Search results for: data transfer optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29556

Search results for: data transfer optimization

27096 Analysis of Short Counter-Flow Heat Exchanger (SCFHE) Using Non-Circular Micro-Tubes Operated on Water-CuO Nanofluid

Authors: Avdhesh K. Sharma

Abstract:

Key, in the development of energy-efficient micro-scale heat exchanger devices, is to select large heat transfer surface to volume ratio without much expanse on re-circulated pumps. The increased interest in short heat exchanger (SHE) is due to accessibility of advanced technologies for manufacturing of micro-tubes in range of 1 micron m - 1 mm. Such SHE using micro-tubes are highly effective for high flux heat transfer technologies. Nanofluids, are used to enhance the thermal conductivity of re-circulated coolant and thus enhances heat transfer rate further. Higher viscosity associated with nanofluid expands more pumping power. Thus, there is a trade-off between heat transfer rate and pressure drop with geometry of micro-tubes. Herein, a novel design of short counter flow heat exchanger (SCFHE) using non-circular micro-tubes flooded with CuO-water nanofluid is conceptualized by varying the ratio of surface area to cross-sectional area of micro-tubes. A framework for comparative analysis of SCFHE using micro-tubes non-circular shape flooded by CuO-water nanofluid is presented. In SCFHE concept, micro-tubes having various geometrical shapes (viz., triangular, rectangular and trapezoidal) has been arranged row-wise to facilitate two aspects: (1) allowing easy flow distribution for cold and hot stream, and (2) maximizing the thermal interactions with neighboring channels. Adequate distribution of rows for cold and hot flow streams enables above two aspects. For comparative analysis, a specific volume or cross-section area is assigned to each elemental cell (which includes flow area and area corresponds to half wall thickness). A specific volume or cross-section area is assumed to be constant for each elemental cell (which includes flow area and half wall thickness area) and variation in surface area is allowed by selecting different geometry of micro-tubes in SCFHE. Effective thermal conductivity model for CuO-water nanofluid has been adopted, while the viscosity values for water based nanofluids are obtained empirically. Correlations for Nusselt number (Nu) and Poiseuille number (Po) for micro-tubes have been derived or adopted. Entrance effect is accounted for. Thermal and hydrodynamic performances of SCFHE are defined in terms of effectiveness and pressure drop or pumping power, respectively. For defining the overall performance index of SCFHE, two links are employed. First one relates heat transfer between the fluid streams q and pumping power PP as (=qj/PPj); while another link relates effectiveness eff and pressure drop dP as (=effj/dPj). For analysis, the inlet temperatures of hot and cold streams are varied in usual range of 20dC-65dC. Fully turbulent regime is seldom encountered in micro-tubes and transition of flow regime occurs much early (i.e., ~Re=1000). Thus, Re is fixed at 900, however, the uncertainty in Re due to addition of nanoparticles in base fluid is quantified by averaging of Re. Moreover, for minimizing error, volumetric concentration is limited to range 0% to ≤4% only. Such framework may be helpful in utilizing maximum peripheral surface area of SCFHE without any serious severity on pumping power and towards developing advanced short heat exchangers.

Keywords: CuO-water nanofluid, non-circular micro-tubes, performance index, short counter flow heat exchanger

Procedia PDF Downloads 213
27095 A Method of Detecting the Difference in Two States of Brain Using Statistical Analysis of EEG Raw Data

Authors: Digvijaysingh S. Bana, Kiran R. Trivedi

Abstract:

This paper introduces various methods for the alpha wave to detect the difference between two states of brain. One healthy subject participated in the experiment. EEG was measured on the forehead above the eye (FP1 Position) with reference and ground electrode are on the ear clip. The data samples are obtained in the form of EEG raw data. The time duration of reading is of one minute. Various test are being performed on the alpha band EEG raw data.The readings are performed in different time duration of the entire day. The statistical analysis is being carried out on the EEG sample data in the form of various tests.

Keywords: electroencephalogram(EEG), biometrics, authentication, EEG raw data

Procedia PDF Downloads 464
27094 Development of a Decision Model to Optimize Total Cost in Food Supply Chain

Authors: Henry Lau, Dilupa Nakandala, Li Zhao

Abstract:

All along the length of the supply chain, fresh food firms face the challenge of managing both product quality, due to the perishable nature of the products, and product cost. This paper develops a method to assist logistics managers upstream in the fresh food supply chain in making cost optimized decisions regarding transportation, with the objective of minimizing the total cost while maintaining the quality of food products above acceptable levels. Considering the case of multiple fresh food products collected from multiple farms being transported to a warehouse or a retailer, this study develops a total cost model that includes various costs incurred during transportation. The practical application of the model is illustrated by using several computational intelligence approaches including Genetic Algorithms (GA), Fuzzy Genetic Algorithms (FGA) as well as an improved Simulated Annealing (SA) procedure applied with a repair mechanism for efficiency benchmarking. We demonstrate the practical viability of these approaches by using a simulation study based on pertinent data and evaluate the simulation outcomes. The application of the proposed total cost model was demonstrated using three approaches of GA, FGA and SA with a repair mechanism. All three approaches are adoptable; however, based on the performance evaluation, it was evident that the FGA is more likely to produce a better performance than the other two approaches of GA and SA. This study provides a pragmatic approach for supporting logistics and supply chain practitioners in fresh food industry in making important decisions on the arrangements and procedures related to the transportation of multiple fresh food products to a warehouse from multiple farms in a cost-effective way without compromising product quality. This study extends the literature on cold supply chain management by investigating cost and quality optimization in a multi-product scenario from farms to a retailer and, minimizing cost by managing the quality above expected quality levels at delivery. The scalability of the proposed generic function enables the application to alternative situations in practice such as different storage environments and transportation conditions.

Keywords: cost optimization, food supply chain, fuzzy sets, genetic algorithms, product quality, transportation

Procedia PDF Downloads 223
27093 Estimation of Optimum Parameters of Non-Linear Muskingum Model of Routing Using Imperialist Competition Algorithm (ICA)

Authors: Davood Rajabi, Mojgan Yazdani

Abstract:

Non-linear Muskingum model is an efficient method for flood routing, however, the efficiency of this method is influenced by three applied parameters. Therefore, efficiency assessment of Imperialist Competition Algorithm (ICA) to evaluate optimum parameters of non-linear Muskingum model was addressed through this study. In addition to ICA, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) were also used aiming at an available criterion to verdict ICA. In this regard, ICA was applied for Wilson flood routing; then, routing of two flood events of DoAab Samsami River was investigated. In case of Wilson flood that the target function was considered as the sum of squared deviation (SSQ) of observed and calculated discharges. Routing two other floods, in addition to SSQ, another target function was also considered as the sum of absolute deviations of observed and calculated discharge. For the first floodwater based on SSQ, GA indicated the best performance, however, ICA was on first place, based on SAD. For the second floodwater, based on both target functions, ICA indicated a better operation. According to the obtained results, it can be said that ICA could be used as an appropriate method to evaluate the parameters of Muskingum non-linear model.

Keywords: Doab Samsami river, genetic algorithm, imperialist competition algorithm, meta-exploratory algorithms, particle swarm optimization, Wilson flood

Procedia PDF Downloads 504
27092 Performance Improvement of Solar Thermal Cooling Systems Integrated with Encapsulated PCM

Authors: Lana Migla

Abstract:

Phase change materials (PCMs) have an important role in improving the efficiency of thermal heat storage. As these materials are characterized by low thermal conductivity, it is necessary to develop heat transfer techniques to improve their thermophysical properties. This scientific article focuses on the geometrical configurations of encapsulated PCM containers and the impact of designs to improve the performance of the solar thermal cooling system. The literature review showed that in-depth research is being conducted on different methods of improving the efficiency of PCM heat transfer, which is the main design task for the containers. Techniques such as microencapsulated PCMs, adding fins and different combinations of fins and nanoparticles are used. The use of graphite, metal foam and doping of high photothermal materials is also being studied. To determine most efficient container configuration, the article looks at different designs of PCM containers with fins for the storage tank. This paper experimentally investigates the effect of the encapsulation design on the performance of a lab-scale thermal energy storage tank. The development of optimized energy storage with integrated phase change material containers reduces auxiliary heater energy consumption, increases the COP of the solar cooling system, and reduces the environmental impact of the cooling system. The review shows that in the cylindrical construction, the ratio between the radius of shell and tube is significant, which means this ratio is the main issue to enhance transfer efficiency and to increase the value of stored heat. Therefore, three cylindrical tube containers with different radiuses 20mm, 35mm, 50mm filled with commercial phase change material were tested. The results show that using a smaller radius achieved a higher power, leading to a reduction in the charging and discharging time. The three fins were added to the selected cylindrical tube to determine their effects on heat exchanging efficiency. The observed optimized performance given by the fin’s arrangement achieved a 40% reduction of PCM's melting time compared to the heat exchanging without fins. The exact dimensions of the PCM containers and fins placements will be presented on-site.

Keywords: energy performance, PCM containers, solar thermal cooling, storage tank

Procedia PDF Downloads 140
27091 Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison between Central Processing Unit vs. Graphics Processing Unit Functions for Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

Neural network approaches are machine learning methods used in many domains, such as healthcare and cyber security. Neural networks are mostly known for dealing with image datasets. While training with the images, several fundamental mathematical operations are carried out in the Neural Network. The operation includes a number of algebraic and mathematical functions, including derivative, convolution, and matrix inversion and transposition. Such operations require higher processing power than is typically needed for computer usage. Central Processing Unit (CPU) is not appropriate for a large image size of the dataset as it is built with serial processing. While Graphics Processing Unit (GPU) has parallel processing capabilities and, therefore, has higher speed. This paper uses advanced Neural Network techniques such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and our proposed models to compare CPU and GPU resources. A system for classifying autism disease using face images of an autistic and non-autistic child was used to compare performance during testing. We used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and Execution time. It has been observed that GPU runs faster than the CPU in all tests performed. Moreover, the performance of the Neural Network models in terms of accuracy increases on GPU compared to CPU.

Keywords: autism disease, neural network, CPU, GPU, transfer learning

Procedia PDF Downloads 118
27090 Simulation of Laser Structuring by Three Dimensional Heat Transfer Model

Authors: Bassim Shaheen Bachy, Jörg Franke

Abstract:

In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multi-functional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power.

Keywords: laser structuring, simulation, finite element analysis, thermal modeling

Procedia PDF Downloads 349
27089 Facile Synthesis and Structure Characterization of Europium (III) Tungstate Nanoparticles

Authors: Mehdi Rahimi-Nasrabadi, Seied Mahdi Pourmortazavi

Abstract:

Taguchi robust design as a statistical method was applied for optimization of the process parameters in order to tunable, simple and fast synthesis of europium (III) tungstate nanoparticles. Europium (III) tungstate nanoparticles were synthesized by a chemical precipitation reaction involving direct addition of europium ion aqueous solution to the tungstate reagent solved in aqueous media. Effects of some synthesis procedure variables i.e., europium and tungstate concentrations, flow rate of cation reagent addition, and temperature of reaction reactor on the particle size of europium (III) tungstate nanoparticles were studied experimentally in order to tune particle size of europium (III) tungstate. Analysis of variance shows the importance of controlling tungstate concentration, cation feeding flow rate and temperature for preparation of europium (III) tungstate nanoparticles by the proposed chemical precipitation reaction. Finally, europium (III) tungstate nanoparticles were synthesized at the optimum conditions of the proposed method and the morphology and chemical composition of the prepared nano-material were characterized by means of X-Ray diffraction, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy, and fluorescence.

Keywords: europium (III) tungstate, nano-material, particle size control, procedure optimization

Procedia PDF Downloads 395
27088 Applications for Additive Manufacturing Technology for Reducing the Weight of Body Parts of Gas Turbine Engines

Authors: Liubov Magerramova, Mikhail Petrov, Vladimir Isakov, Liana Shcherbinina, Suren Gukasyan, Daniil Povalyukhin, Olga Klimova-Korsmik, Darya Volosevich

Abstract:

Aircraft engines are developing along the path of increasing resource, strength, reliability, and safety. The building of gas turbine engine body parts is a complex design and technological task. Particularly complex in the design and manufacturing are the casings of the input stages of helicopter gearboxes and central drives of aircraft engines. Traditional technologies, such as precision casting or isothermal forging, are characterized by significant limitations in parts production. For parts like housing, additive technologies guarantee spatial freedom and limitless or flexible design. This article presents the results of computational and experimental studies. These investigations justify the applicability of additive technologies (AT) to reduce the weight of aircraft housing gearbox parts by up to 32%. This is possible due to geometrical optimization compared to the classical, less flexible manufacturing methods and as-casted aircraft parts with over-insured values of safety factors. Using an example of the body of the input stage of an aircraft gearbox, visualization of the layer-by-layer manufacturing of a part based on thermal deformation was demonstrated.

Keywords: additive technologies, gas turbine engines, topological optimization, synthesis process

Procedia PDF Downloads 116
27087 Mobile Agents-Based Framework for Dynamic Resource Allocation in Cloud Computing

Authors: Safia Rabaaoui, Héla Hachicha, Ezzeddine Zagrouba

Abstract:

Nowadays, cloud computing is becoming the more popular technology to various companies and consumers, which benefit from its increased efficiency, cost optimization, data security, unlimited storage capacity, etc. One of the biggest challenges of cloud computing is resource allocation. Its efficiency directly influences the performance of the whole cloud environment. Finding an effective method to address these critical issues and increase cloud performance was necessary. This paper proposes a mobile agents-based framework for dynamic resource allocation in cloud computing to minimize both the cost of using virtual machines and the makespan. Furthermore, its impact on the best response time and power consumption has been studied. The simulation showed that our method gave better results than here.

Keywords: cloud computing, multi-agent system, mobile agent, dynamic resource allocation, cost, makespan

Procedia PDF Downloads 103
27086 A Study on Big Data Analytics, Applications and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 83
27085 A Study on Big Data Analytics, Applications, and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 95
27084 On-Chip Sensor Ellipse Distribution Method and Equivalent Mapping Technique for Real-Time Hardware Trojan Detection and Location

Authors: Longfei Wang, Selçuk Köse

Abstract:

Hardware Trojan becomes great concern as integrated circuit (IC) technology advances and not all manufacturing steps of an IC are accomplished within one company. Real-time hardware Trojan detection is proven to be a feasible way to detect randomly activated Trojans that cannot be detected at testing stage. On-chip sensors serve as a great candidate to implement real-time hardware Trojan detection, however, the optimization of on-chip sensors has not been thoroughly investigated and the location of Trojan has not been carefully explored. On-chip sensor ellipse distribution method and equivalent mapping technique are proposed based on the characteristics of on-chip power delivery network in this paper to address the optimization and distribution of on-chip sensors for real-time hardware Trojan detection as well as to estimate the location and current consumption of hardware Trojan. Simulation results verify that hardware Trojan activation can be effectively detected and the location of a hardware Trojan can be efficiently estimated with less than 5% error for a realistic power grid using our proposed methods. The proposed techniques therefore lay a solid foundation for isolation and even deactivation of hardware Trojans through accurate location of Trojans.

Keywords: hardware trojan, on-chip sensor, power distribution network, power/ground noise

Procedia PDF Downloads 391
27083 Improved K-Means Clustering Algorithm Using RHadoop with Combiner

Authors: Ji Eun Shin, Dong Hoon Lim

Abstract:

Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.

Keywords: big data, combiner, K-means clustering, RHadoop

Procedia PDF Downloads 438
27082 Tree-Based Inference for Regionalization: A Comparative Study of Global Topological Perturbation Methods

Authors: Orhun Aydin, Mark V. Janikas, Rodrigo Alves, Renato Assuncao

Abstract:

In this paper, a tree-based perturbation methodology for regionalization inference is presented. Regionalization is a constrained optimization problem that aims to create groups with similar attributes while satisfying spatial contiguity constraints. Similar to any constrained optimization problem, the spatial constraint may hinder convergence to some global minima, resulting in spatially contiguous members of a group with dissimilar attributes. This paper presents a general methodology for rigorously perturbing spatial constraints through the use of random spanning trees. The general framework presented can be used to quantify the effect of the spatial constraints in the overall regionalization result. We compare several types of stochastic spanning trees used in inference problems such as fuzzy regionalization and determining the number of regions. Performance of stochastic spanning trees is juxtaposed against the traditional permutation-based hypothesis testing frequently used in spatial statistics. Inference results for fuzzy regionalization and determining the number of regions is presented on the Local Area Personal Incomes for Texas Counties provided by the Bureau of Economic Analysis.

Keywords: regionalization, constrained clustering, probabilistic inference, fuzzy clustering

Procedia PDF Downloads 229
27081 Field Oriented Control of Electrical Motor for Efficiency Improvement of Aerial Vehicle

Authors: Francois Defay

Abstract:

Uses of Unmanned aerial vehicle (UAV) are increasing for many applicative cases. Long endurance UAVs are required for inspection or transportation in some deserted places. The global optimization of the efficiency is the aim of the works in ISAE-SUPAERO. From the propulsive part until the motor control, the global optimization can increase significantly the global efficiency. This paper deals with the global improvement of the efficiency of the electrical propulsion for the aerial vehicle. The application case of study is a small airplane of 2kg. A global modelization is presented in order to validate the electrical engine in a complete simulation from aerodynamics to battery. The classical control of the synchronous permanent drive is compared to the field-oriented control which is not yet applied for UAVs. The experimental results presented show an increase of more than 10 percent of the efficiency. A complete modelization and simulation based on Matlab/ Simulink are presented in this paper and compared to the experimental study. Finally this paper presents solutions to increase the endurance of the electrical aerial vehicle and provide models to optimize the global consumption for a specific mission. The next step is to use this model and the control to work with distributed propulsion which is the future for small distance plane.

Keywords: electrical propulsion, endurance, field-oriented control, UAV

Procedia PDF Downloads 237
27080 Reliability and Cost Focused Optimization Approach for a Communication Satellite Payload Redundancy Allocation Problem

Authors: Mehmet Nefes, Selman Demirel, Hasan H. Ertok, Cenk Sen

Abstract:

A typical reliability engineering problem regarding communication satellites has been considered to determine redundancy allocation scheme of power amplifiers within payload transponder module, whose dominant function is to amplify power levels of the received signals from the Earth, through maximizing reliability against mass, power, and other technical limitations. Adding each redundant power amplifier component increases not only reliability but also hardware, testing, and launch cost of a satellite. This study investigates a multi-objective approach used in order to solve Redundancy Allocation Problem (RAP) for a communication satellite payload transponder, focusing on design cost due to redundancy and reliability factors. The main purpose is to find the optimum power amplifier redundancy configuration satisfying reliability and capacity thresholds simultaneously instead of analyzing respectively or independently. A mathematical model and calculation approach are instituted including objective function definitions, and then, the problem is solved analytically with different input parameters in MATLAB environment. Example results showed that payload capacity and failure rate of power amplifiers have remarkable effects on the solution and also processing time.

Keywords: communication satellite payload, multi-objective optimization, redundancy allocation problem, reliability, transponder

Procedia PDF Downloads 261
27079 Optimization of Wind Off-Grid System for Remote Area: Egyptian Application

Authors: Marwa M. Ibrahim

Abstract:

The objective of this research is to study the technical and economic performance of wind/diesel/battery (W/D/B) off-grid system supplying a small remote gathering of four families using the HOMER software package. The second objective is to study the effect of wind energy system on the cost of generated electricity considering the cost of reducing CO₂ emissions as external benefit of wind turbines, no pollutant emission through the operational phase. The system consists of a small wind turbine, battery storage, and diesel generator. The electrical energy is to cater to the basic needs for which the daily load pattern is estimated at 8 kW peak. Net Present Cost (NPC) and Cost of Energy (COE) are used as economic criteria, while the measure of performance is % of power shortage. Technical and economic parameters are defined to estimate the feasibility of the system under study. Optimum system configurations are estimated for the selected site in Egypt. Using HOMER software, the simulation results shows that W/D/B systems are economical for the assumed community site as the price of generated electricity is about 0.285 $/kWh, without taking external benefits into considerations and 0.221 if CO₂ emissions taken into consideration W/D/B systems are more economical than alone diesel system as the COE is 0.432 $/kWh for diesel alone.

Keywords: renewable energy, hybrid energy system, on-off grid system, simulation, optimization and environmental impacts

Procedia PDF Downloads 102
27078 Energy Conservation in Heat Exchangers

Authors: Nadia Allouache

Abstract:

Energy conservation is one of the major concerns in the modern high tech era due to the limited amount of energy resources and the increasing cost of energy. Predicting an efficient use of energy in thermal systems like heat exchangers can only be achieved if the second law of thermodynamics is accounted for. The performance of heat exchangers can be substantially improved by many passive heat transfer augmentation techniques. These letters permit to improve heat transfer rate and to increase exchange surface, but on the other side, they also increase the friction factor associated with the flow. This raises the question of how to employ these passive techniques in order to minimize the useful energy. The objective of this present study is to use a porous substrate attached to the walls as a passive enhancement technique in heat exchangers and to find the compromise between the hydrodynamic and thermal performances under turbulent flow conditions, by using a second law approach. A modified k- ε model is used to simulating the turbulent flow in the porous medium and the turbulent shear flow is accounted for in the entropy generation equation. A numerical modeling, based on the finite volume method is employed for discretizing the governing equations. Effects of several parameters are investigated such as the porous substrate properties and the flow conditions. Results show that under certain conditions of the porous layer thickness, its permeability, and its effective thermal conductivity the minimum rate of entropy production is obtained.

Keywords: second law approach, annular heat exchanger, turbulent flow, porous medium, modified model, numerical analysis

Procedia PDF Downloads 288
27077 Optimization of a Hybrid PV-Diesel Minigrid System: A Case Study of Vimtim-Mubi, Nigeria

Authors: Julius Agaka Yusufu, Tsutomu Dei, Hanif Ibrahim Awal

Abstract:

This study undertakes the development of an optimal PV-diesel hybrid power system tailored to the specific energy landscape of Vimtim Mubi, Nigeria, utilizing real-world wind speed, solar radiation, and diesel cost data. Employing HOMER simulation, the research meticulously assesses the technical and financial viability of this hybrid configuration. Additionally, a rigorous performance comparison is conducted between the PV-diesel system and the conventional grid-connected alternative, offering crucial insights into the potential advantages and economic feasibility of adopting hybrid renewable energy solutions in regions grappling with energy access and reliability challenges, with implications for sustainable electrification efforts in similar communities worldwide.

Keywords: Vimtim-Nigeria, Homer, renewable energy, PV-diesel hybrid system

Procedia PDF Downloads 85
27076 Framework for Integrating Big Data and Thick Data: Understanding Customers Better

Authors: Nikita Valluri, Vatcharaporn Esichaikul

Abstract:

With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.

Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data

Procedia PDF Downloads 162
27075 A Machine Learning Based Framework for Education Levelling in Multicultural Countries: UAE as a Case Study

Authors: Shatha Ghareeb, Rawaa Al-Jumeily, Thar Baker

Abstract:

In Abu Dhabi, there are many different education curriculums where sector of private schools and quality assurance is supervising many private schools in Abu Dhabi for many nationalities. As there are many different education curriculums in Abu Dhabi to meet expats’ needs, there are different requirements for registration and success. In addition, there are different age groups for starting education in each curriculum. In fact, each curriculum has a different number of years, assessment techniques, reassessment rules, and exam boards. Currently, students that transfer curriculums are not being placed in the right year group due to different start and end dates of each academic year and their date of birth for each year group is different for each curriculum and as a result, we find students that are either younger or older for that year group which therefore creates gaps in their learning and performance. In addition, there is not a way of storing student data throughout their academic journey so that schools can track the student learning process. In this paper, we propose to develop a computational framework applicable in multicultural countries such as UAE in which multi-education systems are implemented. The ultimate goal is to use cloud and fog computing technology integrated with Artificial Intelligence techniques of Machine Learning to aid in a smooth transition when assigning students to their year groups, and provide leveling and differentiation information of students who relocate from a particular education curriculum to another, whilst also having the ability to store and access student data from anywhere throughout their academic journey.

Keywords: admissions, algorithms, cloud computing, differentiation, fog computing, levelling, machine learning

Procedia PDF Downloads 142
27074 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 39
27073 Pragmatic Competence of Jordanian EFL Learners

Authors: Dina Mahmoud Hammouri

Abstract:

The study investigates the Jordanian EFL learners’ pragmatic competence through their production of the speech acts of responding to requests, making suggestions, making threats and expressing farewells. The sample of the study consists of 130 Jordanian EFL learners and native speakers. 2600 responses were collected through a Discourse Completion Test (DCT). The findings of the study revealed that the tested students showed similarities and differences in performing the strategies of four speech acts. Differences in the students’ performances led to pragmatic failure instances. The pragmatic failure committed by students refers to a lack of linguistic competence (i.e., pragmalinguistic failure), sociocultural differences and pragmatic transfer (i.e., sociopragmatic failure). EFL learners employed many mechanisms to maintain their communicative competence; the analysis of the test on speech acts showed learners’ tendency towards using particular strategies, resorting to modify strategies and relating them to their grammatical competence, prefabrication, performing long forms, buffing and transfer. The results were also suggestive of the learners’ lack of pragmalinguistic and sociopragmatic knowledge. The implications of this study are for language teachers to teach interlanguage pragmatics explicitly in EFL contexts to draw learners’ attention to both pragmalinguistic and sociopragmatic features, pay more attention to these areas and allocate more time and practice to solve learners’ problems in these areas. The implication of this study is also for pedagogical material designers to provide sufficient and well-organized pragmatic input.

Keywords: pragmatic failure, Jordanian EFL learner, sociopragmatic competence, pragmalinguistic competence

Procedia PDF Downloads 80
27072 Proposition of an Intelligent System Based on the Augmented Reality for Warehouse Logistics

Authors: Safa Gharbi, Hayfa Zgaya, Nesrine Zoghlami, Slim Hammadi, Cyril De Barbarin, Laurent Vinatier, Christiane Coupier

Abstract:

Increasing productivity and quality of service, improving the working comfort and ensuring the efficiency of all processes are important challenges for every warehouse. The order picking is recognized to be the most important and costly activity of all the process in warehouses. This paper presents a new approach using Augmented Reality (AR) in the field of logistics. It aims to create a Head-Up Display (HUD) interface with a Warehouse Management System (WMS), using AR glasses. Integrating AR technology allows the optimization of order picking by reducing time of picking process, increasing the efficiency and delivering quickly. The picker will be able to access immediately to all the information needed for his tasks. All the information is displayed when needed in the field of vision (FOV) of the operator, without any action requested from him. These research works are part of the industrial project RASL (Réalité Augmentée au Service de la Logistique) which gathers two major partners: the LAGIS (Laboratory of Automatics, Computer Engineering and Signal Processing in Lille-France) and Genrix Group, European leader in warehouses logistics, who provided his software for implementation, and his logistics expertise.

Keywords: Augmented Reality (AR), logistics and optimization, Warehouse Management System (WMS), Head-Up Display (HUD)

Procedia PDF Downloads 483
27071 Incremental Learning of Independent Topic Analysis

Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda

Abstract:

In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.

Keywords: text mining, topic extraction, independent, incremental, independent component analysis

Procedia PDF Downloads 309
27070 Open Data for e-Governance: Case Study of Bangladesh

Authors: Sami Kabir, Sadek Hossain Khoka

Abstract:

Open Government Data (OGD) refers to all data produced by government which are accessible in reusable way by common people with access to Internet and at free of cost. In line with “Digital Bangladesh” vision of Bangladesh government, the concept of open data has been gaining momentum in the country. Opening all government data in digital and customizable format from single platform can enhance e-governance which will make government more transparent to the people. This paper presents a well-in-progress case study on OGD portal by Bangladesh Government in order to link decentralized data. The initiative is intended to facilitate e-service towards citizens through this one-stop web portal. The paper further discusses ways of collecting data in digital format from relevant agencies with a view to making it publicly available through this single point of access. Further, possible layout of this web portal is presented.

Keywords: e-governance, one-stop web portal, open government data, reusable data, web of data

Procedia PDF Downloads 355
27069 Voxel Models as Input for Heat Transfer Simulations with Siemens NX Based on X-Ray Microtomography Images of Random Fibre Reinforced Composites

Authors: Steven Latré, Frederik Desplentere, Ilya Straumit, Stepan V. Lomov

Abstract:

A method is proposed in order to create a three-dimensional finite element model representing fibre reinforced insulation materials for the simulation software Siemens NX. VoxTex software, a tool for quantification of µCT images of fibrous materials, is used for the transformation of microtomography images of random fibre reinforced composites into finite element models. An automatic tool was developed to execute the import of the models to the thermal solver module of Siemens NX. The paper describes the numerical tools used for the image quantification and the transformation and illustrates them on several thermal simulations of fibre reinforced insulation blankets filled with low thermal conductive fillers. The calculation of thermal conductivity is validated by comparison with the experimental data.

Keywords: analysis, modelling, thermal, voxel

Procedia PDF Downloads 287
27068 Designing Emergency Response Network for Rail Hazmat Shipments

Authors: Ali Vaezi, Jyotirmoy Dalal, Manish Verma

Abstract:

The railroad is one of the primary transportation modes for hazardous materials (hazmat) shipments in North America. Installing an emergency response network capable of providing a commensurate response is one of the primary levers to contain (or mitigate) the adverse consequences from rail hazmat incidents. To this end, we propose a two-stage stochastic program to determine the location of and equipment packages to be stockpiled at each response facility. The raw input data collected from publicly available reports were processed, fed into the proposed optimization program, and then tested on a realistic railroad network in Ontario (Canada). From the resulting analyses, we conclude that the decisions based only on empirical datasets would undermine the effectiveness of the resulting network; coverage can be improved by redistributing equipment in the network, purchasing equipment with higher containment capacity, and making use of a disutility multiplier factor.

Keywords: hazmat, rail network, stochastic programming, emergency response

Procedia PDF Downloads 182
27067 Design and Optimization for a Compliant Gripper with Force Regulation Mechanism

Authors: Nhat Linh Ho, Thanh-Phong Dao, Shyh-Chour Huang, Hieu Giang Le

Abstract:

This paper presents a design and optimization for a compliant gripper. The gripper is constructed based on the concept of compliant mechanism with flexure hinge. A passive force regulation mechanism is presented to control the grasping force a micro-sized object instead of using a sensor force. The force regulation mechanism is designed using the planar springs. The gripper is expected to obtain a large range of displacement to handle various sized objects. First of all, the statics and dynamics of the gripper are investigated by using the finite element analysis in ANSYS software. And then, the design parameters of the gripper are optimized via Taguchi method. An orthogonal array L9 is used to establish an experimental matrix. Subsequently, the signal to noise ratio is analyzed to find the optimal solution. Finally, the response surface methodology is employed to model the relationship between the design parameters and the output displacement of the gripper. The design of experiment method is then used to analyze the sensitivity so as to determine the effect of each parameter on the displacement. The results showed that the compliant gripper can move with a large displacement of 213.51 mm and the force regulation mechanism is expected to be used for high precision positioning systems.

Keywords: flexure hinge, compliant mechanism, compliant gripper, force regulation mechanism, Taguchi method, response surface methodology, design of experiment

Procedia PDF Downloads 331