0020) were achieved by using polynomial and radial basis kernel functions based support vector regression respectively. Results suggest an improved performance by radial basis function in comparison to polynomial kernel based support vector machines. The estimated overall mass transfer coefficient, by both the kernel functions, is in good agreement with actual experimental values (within a scatter of ±15 %); thereby suggesting the utility of support vector machines based regression approach.

Keywords: mass transfer, multiple plunging jets, support vector machines, ecological sciences

Procedia PDF Downloads 464
1895 Laser Additive Manufacturing of Carbon Nanotube-Reinforced Polyamide 12 Composites

Authors: Kun Zhou

Abstract:

Additive manufacturing has emerged as a disruptive technology that is capable of manufacturing products with complex geometries through an accumulation of material feedstock in a layer-by-layer fashion. Laser additive manufacturing such as selective laser sintering has excellent printing resolution, high printing speed and robust part strength, and has led to a widespread adoption in the aerospace, automotive and biomedical industries. This talk highlights and discusses the recent work we have undertaken in the development of carbon nanotube-reinforced polyamide 12 (CNT/PA12) composites printed using laser additive manufacturing. Numerical modelling studies have been conducted to simulate various processes within laser additive manufacturing of CNT/PA12 composites, and extensive experimental work has been carried out to investigate the mechanical and functional properties of the printed parts. The results from these studies grant a deeper understanding of the intricate mechanisms occurring within each process and enables an accurate optimization of process parameters for the CNT/PA12 and other polymer composites.

Keywords: CNT/PA12 composites, laser additive manufacturing, process parameter optimization, numerical modeling

Procedia PDF Downloads 153
1894 Mathematical Modeling and Analysis of Forced Vibrations in Micro-Scale Microstretch Thermoelastic Simply Supported Beam

Authors: Geeta Partap, Nitika Chugh

Abstract:

The present paper deals with the flexural vibrations of homogeneous, isotropic, generalized micropolar microstretch thermoelastic thin Euler-Bernoulli beam resonators, due to Exponential time varying load. Both the axial ends of the beam are assumed to be at simply supported conditions. The governing equations have been solved analytically by using Laplace transforms technique twice with respect to time and space variables respectively. The inversion of Laplace transform in time domain has been performed by using the calculus of residues to obtain deflection.The analytical results have been numerically analyzed with the help of MATLAB software for magnesium like material. The graphical representations and interpretations have been discussed for Deflection of beam under Simply Supported boundary condition and for distinct considered values of time and space as well. The obtained results are easy to implement for engineering analysis and designs of resonators (sensors), modulators, actuators.

Keywords: microstretch, deflection, exponential load, Laplace transforms, residue theorem, simply supported

Procedia PDF Downloads 312
1893 Modeling of Flows in Porous Materials under Pressure Difference

Authors: Nicoleta O. Tanase, Ciprian S. Mateescu

Abstract:

This paper is concerned with the numerical study of the flow through porous media. The purpose of this project is to determine the permeability of a medium and its connection to porosity to be able to identify how the permeability of said medium can be altered without changing the porosity. The numerical simulations are performed in 2D flow configurations with the laminar solvers implemented in Workbench - ANSYS Fluent. The direction of flow of the working fluid (water) is axial, from left to right, and in steady-state conditions. The working fluid is water. The 2D geometry is a channel with 300 mm length and 30 mm width, with a different number of circles that are positioned differently, modelling a porous medium. The permeability of a porous medium can be altered without changing the porosity by positioning the circles differently (by missing the same number of circles) in the flow domain, which induces a change in the flow spectrum. The main goal of the paper is to investigate the flow pattern and permeability under controlled perturbations induced by the variation of velocity and porous medium. Numerical solutions provide insight into all flow magnitudes, one of the most important being the WSS distribution on the circles.

Keywords: CFD, porous media, permeability, flow spectrum

Procedia PDF Downloads 56
1892 Investigation of Soil Slopes Stability

Authors: Nima Farshidfar, Navid Daryasafar

Abstract:

In this paper, the seismic stability of reinforced soil slopes is studied using pseudo-dynamic analysis. Equilibrium equations that are applicable to the every kind of failure surface are written using Horizontal Slices Method. In written equations, the balance of the vertical and horizontal forces and moment equilibrium is fully satisfied. Failure surface is assumed to be log-spiral, and non-linear equilibrium equations obtained for the system are solved using Newton-Raphson Method. Earthquake effects are applied as horizontal and vertical pseudo-static coefficients to the problem. To solve this problem, a code was developed in MATLAB, and the critical failure surface is calculated using genetic algorithm. At the end, comparing the results obtained in this paper, effects of various parameters and the effect of using pseudo - dynamic analysis in seismic forces modeling is presented.

Keywords: soil slopes, pseudo-dynamic, genetic algorithm, optimization, limit equilibrium method, log-spiral failure surface

Procedia PDF Downloads 339
1891 Experimental Assessment of Micromechanical Models for Mechanical Properties of Recycled Short Fiber Composites

Authors: Mohammad S. Rouhi, Magdalena Juntikka

Abstract:

Processing of polymer fiber composites has a remarkable influence on their mechanical performance. These mechanical properties are even more influenced when using recycled reinforcement. Therefore, we place particular attention on the evaluation of micromechanical models to estimate the mechanical properties and compare them against the experimental results of the manufactured composites. For the manufacturing process, an epoxy matrix and carbon fiber production cut-offs as reinforcing material are incorporated using a vacuum infusion process. In addition, continuous textile reinforcement in combination with the epoxy matrix is used as reference material to evaluate the kick-down in mechanical performance of the recycled composite. The experimental results show less degradation of the composite stiffness compared to the strength properties. Observations from the modeling also show the same trend as the error between the theoretical and experimental results is lower for stiffness comparisons than the strength calculations. Yet still, good mechanical performance for specific applications can be expected from these materials.

Keywords: composite recycling, carbon fibers, mechanical properties, micromechanics

Procedia PDF Downloads 162
1890 Lake of Neuchatel: Effect of Increasing Storm Events on Littoral Transport and Coastal Structures

Authors: Charlotte Dreger, Erik Bollaert

Abstract:

This paper presents two environmentally-friendly coastal structures realized on the Lake of Neuchâtel. Both structures reflect current environmental issues of concern on the lake and have been strongly affected by extreme meteorological conditions between their period of design and their actual operational period. The Lake of Neuchatel is one of the biggest Swiss lakes and measures around 38 km in length and 8.2 km in width, for a maximum water depth of 152 m. Its particular topographical alignment, situated in between the Swiss Plateau and the Jura mountains, combines strong winds and large fetch values, resulting in significant wave heights during storm events at both north-east and south-west lake extremities. In addition, due to flooding concerns, historically, lake levels have been lowered by several meters during the Jura correction works in the 19th and 20th century. Hence, during storm events, continuous erosion of the vulnerable molasse shorelines and sand banks generate frequent and abundant littoral transport from the center of the lake to its extremities. This phenomenon does not only cause disturbances of the ecosystem, but also generates numerous problems at natural or man-made infrastructures located along the shorelines, such as reed plants, harbor entrances, canals, etc. A first example is provided at the southwestern extremity, near the city of Yverdon, where an ensemble of 11 small islands, the Iles des Vernes, have been artificially created in view of enhancing biological conditions and food availability for bird species during their migration process, replacing at the same time two larger islands that were affected by lack of morphodynamics and general vegetalization of their surfaces. The article will present the concept and dimensioning of these islands based on 2D numerical modelling, as well as the realization and follow-up campaigns. In particular, the influence of several major storm events that occurred immediately after the works will be pointed out. Second, a sediment retention dike is discussed at the northeastern extremity, at the entrance of the Canal de la Broye into the lake. This canal is heavily used for navigation and suffers from frequent and significant sedimentation at its outlet. The new coastal structure has been designed to minimize sediment deposits around the exutory of the canal into the lake, by retaining the littoral transport during storm events. The article will describe the basic assumptions used to design the dike, as well as the construction works and follow-up campaigns. Especially the huge influence of changing meteorological conditions on the littoral transport of the Lake of Neuchatel since project design ten years ago will be pointed out. Not only the intensity and frequency of storm events are increasing, but also the main wind directions alter, affecting in this way the efficiency of the coastal structure in retaining the sediments.

Keywords: meteorological evolution, sediment transport, lake of Neuchatel, numerical modelling, environmental measures

Procedia PDF Downloads 86
1889 Modeling Water Resources Carrying Capacity, Optimizing Water Treatment, Smart Water Management, and Conceptualizing a Watershed Management Approach

Authors: Pius Babuna

Abstract:

Sustainable water use is important for the existence of the human race. Water resources carrying capacity (WRCC) measures the sustainability of water use; however, the calculation and optimization of WRCC remain challenging. This study used a mathematical model (the Logistics Growth of Water Resources -LGWR) and a linear objective function to model water sustainability. We tested the validity of the models using data from Ghana. Total freshwater resources, water withdrawal, and population data were used in MATLAB. The results show that the WRCC remains sustainable until the year 2132 ±18, when half of the total annual water resources will be used. The optimized water treatment cost suggests that Ghana currently wastes GHȼ 1115.782± 50 cedis (~$182.21± 50) per water treatment plant per month or ~ 0.67 million gallons of water in an avoidable loss. Adopting an optimized water treatment scheme and a watershed management approach will help sustain the WRCC.

Keywords: water resources carrying capacity, smart water management, optimization, sustainable water use, water withdrawal

Procedia PDF Downloads 88
1888 Investigation of the Multiaxial Pedicle Screw Tulip Design Using Finite Element Analysis

Authors: S. Daqiqeh Rezaei, S. Mohajerzadeh, M. R. Sharifi

Abstract:

Pedicle screws are used to stabilize vertebrae and treat several types of spinal diseases and injuries. Multiaxial pedicle screws are a type of pedicle screw that increase surgical versatility, but they also increase design complexity. Failure of multiaxial pedicle screws caused by static loading, dynamic loading and fatigue can lead to irreparable damage to the patient. Inappropriate deformation of the multiaxial pedicle screw tulip can cause system failure. Investigation of deformation and stress in these tulips can be employed to optimize multiaxial pedicle screw design. The sensitivity of this matter necessitates precise analyzing and modeling of pedicle screws. In this work, three commercial multiaxial pedicle screw tulips and a newly designed tulip are investigated using finite element analysis. Employing video measuring machine (VMM), tulips are modeled. Afterwards, utilizing ANSYS, static analysis is performed on these models. In the end, stresses and displacements of the models are compared.

Keywords: pedicle screw, multiaxial pedicle screw, finite element analysis, static analysis

Procedia PDF Downloads 370
1887 Apply Commitment Method in Power System to Minimize the Fuel Cost

Authors: Mohamed Shaban, Adel Yahya

Abstract:

The goal of this paper study is to schedule the power generation units to minimize fuel consumption cost based on a model that solves unit commitment problems. This can be done by utilizing forward dynamic programming method to determine the most economic scheduling of generating units. The model was applied to a power station, which consists of four generating units. The obtained results show that the applications of forward dynamic programming method offer a substantial reduction in fuel consumption cost. The fuel consumption cost has been reduced from $116,326 to $102,181 within a 24-hour period. This means saving about 12.16 % of fuel consumption cost. The study emphasizes the importance of applying modeling schedule programs to the operation of power generation units. As a consequence less consumption of fuel, less loss of power and less pollution

Keywords: unit commitment, forward dynamic, fuel cost, programming, generation scheduling, operation cost, power system, generating units

Procedia PDF Downloads 613
1886 Steady State Modeling and Simulation of an Industrial Steam Boiler

Authors: Amina Lyria Deghal Cheridi, Abla Chaker, Ahcene Loubar

Abstract:

Relap5 system code is one among powerful tools, which is used in the area of design and safety evaluation. This work aims to simulate the behavior of a radiant steam boiler at the steady-state conditions using Relap5 code system. To perform this study, a detailed Relap5 model is built including all the parts of the steam boiler. The control and regulation systems are also considered. To reproduce the most important parameters and phenomena with an acceptable accuracy and fidelity, a strong qualification work is undertaken concerning the facility nodalization. It consists of making a comparison between the code results and the plant available data in steady-state operation mode. Therefore, the model qualification results at the steady-state are in good agreement with the steam boiler experimental data. The steam boiler Relap5 model has proved satisfactory; and the model was capable of predicting the main thermal-hydraulic steady-state conditions of the steam boiler.

Keywords: industrial steam boiler, model qualification, natural circulation, relap5/mod3.2, steady state simulation

Procedia PDF Downloads 273
1885 Water Demand Modelling Using Artificial Neural Network in Ramallah

Authors: F. Massri, M. Shkarneh, B. Almassri

Abstract:

Water scarcity and increasing water demand especially for residential use are major challenges facing Palestine. The need to accurately forecast water consumption is useful for the planning and management of this natural resource. The main objective of this paper is to (i) study the major factors influencing the water consumption in Palestine, (ii) understand the general pattern of Household water consumption, (iii) assess the possible changes in household water consumption and suggest appropriate remedies and (iv) develop prediction model based on the Artificial Neural Network to the water consumption in Palestinian cities. The paper is organized in four parts. The first part includes literature review of household water consumption studies. The second part concerns data collection methodology, conceptual frame work for the household water consumption surveys, survey descriptions and data processing methods. The third part presents descriptive statistics, multiple regression and analysis of the water consumption in the two Palestinian cities. The final part develops the use of Artificial Neural Network for modeling the water consumption in Palestinian cities.

Keywords: water management, demand forecasting, consumption, ANN, Ramallah

Procedia PDF Downloads 219
1884 Ship Detection Requirements Analysis for Different Sea States: Validation on Real SAR Data

Authors: Jaime Martín-de-Nicolás, David Mata-Moya, Nerea del-Rey-Maestre, Pedro Gómez-del-Hoyo, María-Pilar Jarabo-Amores

Abstract:

Ship detection is nowadays quite an important issue in tasks related to sea traffic control, fishery management and ship search and rescue. Although it has traditionally been carried out by patrol ships or aircrafts, coverage and weather conditions and sea state can become a problem. Synthetic aperture radars can surpass these coverage limitations and work under any climatological condition. A fast CFAR ship detector based on a robust statistical modeling of sea clutter with respect to sea states in SAR images is used. In this paper, the minimum SNR required to obtain a given detection probability with a given false alarm rate for any sea state is determined. A Gaussian target model using real SAR data is considered. Results show that SNR does not depend heavily on the class considered. Provided there is some variation in the backscattering of targets in SAR imagery, the detection probability is limited and a post-processing stage based on morphology would be suitable.

Keywords: SAR, generalized gamma distribution, detection curves, radar detection

Procedia PDF Downloads 455
1883 Design and Analysis of a Piezoelectric-Based AC Current Measuring Sensor

Authors: Easa Ali Abbasi, Akbar Allahverdizadeh, Reza Jahangiri, Behnam Dadashzadeh

Abstract:

Electrical current measurement is a suitable method for the performance determination of electrical devices. There are two contact and noncontact methods in this measuring process. Contact method has some disadvantages like having direct connection with wire which may endamage the system. Thus, in this paper, a bimorph piezoelectric cantilever beam which has a permanent magnet on its free end is used to measure electrical current in a noncontact way. In mathematical modeling, based on Galerkin method, the governing equation of the cantilever beam is solved, and the equation presenting the relation between applied force and beam’s output voltage is presented. Magnetic force resulting from current carrying wire is considered as the external excitation force of the system. The results are compared with other references in order to demonstrate the accuracy of the mathematical model. Finally, the effects of geometric parameters on the output voltage and natural frequency are presented.

Keywords: cantilever beam, electrical current measurement, forced excitation, piezoelectric

Procedia PDF Downloads 234
1882 Model Free Terminal Sliding Mode with Gravity Compensation: Application to an Exoskeleton-Upper Limb System

Authors: Sana Bembli, Nahla Khraief Haddad, Safya Belghith

Abstract:

This paper deals with a robust model free terminal sliding mode with gravity compensation approach used to control an exoskeleton-upper limb system. The considered system is a 2-DoF robot in interaction with an upper limb used for rehabilitation. The aim of this paper is to control the flexion/extension movement of the shoulder and the elbow joints in presence of matched disturbances. In the first part, we present the exoskeleton-upper limb system modeling. Then, we controlled the considered system by the model free terminal sliding mode with gravity compensation. A stability study is realized. To prove the controller performance, a robustness analysis was needed. Simulation results are provided to confirm the robustness of the gravity compensation combined with to the Model free terminal sliding mode in presence of uncertainties.

Keywords: exoskeleton- upper limb system, model free terminal sliding mode, gravity compensation, robustness analysis

Procedia PDF Downloads 145
1881 Stress Analysis of Spider Gear Using Structural Steel on ANSYS

Authors: Roman Kalvin, Anam Nadeem, Shahab Khushnood

Abstract:

Differential is an integral part of four wheeled vehicle, and its main function is to transmit power from drive shaft to wheels. Differential assembly allows both rear wheels to turn at different speed along curved paths. It consists of four gears which are assembled together namely pinion, ring, spider and bevel gears. This research focused on the spider gear and its static structural analysis using ANSYS. The main aim was to evaluate the distribution of stresses on the teeth of the spider gear. This study also analyzed total deformation that may occur during its working along with bevel gear that is meshed with spider gear. Structural steel was chosen for spider gear in this research. Modeling and assembling were done on SolidWorks for both spider and bevel gear. They were assembled exactly same as in a differential assembly. This assembly was then imported to ANSYS. After observing results that maximum amount of stress and deformation was produced in the spider gear, it was concluded that structural steel material for spider gear possesses greater amount of strength to bear maximum stress.

Keywords: ANSYS, differential, spider gear, structural steel

Procedia PDF Downloads 188
1880 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid

Authors: D. Šedivý, S. Fialová

Abstract:

The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.

Keywords: computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid

Procedia PDF Downloads 387
1879 Design Modification in CNC Milling Machine to Reduce the Weight of Structure

Authors: Harshkumar K. Desai, Anuj K. Desai, Jay P. Patel, Snehal V. Trivedi, Yogendrasinh Parmar

Abstract:

The need of continuous improvement in a product or process in this era of global competition leads to apply value engineering for functional and aesthetic improvement in consideration with economic aspect too. Solar industries located at G.I.D.C., Makarpura, Vadodara, Gujarat, India; a manufacturer of variety of CNC Machines had a challenge to analyze the structural design of column, base, carriage and table of CNC Milling Machine in the account of reduction of overall weight of a machine without affecting the rigidity and accuracy at the time of operation. The identified task is the first attempt to validate and optimize the proposed design of ribbed structure statically using advanced modeling and analysis tools in a systematic way. Results of stress and deformation obtained using analysis software are validated with theoretical analysis and found quite satisfactory. Such optimized results offer a weight reduction of the final assembly which is desired by manufacturers in favor of reduction of material cost, processing cost and handling cost finally.

Keywords: CNC milling machine, optimization, finite element analysis (FEA), weight reduction

Procedia PDF Downloads 277
1878 The Association between Facebook Emotional Dependency with Psychological Well-Being in Eudaimonic Approach among Adolescents 13-16 Years Old

Authors: Somayyeh Naeemi, Ezhar Tamam

Abstract:

In most of the countries, Facebook allocated high rank of usage among other social network sites. Several studies have examined the effect of Facebook intensity on individuals’ psychological well-being. However, few studies have investigated its effect on eudaimonic well-being. The current study explored how emotional dependency to Facebook relates to psychological well-being in terms of eudaimonic well-being. The number of 402 adolescents 13-16 years old who studied in upper secondary school in Malaysia participated in this study. It was expected to find out a negative association between emotional dependency to Facebook and time spent on Facebook and psychological well-being. It also was examined the moderation effects of self-efficacy on psychological well-being. The results by Structural Equation Modeling revealed that emotional dependency to Facebook has a negative effect on adolescents’ psychological well-being. Surprisingly self-efficacy did not have moderation effect on the relationship between emotional dependency to Facebook and psychological well-being. Lastly, the emotional dependency to Facebook and not the time spent on Facebook lessen adolescents’ psychological well-being, suggesting the value of investigating Facebook usage among college students in future studies.

Keywords: emotional dependency to facebook, psychological well-being, eudaimonic well-being, self-efficacy, adolescent

Procedia PDF Downloads 518
1877 Assessing the Socio-Economic Problems and Environmental Implications of Green Revolution In Uttar Pradesh, India

Authors: Naima Umar

Abstract:

Mid-1960’s has been landmark in the history of Indian agriculture. It was in 1966-67 when a New Agricultural Strategy was put into practice to tide over chronic shortages of food grains in the country. This strategy adopted was the use High-Yielding Varieties (HYV) of seeds (wheat and rice), which was popularly known as the Green Revolution. This phase of agricultural development has saved us from hunger and starvation and made the peasants more confident than ever before, but it has also created a number of socio-economic and environmental implications such as the reduction in area under forest, salinization, waterlogging, soil erosion, lowering of underground water table, soil, water and air pollution, decline in soil fertility, silting of rivers and emergence of several diseases and health hazards. The state of Uttar Pradesh in the north is bounded by the country of Nepal, the states of Uttrakhand on the northwest, Haryana on the west, Rajasthan on the southwest, Madhya Pradesh on the south and southwest, and Bihar on the east. It is situated between 23052´N and 31028´N latitudes and 7703´ and 84039´E longitudes. It is the fifth largest state of the country in terms of area, and first in terms of population. Forming the part of Ganga plain the state is crossed by a number of rivers which originate from the snowy peaks of Himalayas. The fertile plain of the Ganga has led to a high concentration of population with high density and the dominance of agriculture as an economic activity. Present paper highlights the negative impact of new agricultural technology on health of the people and environment and will attempt to find out factors which are responsible for these implications. Karl Pearson’s Correlation coefficient technique has been applied by selecting 1 dependent variable (i.e. Productivity Index) and some independent variables which may impact crop productivity in the districts of the state. These variables have categorized as: X1 (Cropping Intensity), X2 (Net irrigated area), X3 (Canal Irrigated area), X4 (Tube-well Irrigated area), X5 (Irrigated area by other sources), X6 (Consumption of chemical fertilizers (NPK) Kg. /ha.), X7 (Number of wooden plough), X8 (Number of iron plough), X9 (Number of harrows and cultivators), X10 (Number of thresher machines), X11(Number of sprayers), X12 (Number of sowing instruments), X13 (Number of tractors) and X14 (Consumption of insecticides and pesticides (in Kg. /000 ha.). The entire data during 2001-2005 and 2006- 2010 have been taken and 5 years average value is taken into consideration, based on secondary sources obtained from various government, organizations, master plan report, economic abstracts, district census handbooks and village and town directories etc,. put on a standard computer programmed SPSS and the results obtained have been properly tabulated.

Keywords: agricultural technology, environmental implications, health hazards, socio-economic problems

Procedia PDF Downloads 308
1876 Finite Element Analysis and Multibody Dynamics of 6-DOF Industrial Robot

Authors: Rahul Arora, S. S. Dhami

Abstract:

This paper implements the design structure of industrial robot along with the different transmission components like gear assembly and analysis of complete industrial robot. In this paper, it gives the overview on the most efficient types of modeling and different analysis results that can be obtained for an industrial robot. The investigation is executed in regards to two classifications i.e. the deformation and the stress tests. SolidWorks is utilized to design and review the 3D drawing plan while ANSYS Workbench is utilized to execute the FEA on an industrial robot and the designed component. The CAD evaluation was conducted on a disentangled model of an industrial robot. The study includes design and drafting its transmission system. In CAE study static, modal and dynamic analysis are presented. Every one of the outcomes is divided in regard with the impact of the static and dynamic analysis on the situating exactness of the robot. It gives critical data with respect to parts of the industrial robot that are inclined to harm under higher high force applications. Therefore, the mechanical structure under different operating conditions can help in optimizing the manipulator geometry and in selecting the right material for the same. The FEA analysis is conducted for four different materials on the same industrial robot and gear assembly.

Keywords: CAD, CAE, FEA, robot, static, dynamic, modal, gear assembly

Procedia PDF Downloads 379
1875 Modelling and Simulation of Single Mode Optical Fiber Directional Coupler for Medical Application

Authors: Shilpa Kulkarni, Sujata Patrikar

Abstract:

A single-mode fiber directional coupler is modeled and simulated for its application in medical field. Various fiber devices based on evanescent field absorption, interferometry, couplers, resonators, tip coated fibers, etc, have been developed so far, suitable for medical application. This work focuses on the possibility of sensing by single mode fiber directional coupler. In the preset work, a fiber directional coupler is modeled to detect the changes taking place in the surrounding medium optoelectronically. In this work, waveguiding characteristics of the fiber are studied in depth. The sensor is modeled and simulated by finding photocurrent, sensitivity and detection limit by varying various parameters of the directional coupler. The device is optimized for the best possible output. It is found that the directional coupler shows measurable photocurrents and good sensitivity with coupling length in micrometers. It is thus a miniature device, hence, suitable for medical applications.

Keywords: single mode fiber directional coupler, modeling and simulation of fiber directional coupler sensor, biomolecular sensing, medical sensor device

Procedia PDF Downloads 275
1874 Simulation of Kinetic Friction in L-Bending of Sheet Metals

Authors: Maziar Ramezani, Thomas Neitzert, Timotius Pasang

Abstract:

This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed.

Keywords: friction, L-bending, springback, Stribeck curves

Procedia PDF Downloads 493
1873 A Refinement Strategy Coupling Event-B and Planning Domain Definition Language (PDDL) for Planning Problems

Authors: Sabrine Ammar, Mohamed Tahar Bhiri

Abstract:

Automatic planning has a de facto standard language called Planning Domain Definition Language (PDDL) for describing planning problems. It aims to formalize the planning problems described by the concept of state space. PDDL-related dynamic analysis tools, namely planners and validators, are insufficient for verifying and validating PDDL descriptions. Indeed, these tools made it possible to detect errors a posteriori by means of test activity. In this paper, we recommend a formal approach coupling the two languages Event-B and PDDL, for automatic planning. Event-B is used for formal modeling by stepwise refinement with mathematical proofs of planning problems. Thus, this paper proposes a refinement strategy allowing to obtain reliable PDDL descriptions from an ultimate Event-B model correct by construction. The ultimate Event-B model, correct by construction which is supposed to be translatable into PDDL, is automatically translated into PDDL using our MDE Event-B2PDDL tool.

Keywords: code generation, event-b, PDDL, refinement strategy, translation rules

Procedia PDF Downloads 198
1872 Mechanistic Modelling to De-risk Process Scale-up

Authors: Edwin Cartledge, Jack Clark, Mazaher Molaei-Chalchooghi

Abstract:

The mixing in the crystallization step of active pharmaceutical ingredient manufacturers was studied via advanced modeling tools to enable a successful scale-up. A virtual representation of the vessel was created, and computational fluid dynamics were used to simulate multiphase flow and, thus, the mixing environment within this vessel. The study identified a significant dead zone in the vessel underneath the impeller and found that increasing the impeller speed and power did not improve the mixing. A series of sensitivity analyses found that to improve mixing, the vessel had to be redesigned, and found that optimal mixing could be obtained by adding two extra cylindrical baffles. The same two baffles from the simulated environment were then constructed and added to the process vessel. By identifying these potential issues before starting the manufacture and modifying the vessel to ensure good mixing, this study mitigated a failed crystallization and potential batch disposal, which could have resulted in a significant loss of high-value material.

Keywords: active pharmaceutical ingredient, baffles, computational fluid dynamics, mixing, modelling

Procedia PDF Downloads 98