Search results for: inventory classification
468 Adapting Tools for Text Monitoring and for Scenario Analysis Related to the Field of Social Disasters
Authors: Svetlana Cojocaru, Mircea Petic, Inga Titchiev
Abstract:
Humanity faces more and more often with different social disasters, which in turn can generate new accidents and catastrophes. To mitigate their consequences, it is important to obtain early possible signals about the events which are or can occur and to prepare the corresponding scenarios that could be applied. Our research is focused on solving two problems in this domain: identifying signals related that an accident occurred or may occur and mitigation of some consequences of disasters. To solve the first problem, methods of selecting and processing texts from global network Internet are developed. Information in Romanian is of special interest for us. In order to obtain the mentioned tools, we should follow several steps, divided into preparatory stage and processing stage. Throughout the first stage, we manually collected over 724 news articles and classified them into 10 categories of social disasters. It constitutes more than 150 thousand words. Using this information, a controlled vocabulary of more than 300 keywords was elaborated, that will help in the process of classification and identification of the texts related to the field of social disasters. To solve the second problem, the formalism of Petri net has been used. We deal with the problem of inhabitants’ evacuation in useful time. The analysis methods such as reachability or coverability tree and invariants technique to determine dynamic properties of the modeled systems will be used. To perform a case study of properties of extended evacuation system by adding time, the analysis modules of PIPE such as Generalized Stochastic Petri Nets (GSPN) Analysis, Simulation, State Space Analysis, and Invariant Analysis have been used. These modules helped us to obtain the average number of persons situated in the rooms and the other quantitative properties and characteristics related to its dynamics.Keywords: lexicon of disasters, modelling, Petri nets, text annotation, social disasters
Procedia PDF Downloads 197467 A Machine Learning Approach for Detecting and Locating Hardware Trojans
Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He
Abstract:
The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.Keywords: hardware trojans, physical properties, machine learning, hardware security
Procedia PDF Downloads 146466 Investigation of Different Machine Learning Algorithms in Large-Scale Land Cover Mapping within the Google Earth Engine
Authors: Amin Naboureh, Ainong Li, Jinhu Bian, Guangbin Lei, Hamid Ebrahimy
Abstract:
Large-scale land cover mapping has become a new challenge in land change and remote sensing field because of involving a big volume of data. Moreover, selecting the right classification method, especially when there are different types of landscapes in the study area is quite difficult. This paper is an attempt to compare the performance of different machine learning (ML) algorithms for generating a land cover map of the China-Central Asia–West Asia Corridor that is considered as one of the main parts of the Belt and Road Initiative project (BRI). The cloud-based Google Earth Engine (GEE) platform was used for generating a land cover map for the study area from Landsat-8 images (2017) by applying three frequently used ML algorithms including random forest (RF), support vector machine (SVM), and artificial neural network (ANN). The selected ML algorithms (RF, SVM, and ANN) were trained and tested using reference data obtained from MODIS yearly land cover product and very high-resolution satellite images. The finding of the study illustrated that among three frequently used ML algorithms, RF with 91% overall accuracy had the best result in producing a land cover map for the China-Central Asia–West Asia Corridor whereas ANN showed the worst result with 85% overall accuracy. The great performance of the GEE in applying different ML algorithms and handling huge volume of remotely sensed data in the present study showed that it could also help the researchers to generate reliable long-term land cover change maps. The finding of this research has great importance for decision-makers and BRI’s authorities in strategic land use planning.Keywords: land cover, google earth engine, machine learning, remote sensing
Procedia PDF Downloads 113465 The Predictors of Head and Neck Cancer-Head and Neck Cancer-Related Lymphedema in Patients with Resected Advanced Head and Neck Cancer
Authors: Shu-Ching Chen, Li-Yun Lee
Abstract:
The purpose of the study was to identify the factors associated with head and neck cancer-related lymphoedema (HNCRL)-related symptoms, body image, and HNCRL-related functional outcomes among patients with resected advanced head and neck cancer. A cross-sectional correlational design was conducted to examine the predictors of HNCRL-related functional outcomes in patients with resected advanced head and neck cancer. Eligible patients were recruited from a single medical center in northern Taiwan. Consecutive patients were approached and recruited from the Radiation Head and Neck Outpatient Department of this medical center. Eligible subjects were assessed for the Symptom Distress Scale–Modified for Head and Neck Cancer (SDS-mhnc), Brief International Classification of Functioning, Disability and Health (ICF) Core Set for Head and Neck Cancer (BCSQ-H&N), Body Image Scale–Modified (BIS-m), The MD Anderson Head and Neck Lymphedema Rating Scale (MDAHNLRS), The Foldi’s Stages of Lymphedema (Foldi’s Scale), Patterson’s Scale, UCLA Shoulder Rating Scale (UCLA SRS), and Karnofsky’s Performance Status Index (KPS). The results showed that the worst problems with body HNCRL functional outcomes. Patients’ HNCRL symptom distress and performance status are robust predictors across over for overall HNCRL functional outcomes, problems with body HNCRL functional outcomes, and activity and social functioning HNCRL functional outcomes. Based on the results of this period research program, we will develop a Cancer Rehabilitation and Lymphedema Care Program (CRLCP) to use in the care of patients with resected advanced head and neck cancer.Keywords: head and neck cancer, resected, lymphedema, symptom, body image, functional outcome
Procedia PDF Downloads 256464 A Critical Study on Unprecedented Employment Discrimination and Growth of Contractual Labour Engaged by Rail Industry in India
Authors: Munmunlisa Mohanty, K. D. Raju
Abstract:
Rail industry is one of the model employers in India has separate national legislation (Railways Act 1989) to regulate its vast employment structure, functioning across the country. Indian Railway is not only the premier transport industry of the country; indeed, it is Asia’s most extensive rail network organisation and the world’s second-largest industry functioning under one management. With the growth of globalization of industrial products, the scope of anti-employment discrimination is no more confined to gender aspect only; instead, it extended to the unregularized classification of labour force applicable in the various industrial establishments in India. And the Indian Rail Industry inadvertently enhanced such discriminatory employment trends by engaging contractual labour in an unprecedented manner. The engagement of contractual labour by rail industry vanished the core “Employer-Employee” relationship between rail management and contractual labour who employed through the contractor. This employment trend reduces the cost of production and supervision, discourages the contractual labour from forming unions, and reduces its collective bargaining capacity. So, the primary intention of this paper is to highlight the increasing discriminatory employment scope for contractual labour engaged by Indian Railways. This paper critically analyses the diminishing perspective of anti-employment opportunity practiced by Indian Railways towards contractual labour and demands an urgent outlook on the probable scope of anti-employment discrimination against contractual labour engaged by Indian Railways. The researcher used doctrinal methodology where primary materials (Railways Act, Contract Labour Act and Occupational, health and Safety Code, 2020) and secondary data (CAG Report 2018, Railways Employment Regulation Rules, ILO Report etc.) are used for the paper.Keywords: anti-employment, CAG Report, contractual labour, discrimination, Indian Railway, principal employer
Procedia PDF Downloads 170463 Impact of Marine Hydrodynamics and Coastal Morphology on Changes in Mangrove Forests (Case Study: West of Strait of Hormuz, Iran)
Authors: Fatemeh Parhizkar, Mojtaba Yamani, Abdolla Behboodi, Masoomeh Hashemi
Abstract:
The mangrove forests are natural and valuable gifts that exist in some parts of the world, including Iran. Regarding the threats faced by these forests and the declining area of them all over the world, as well as in Iran, it is very necessary to manage and monitor them. The current study aimed to investigate the changes in mangrove forests and the relationship between these changes and the marine hydrodynamics and coastal morphology in the area between qeshm island and the west coast of the Hormozgan province (i.e. the coastline between Mehran river and Bandar-e Pol port) in the 49-year period. After preprocessing and classifying satellite images using the SVM, MLC, and ANN classifiers and evaluating the accuracy of the maps, the SVM approach with the highest accuracy (the Kappa coefficient of 0.97 and overall accuracy of 98) was selected for preparing the classification map of all images. The results indicate that from 1972 to 1987, the area of these forests have had experienced a declining trend, and in the next years, their expansion was initiated. These forests include the mangrove forests of Khurkhuran wetland, Muriz Deraz Estuary, Haft Baram Estuary, the mangrove forest in the south of the Laft Port, and the mangrove forests between the Tabl Pier, Maleki Village, and Gevarzin Village. The marine hydrodynamic and geomorphological characteristics of the region, such as average intertidal zone, sediment data, the freshwater inlet of Mehran river, wave stability and calmness, topography and slope, as well as mangrove conservation projects make the further expansion of mangrove forests in this area possible. By providing significant and up-to-date information on the development and decline of mangrove forests in different parts of the coast, this study can significantly contribute to taking measures for the conservation and restoration of mangrove forests.Keywords: mangrove forests, marine hydrodynamics, coastal morphology, west of strait of Hormuz, Iran
Procedia PDF Downloads 95462 Case Presentation Ectopic Cushing's Syndrome Secondary to Thymic Neuroendocrine Tumors Secreting ACTH
Authors: Hasan Frookh Jamal
Abstract:
This is a case of a 36-year-old Bahraini gentleman diagnosed to have Cushing's Syndrome with a large anterior mediastinal mass. He was sent abroad to the Speciality hospital in Jordan, where he underwent diagnostic video-assisted thoracoscopy, partial thymectomy and pericardial fat excision. Histopathology of the mass was reported to be an Atypical carcinoid tumor with a low Ki67 proliferation index of 5%, the mitotic activity of 4 MF/10HPF and pathological stage classification(pTNM): pT1aN1. MRI of the pituitary gland showed an ill-defined non-enhancing focus of about 3mm on the Rt side of the pituitary on coronal images, with a similar but smaller one on the left side, which could be due to enhancing pattern rather than a real lesion as reported. The patient underwent Ga68 Dotate PET/CT scan post-operatively, which showed multiple somatostatin receptor-positive lesions seen within the tail, body and head of the pancreas and positive somatostatin receptor lymph nodes located between the pancreatic head and IVC. There was no uptake detected at the anterior mediastinum nor at the site of thymic mass resection. There was no evidence of any positive somatostatin uptake at the soft tissue or lymph nodes. The patient underwent IPSS, which proved that the source is, in fact, an ectopic source of ACTH secretion. Unfortunately, the patient's serum cortisol remained elevated after surgery and failed to be suppressed by 1 mg ODST and by 2 days LLDST with a high ACTH value. The patient was started on Osilodrostat for treatment of hypercortisolism for the time being and his future treatment plan with Lutetium-177 Dotate therapy vs. bilateral adrenalectomy is to be considered in an MDT meeting.Keywords: cushing syndrome, neuroendocrine tumur, carcinoid tumor, Thymoma
Procedia PDF Downloads 83461 Development and Preliminary Testing of the Dutch Version of the Program for the Education and Enrichment of Relational Skills
Authors: Sakinah Idris, Gabrine Jagersma, Bjorn Jaime Van Pelt, Kirstin Greaves-Lord
Abstract:
Background: The PEERS (Program for the Education and Enrichment of Relational Skills) intervention can be considered a well-established, evidence-based intervention in the USA. However, testing the efficacy of cultural adaptations of PEERS is still ongoing. More and more, the involvement of all stakeholders in the development and evaluation of interventions is acknowledged as crucial for the longer term implementation of interventions across settings. Therefore, in the current project, teens with ASD (Autism Spectrum Disorder), their neurotypical peers, parents, teachers, as well as clinicians were involved in the development and evaluation of the Dutch version of PEERS. Objectives: The current presentation covers (1) the formative phase and (2) the preliminary adaptation test phase of the cultural adaptation of evidence-based interventions. In the formative phase, we aim to describe the process of adaptation of the PEERS program to the Dutch culture and care system. In the preliminary adaptation phase, we will present results from the preliminary adaptation test among 32 adolescents with ASD. Methods: In phase 1, a group discussion on common vocabulary was conducted among 70 teenagers (and their teachers) from special and regular education aged 12-18 years old. This inventory concerned 14 key constructs from PEERS, e.g., areas of interests, locations for making friends, common peer groups and crowds inside and outside of school, activities with friends, commonly used ways for electronic communication, ways for handling disagreements, and common teasing comebacks. Also, 15 clinicians were involved in the translation and cultural adaptation process. The translation and cultural adaptation process were guided by the research team, and who included input and feedback from all stakeholders through an iterative feedback incorporation procedure. In phase 2, The parent-reported Social Responsiveness Scale (SRS), the Test of Adolescent Social Skills Knowledge (TASSK), and the Quality of Socialization Questionnaire (QSQ) were assessed pre- and post-intervention to evaluate potential treatment outcome. Results: The most striking cultural adaptation - reflecting the standpoints of all stakeholders - concerned the strategies for handling rumors and gossip, which were suggested to be taught using a similar approach as the teasing comebacks, more in line with ‘down-to-earth’ Dutch standards. The preliminary testing of this adapted version indicated that the adolescents with ASD significantly improved their social knowledge (TASSK; t₃₁ = -10.9, p < .01), social experience (QSQ-Parent; t₃₁ = -4.2, p < .01 and QSQ-Adolescent; t₃₂ = -3.8, p < .01), and in parent-reported social responsiveness (SRS; t₃₃ = 3.9, p < .01). In addition, subjective evaluations of teens with ASD, their parents and clinicians were positive. Conclusions: In order to further scrutinize the effectiveness of the Dutch version of the PEERS intervention, we recommended performing a larger scale randomized control trial (RCT) design, for which we provide several methodological considerations.Keywords: cultural adaptation, PEERS, preliminary testing, translation
Procedia PDF Downloads 168460 Understanding the Semantic Network of Tourism Studies in Taiwan by Using Bibliometrics Analysis
Authors: Chun-Min Lin, Yuh-Jen Wu, Ching-Ting Chung
Abstract:
The formulation of tourism policies requires objective academic research and evidence as support, especially research from local academia. Taiwan is a small island, and its economic growth relies heavily on tourism revenue. Taiwanese government has been devoting to the promotion of the tourism industry over the past few decades. Scientific research outcomes by Taiwanese scholars may and will help lay the foundations for drafting future tourism policy by the government. In this study, a total of 120 full journal articles published between 2008 and 2016 from the Journal of Tourism and Leisure Studies (JTSL) were examined to explore the scientific research trend of tourism study in Taiwan. JTSL is one of the most important Taiwanese journals in the tourism discipline which focuses on tourism-related issues and uses traditional Chinese as the study language. The method of co-word analysis from bibliometrics approaches was employed for semantic analysis in this study. When analyzing Chinese words and phrases, word segmentation analysis is a crucial step. It must be carried out initially and precisely in order to obtain meaningful word or word chunks for further frequency calculation. A word segmentation system basing on N-gram algorithm was developed in this study to conduct semantic analysis, and 100 groups of meaningful phrases with the highest recurrent rates were located. Subsequently, co-word analysis was employed for semantic classification. The results showed that the themes of tourism research in Taiwan in recent years cover the scope of tourism education, environmental protection, hotel management, information technology, and senior tourism. The results can give insight on the related issues and serve as a reference for tourism-related policy making and follow-up research.Keywords: bibliometrics, co-word analysis, word segmentation, tourism research, policy
Procedia PDF Downloads 229459 The Nimbārka School of Vedānta and the Indian Classical Dance: The Philosophical Relevance through Rasa Theory
Authors: Shubham Arora
Abstract:
This paper illustrates a relationship between the Dvaitādvaita (dualistic non-dualistic) doctrine of Nimbārka school of Vedānta and philosophy of Indian classical dance, through the Rasa theory. There would be a separate focus on the philosophies of both the disciplines and then analyzing Rasa theory as a connexion between them. The paper presents ideas regarding the similarity between the Brahman and the dancer, manifestation of enacting character and the Jīva (soul), the existence of the phenomenal world and the imaginary world classification of rasa on the basis of three modes of nature, and the feelings and expressions depicting the Dvaita and Advaita. The reason behind choosing such a topic is an intention to explore the relativity of the Vedantic philosophy of this school in real manner. It is really important to study the practical implications and relevance of the doctrine with other disciplines for perceiving it cogently. In our daily lives, we use various forms of facial expressions and bodily gestures in order to communicate, along with the oral and written means of communication. What if, when gestures and expressions mingle with the music beats, in order to present an idea? Indian Classical dance is highly rich in expressing the emotions using extraordinary expressions, unconventional bodily gestures and mesmerizing music beats. Ancient scriptures like Nāṭyaśāstra of Bharata Muni and Abhinava Bhārati by Abhinavaguptā recount aesthetics in a well-defined and structured way of acting and dancing and also reveal the grammar of rasa theory. Indian Classical dance is not only for entertainment but it is deeply in contact with divinity. During the period of Bhakti movement in India, this art form was used as a means to narrate the vignettes from epics like Rāmāyana and Mahābhārata and Purānas. Even in present era, this art has a deep rooted philosophy within.Keywords: Advaita, Brahman, Dvaita, Jiva, Nimbarka, Rasa, Vedanta
Procedia PDF Downloads 299458 Effectiveness of Cold Calling on Students’ Behavior and Participation during Class Discussions: Punishment or Opportunity to Shine
Authors: Maimuna Akram, Khadija Zia, Sohaib Naseer
Abstract:
Pedagogical objectives and the nature of the course content may lead instructors to take varied approaches to selecting a student for the cold call, specifically in a studio setup where students work on different projects independently and show progress work time to time at scheduled critiques. Cold-calling often proves to be an effective tool in eliciting a response without enforcing judgment onto the recipients. While there is a mixed range of behavior exhibited by students who are cold-called, a classification of responses from anxiety-provoking to inspiring may be elicited; there is a need for a greater understanding of utilizing the exchanges in bringing about fruitful and engaging outcomes of studio discussions. This study aims to unravel the dimensions of utilizing the cold-call approach in a didactic exchange within studio pedagogy. A questionnaire survey was conducted in an undergraduate class at Arts and Design School. The impact of cold calling on students’ participation was determined through various parameters, including course choice, participation frequency, students’ comfortability, and teaching methodology. After analyzing the surveys, specific classroom teachers were interviewed to provide a qualitative perspective of the faculty. It was concluded that cold-calling increases students’ participation frequency and also increases preparation for class. Around 67% of students responded that teaching methods play an important role in learning activities and students’ participation during class discussions. 84% of participants agreed that cold calling is an effective way of learning. According to research, cold-calling can be done in large numbers without making students uncomfortable. As a result, the findings of this study support the use of this instructional method to encourage more students to participate in class discussions.Keywords: active learning, class discussion, class participation, cold calling, pedagogical methods, student engagement
Procedia PDF Downloads 36457 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach
Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar
Abstract:
Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI
Procedia PDF Downloads 153456 Impacts of Urbanization on Forest and Agriculture Areas in Savannakhet Province, Lao People's Democratic Republic
Authors: Chittana Phompila
Abstract:
The current increased population pushes increasing demands for natural resources and living space. In Laos, urban areas have been expanding rapidly in recent years. The rapid urbanization can have negative impacts on landscapes, including forest and agriculture lands. The primary objective of this research were to map current urban areas in a large city in Savannakhet province, in Laos, 2) to compare changes in urbanization between 1990 and 2018, and 3) to estimate forest and agriculture areas lost due to expansions of urban areas during the last over twenty years within study area. Landsat 8 data was used and existing GIS data was collected including spatial data on rivers, lakes, roads, vegetated areas and other land use/land covers). GIS data was obtained from the government sectors. Object based classification (OBC) approach was applied in ECognition for image processing and analysis of urban area using. Historical data from other Landsat instruments (Landsat 5 and 7) were used to allow us comparing changes in urbanization in 1990, 2000, 2010 and 2018 in this study area. Only three main land cover classes were focused and classified, namely forest, agriculture and urban areas. Change detection approach was applied to illustrate changes in built-up areas in these periods. Our study shows that the overall accuracy of map was 95% assessed, kappa~ 0.8. It is found that that there is an ineffective control over forest and land-use conversions from forests and agriculture to urban areas in many main cities across the province. A large area of agriculture and forest has been decreased due to this conversion. Uncontrolled urban expansion and inappropriate land use planning can lead to creating a pressure in our resource utilisation. As consequence, it can lead to food insecurity and national economic downturn in a long term.Keywords: urbanisation, forest cover, agriculture areas, Landsat 8 imagery
Procedia PDF Downloads 158455 Disclosure Extension of Oil and Gas Reserve Quantum
Authors: Ali Alsawayeh, Ibrahim Eldanfour
Abstract:
This paper examines the extent of disclosure of oil and gas reserve quantum in annual reports of international oil and gas exploration and production companies, particularly companies in untested international markets, such as Canada, the UK and the US, and seeks to determine the underlying factors that affect the level of disclosure on oil reserve quantum. The study is concerned with the usefulness of disclosure of oil and gas reserves quantum to investors and other users. Given the primacy of the annual report (10-k) as a source of supplemental reserves data about the company and as the channel through which companies disseminate information about their performance, the annual reports for one year (2009) were the central focus of the study. This comparative study seeks to establish whether differences exist between the sample companies, based on new disclosure requirements by the Securities and Exchange Commission (SEC) in respect of reserves classification and definition. The extent of disclosure of reserve is provided and compared among the selected companies. Statistical analysis is performed to determine whether any differences exist in the extent of disclosure of reserve under the determinant variables. This study shows that some factors would affect the extent of disclosure of reserve quantum in the above-mentioned countries, namely: company’s size, leverage and quality of auditor. Companies that provide reserves quantum in detail appear to display higher size. The findings also show that the level of leverage has affected companies’ reserves quantum disclosure. Indeed, companies that provide detailed reserves quantum disclosure tend to employ a ‘high-quality auditor’. In addition, the study found significant independent variable such as Profit Sharing Contracts (PSC). This factor could explain variations in the level of disclosure of oil reserve quantum between the contractor and host governments. The implementation of SEC oil and gas reporting requirements do not enhance companies’ valuation because the new rules are based only on past and present reserves information (proven reserves); hence, future valuation of oil and gas companies is missing for the market.Keywords: comparison, company characteristics, disclosure, reserve quantum, regulation
Procedia PDF Downloads 405454 Balanced Scorecard (BSC) Project : A Methodological Proposal for Decision Support in a Corporate Scenario
Authors: David de Oliveira Costa, Miguel Ângelo Lellis Moreira, Carlos Francisco Simões Gomes, Daniel Augusto de Moura Pereira, Marcos dos Santos
Abstract:
Strategic management is a fundamental process for global companies that intend to remain competitive in an increasingly dynamic and complex market. To do so, it is necessary to maintain alignment with their principles and values. The Balanced Scorecard (BSC) proposes to ensure that the overall business performance is based on different perspectives (financial, customer, internal processes, and learning and growth). However, relying solely on the BSC may not be enough to ensure the success of strategic management. It is essential that companies also evaluate and prioritize strategic projects that need to be implemented to ensure they are aligned with the business vision and contribute to achieving established goals and objectives. In this context, the proposition involves the incorporation of the SAPEVO-M multicriteria method to indicate the degree of relevance between different perspectives. Thus, the strategic objectives linked to these perspectives have greater weight in the classification of structural projects. Additionally, it is proposed to apply the concept of the Impact & Probability Matrix (I&PM) to structure and ensure that strategic projects are evaluated according to their relevance and impact on the business. By structuring the business's strategic management in this way, alignment and prioritization of projects and actions related to strategic planning are ensured. This ensures that resources are directed towards the most relevant and impactful initiatives. Therefore, the objective of this article is to present the proposal for integrating the BSC methodology, the SAPEVO-M multicriteria method, and the prioritization matrix to establish a concrete weighting of strategic planning and obtain coherence in defining strategic projects aligned with the business vision. This ensures a robust decision-making support process.Keywords: MCDA process, prioritization problematic, corporate strategy, multicriteria method
Procedia PDF Downloads 81453 Machine Learning Analysis of Eating Disorders Risk, Physical Activity and Psychological Factors in Adolescents: A Community Sample Study
Authors: Marc Toutain, Pascale Leconte, Antoine Gauthier
Abstract:
Introduction: Eating Disorders (ED), such as anorexia, bulimia, and binge eating, are psychiatric illnesses that mostly affect young people. The main symptoms concern eating (restriction, excessive food intake) and weight control behaviors (laxatives, vomiting). Psychological comorbidities (depression, executive function disorders, etc.) and problematic behaviors toward physical activity (PA) are commonly associated with ED. Acquaintances on ED risk factors are still lacking, and more community sample studies are needed to improve prevention and early detection. To our knowledge, studies are needed to specifically investigate the link between ED risk level, PA, and psychological risk factors in a community sample of adolescents. The aim of this study is to assess the relation between ED risk level, exercise (type, frequency, and motivations for engaging in exercise), and psychological factors based on the Jacobi risk factors model. We suppose that a high risk of ED will be associated with the practice of high caloric cost PA, motivations oriented to weight and shape control, and psychological disturbances. Method: An online survey destined for students has been sent to several middle schools and colleges in northwest France. This survey combined several questionnaires, the Eating Attitude Test-26 assessing ED risk; the Exercise Motivation Inventory–2 assessing motivations toward PA; the Hospital Anxiety and Depression Scale assessing anxiety and depression, the Contour Drawing Rating Scale; and the Body Esteem Scale assessing body dissatisfaction, Rosenberg Self-esteem Scale assessing self-esteem, the Exercise Dependence Scale-Revised assessing PA dependence, the Multidimensional Assessment of Interoceptive Awareness assessing interoceptive awareness and the Frost Multidimensional Perfectionism Scale assessing perfectionism. Machine learning analysis will be performed in order to constitute groups with a tree-based model clustering method, extract risk profile(s) with a bootstrap method comparison, and predict ED risk with a prediction method based on a decision tree-based model. Expected results: 1044 complete records have already been collected, and the survey will be closed at the end of May 2022. Records will be analyzed with a clustering method and a bootstrap method in order to reveal risk profile(s). Furthermore, a predictive tree decision method will be done to extract an accurate predictive model of ED risk. This analysis will confirm typical main risk factors and will give more data on presumed strong risk factors such as exercise motivations and interoceptive deficit. Furthermore, it will enlighten particular risk profiles with a strong level of proof and greatly contribute to improving the early detection of ED and contribute to a better understanding of ED risk factors.Keywords: eating disorders, risk factors, physical activity, machine learning
Procedia PDF Downloads 83452 Predicting Low Birth Weight Using Machine Learning: A Study on 53,637 Ethiopian Birth Data
Authors: Kehabtimer Shiferaw Kotiso, Getachew Hailemariam, Abiy Seifu Estifanos
Abstract:
Introduction: Despite the highest share of low birth weight (LBW) for neonatal mortality and morbidity, predicting births with LBW for better intervention preparation is challenging. This study aims to predict LBW using a dataset encompassing 53,637 birth cohorts collected from 36 primary hospitals across seven regions in Ethiopia from February 2022 to June 2024. Methods: We identified ten explanatory variables related to maternal and neonatal characteristics, including maternal education, age, residence, history of miscarriage or abortion, history of preterm birth, type of pregnancy, number of livebirths, number of stillbirths, antenatal care frequency, and sex of the fetus to predict LBW. Using WEKA 3.8.2, we developed and compared seven machine learning algorithms. Data preprocessing included handling missing values, outlier detection, and ensuring data integrity in birth weight records. Model performance was evaluated through metrics such as accuracy, precision, recall, F1-score, and area under the Receiver Operating Characteristic curve (ROC AUC) using 10-fold cross-validation. Results: The results demonstrated that the decision tree, J48, logistic regression, and gradient boosted trees model achieved the highest accuracy (94.5% to 94.6%) with a precision of 93.1% to 93.3%, F1-score of 92.7% to 93.1%, and ROC AUC of 71.8% to 76.6%. Conclusion: This study demonstrates the effectiveness of machine learning models in predicting LBW. The high accuracy and recall rates achieved indicate that these models can serve as valuable tools for healthcare policymakers and providers in identifying at-risk newborns and implementing timely interventions to achieve the sustainable developmental goal (SDG) related to neonatal mortality.Keywords: low birth weight, machine learning, classification, neonatal mortality, Ethiopia
Procedia PDF Downloads 21451 Automatic Lexicon Generation for Domain Specific Dataset for Mining Public Opinion on China Pakistan Economic Corridor
Authors: Tayyaba Azim, Bibi Amina
Abstract:
The increase in the popularity of opinion mining with the rapid growth in the availability of social networks has attracted a lot of opportunities for research in the various domains of Sentiment Analysis and Natural Language Processing (NLP) using Artificial Intelligence approaches. The latest trend allows the public to actively use the internet for analyzing an individual’s opinion and explore the effectiveness of published facts. The main theme of this research is to account the public opinion on the most crucial and extensively discussed development projects, China Pakistan Economic Corridor (CPEC), considered as a game changer due to its promise of bringing economic prosperity to the region. So far, to the best of our knowledge, the theme of CPEC has not been analyzed for sentiment determination through the ML approach. This research aims to demonstrate the use of ML approaches to spontaneously analyze the public sentiment on Twitter tweets particularly about CPEC. Support Vector Machine SVM is used for classification task classifying tweets into positive, negative and neutral classes. Word2vec and TF-IDF features are used with the SVM model, a comparison of the trained model on manually labelled tweets and automatically generated lexicon is performed. The contributions of this work are: Development of a sentiment analysis system for public tweets on CPEC subject, construction of an automatic generation of the lexicon of public tweets on CPEC, different themes are identified among tweets and sentiments are assigned to each theme. It is worth noting that the applications of web mining that empower e-democracy by improving political transparency and public participation in decision making via social media have not been explored and practised in Pakistan region on CPEC yet.Keywords: machine learning, natural language processing, sentiment analysis, support vector machine, Word2vec
Procedia PDF Downloads 148450 The Types of Annuities with Flexible Premium
Authors: Deniz Ünal Özpalamutcu, Burcu Altman
Abstract:
Actuaria uses mathematics, statistic and financial information when analyzing the financial impacts of uncertainties, risks, insurance and pension related issues. In other words, it deals with the likelihood of potential risks, their financial impacts and especially the financial measures. Handling these measures require some long-term payment and investments. So, it is obvious it is inevitable to plan the periodic payments with equal time intervals considering also the changing value of money over time. These series of payment made specific intervals of time is called annuity or rant. In literature, rants are classified based on start and end dates, start times, payments times, payments amount or frequency. Classification of rants based on payment amounts changes based on the constant, descending or ascending payment methods. The literature about handling the annuity is very limited. Yet in a daily life, especially in today’s world where the economic issues gained a prominence, it is very crucial to use the variable annuity method in line with the demands of the customers. In this study, the types of annuities with flexible payment are discussed. In other words, we focus on calculating payment amount of a period by adding a certain percentage of previous period payment was studied. While studying this problem, formulas were created considering both start and end period payments for cash value and accumulated. Also increase of each period payment by r interest rate each period payments calculated with previous periods increases. And the problem of annuities (rants) of which each period payment increased with previous periods’ increase by r interest rate has been analyzed. Cash value and accumulated value calculation of this problem were studied separately based on the period start/end and their relations were expressed by formulas.Keywords: actuaria, annuity, flexible payment, rant
Procedia PDF Downloads 221449 A Study on Exploring Employees' Well-Being in Gaming Workplaces Prior to and after the Chinese Government Crackdowns on Corruption
Authors: Ying Chuan Wang, Zhang Tao
Abstract:
The aim of this article intends to explore the differences of well-being of employees in casino hotels before and after the Chinese government began to fight corruption. This researcher also attempted to find out the relationship between work pressure and well-being of employees in gambling workplaces before and after the Chinese government crackdowns the corruption. The category of well-being including life well-being, workplace well-being, and psychological well-being was included for analyzing well-being of employees in gaming workplaces. In addition, the psychological pressure classification was applied into this study and the Job Content Questionnaire (JCQ) would be adopted on investigating employees’ work pressure in terms of decision latitude, psychological demands, and workplace support. This study is a quantitative approach research and was conducted in March 2017. A purposive sampling was used in this study. A total of valid 339 responses were collected and the participants were casino hotel employees. The findings showed that decision latitude was significantly different prior to and after Chinese government crackdowns on corruption. Moreover, workplace support was strongly significantly related to employees’ well-being before Chinese government crackdowns. Decision latitude was strongly significantly related to employees’ well-being after Chinese government crackdowns. The findings suggest that employees’ work pressure affects their well being. In particular, because of workplace supports, it may alleviate employees’ work pressure and affect their perceptions of well-being but only prior to fighting the crackdowns. Importantly, decision latitude has become an essential factor affecting their well-being after the crackdown. It is finally hoped that the findings of this study provide suggestion to the managerial levels of hospitality industries. It is important to enhance employees’ decision latitude. Offering training courses to equip employees’ skills could be a possible way to reduce work pressure. In addition, establishing career path for the employees to pursuit is essential for their self-development and the improvement of well being. This would be crucial for casino hotels’ sustainable development and strengthening their competitiveness.Keywords: well-being, work pressure, Casino hotels’ employees, gaming workplace
Procedia PDF Downloads 224448 Analysis of Buddhist Rock Carvings in Diamer Basha Dam Reservoir Area, Gilgit-Baltistan, Pakistan
Authors: Abdul Ghani Khan
Abstract:
This paper focuses on the Buddhist rock carvings in the Diamer-Basha reservoir area, Gilgit-Baltistan, which is perhaps the largest rock art province of the world. The study region has thousands of rock carvings, particularly of the stupa carvings, engraved by artists, devotees or pilgrims, merchants have left their marks in the landscape or for the propagation of Buddhism. The Pak-German Archaeological Mission prepared, documented, and published the extensive catalogues of these carvings. Though, to date, very little systematic or statistically driven analysis was undertaken for in-depth understandings of the Buddhist rock carving tradition of the study region. This paper had made an attempt to examine stupa carvings and their constituent parts from the five selected sites, namely Oshibat, Shing Nala, Gichi Nala, Dadam Das, and Chilas Bridge. The statistical analyses and classification of the stupa carvings and their chronological contexts were carried out with the help of modern scientific tools such as STATA, FileMaker Pro, and MapSource softwares. The study had found that the tradition of stupa carvings on the surfaces of the rocks at the five selected sites continued for around 900 years, from the 1st century BCE to 8th century CE. There is a variation within the chronological settings of each of selected sites, possibly impacted by their utilization within particular landscapes, such as political (for example, change in political administrations or warfare) landscapes and geographical (for example, shifting of routes). The longer existence of the stupa carvings' tradition at these specific locations also indicates their central position on the trade and communication routes, and these were possibly also linked with religious ideologies within their particular times. The analyses of the different architectural elements of stupa carvings in the study area show that this tradition had structural similarities and differences in temporal and spatial contexts.Keywords: rock carvings, stupa, stupa carvings, Buddhism, Pak-German archaeological mission
Procedia PDF Downloads 223447 Preparing Data for Calibration of Mechanistic-Empirical Pavement Design Guide in Central Saudi Arabia
Authors: Abdulraaof H. Alqaili, Hamad A. Alsoliman
Abstract:
Through progress in pavement design developments, a pavement design method was developed, which is titled the Mechanistic Empirical Pavement Design Guide (MEPDG). Nowadays, the evolution in roads network and highways is observed in Saudi Arabia as a result of increasing in traffic volume. Therefore, the MEPDG currently is implemented for flexible pavement design by the Saudi Ministry of Transportation. Implementation of MEPDG for local pavement design requires the calibration of distress models under the local conditions (traffic, climate, and materials). This paper aims to prepare data for calibration of MEPDG in Central Saudi Arabia. Thus, the first goal is data collection for the design of flexible pavement from the local conditions of the Riyadh region. Since, the modifying of collected data to input data is needed; the main goal of this paper is the analysis of collected data. The data analysis in this paper includes processing each: Trucks Classification, Traffic Growth Factor, Annual Average Daily Truck Traffic (AADTT), Monthly Adjustment Factors (MAFi), Vehicle Class Distribution (VCD), Truck Hourly Distribution Factors, Axle Load Distribution Factors (ALDF), Number of axle types (single, tandem, and tridem) per truck class, cloud cover percent, and road sections selected for the local calibration. Detailed descriptions of input parameters are explained in this paper, which leads to providing of an approach for successful implementation of MEPDG. Local calibration of MEPDG to the conditions of Riyadh region can be performed based on the findings in this paper.Keywords: mechanistic-empirical pavement design guide (MEPDG), traffic characteristics, materials properties, climate, Riyadh
Procedia PDF Downloads 226446 Land Use Land Cover Changes in Response to Urban Sprawl within North-West Anatolia, Turkey
Authors: Melis Inalpulat, Levent Genc
Abstract:
In the present study, an attempt was made to state the Land Use Land Cover (LULC) transformation over three decades around the urban regions of Balıkesir, Bursa, and Çanakkale provincial centers (PCs) in Turkey. Landsat imageries acquired in 1984, 1999 and 2014 were used to determine the LULC change. Images were classified using the supervised classification technique and five main LULC classes were considered including forest (F), agricultural land (A), residential area (urban) - bare soil (R-B), water surface (W), and other (O). Change detection analyses were conducted for 1984-1999 and 1999-2014, and the results were evaluated. Conversions of LULC types to R-B class were investigated. In addition, population changes (1985-2014) were assessed depending on census data, the relations between population and the urban areas were stated, and future populations and urban area needs were forecasted for 2030. The results of LULC analysis indicated that urban areas, which are covered under R-B class, were expanded in all PCs. During 1984-1999 R-B class within Balıkesir, Bursa and Çanakkale PCs were found to have increased by 7.1%, 8.4%, and 2.9%, respectively. The trend continued in the 1999-2014 term and the increment percentages reached to 15.7%, 15.5%, and 10.2% at the end of 30-year period (1984-2014). Furthermore, since A class in all provinces was found to be the principal contributor for the R-B class, urban sprawl lead to the loss of agricultural lands. Moreover, the areas of R-B classes were highly correlated with population within all PCs (R2>0.992). Depending on this situation, both future populations and R-B class areas were forecasted. The estimated values of increase in the R-B class areas for Balıkesir, Bursa, and Çanakkale PCs were 1,586 ha, 7,999 ha and 854 ha, respectively. Due to this fact, the forecasted values for 2,030 are 7,838 ha, 27,866, and 2,486 ha for Balıkesir, Bursa, and Çanakkale, and thus, 7.7%, 8.2%, and 9.7% more R-B class areas are expected to locate in PCs in respect to the same order.Keywords: landsat, LULC change, population, urban sprawl
Procedia PDF Downloads 262445 Explanatory Variables for Crash Injury Risk Analysis
Authors: Guilhermina Torrao
Abstract:
An extensive number of studies have been conducted to determine the factors which influence crash injury risk (CIR); however, uncertainties inherent to selected variables have been neglected. A review of existing literature is required to not only obtain an overview of the variables and measures but also ascertain the implications when comparing studies without a systematic view of variable taxonomy. Therefore, the aim of this literature review is to examine and report on peer-reviewed studies in the field of crash analysis and to understand the implications of broad variations in variable selection in CIR analysis. The objective of this study is to demonstrate the variance in variable selection and classification when modeling injury risk involving occupants of light vehicles by presenting an analytical review of the literature. Based on data collected from 64 journal publications reported over the past 21 years, the analytical review discusses the variables selected by each study across an organized list of predictors for CIR analysis and provides a better understanding of the contribution of accident and vehicle factors to injuries acquired by occupants of light vehicles. A cross-comparison analysis demonstrates that almost half the studies (48%) did not consider vehicle design specifications (e.g., vehicle weight), whereas, for those that did, the vehicle age/model year was the most selected explanatory variable used by 41% of the literature studies. For those studies that included speed risk factor in their analyses, the majority (64%) used the legal speed limit data as a ‘proxy’ of vehicle speed at the moment of a crash, imposing limitations for CIR analysis and modeling. Despite the proven efficiency of airbags in minimizing injury impact following a crash, only 22% of studies included airbag deployment data. A major contribution of this study is to highlight the uncertainty linked to explanatory variable selection and identify opportunities for improvements when performing future studies in the field of road injuries.Keywords: crash, exploratory, injury, risk, variables, vehicle
Procedia PDF Downloads 135444 A Structuring and Classification Method for Assigning Application Areas to Suitable Digital Factory Models
Authors: R. Hellmuth
Abstract:
The method of factory planning has changed a lot, especially when it is about planning the factory building itself. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity and Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Furthermore, digital building models are increasingly being used in factories to support facility management and manufacturing processes. The main research question of this paper is, therefore: What kind of digital factory model is suitable for the different areas of application during the operation of a factory? First, different types of digital factory models are investigated, and their properties and usabilities for use cases are analysed. Within the scope of investigation are point cloud models, building information models, photogrammetry models, and these enriched with sensor data are examined. It is investigated which digital models allow a simple integration of sensor data and where the differences are. Subsequently, possible application areas of digital factory models are determined by means of a survey and the respective digital factory models are assigned to the application areas. Finally, an application case from maintenance is selected and implemented with the help of the appropriate digital factory model. It is shown how a completely digitalized maintenance process can be supported by a digital factory model by providing information. Among other purposes, the digital factory model is used for indoor navigation, information provision, and display of sensor data. In summary, the paper shows a structuring of digital factory models that concentrates on the geometric representation of a factory building and its technical facilities. A practical application case is shown and implemented. Thus, the systematic selection of digital factory models with the corresponding application cases is evaluated.Keywords: building information modeling, digital factory model, factory planning, maintenance
Procedia PDF Downloads 110443 Vibro-Tactile Equalizer for Musical Energy-Valence Categorization
Authors: Dhanya Nair, Nicholas Mirchandani
Abstract:
Musical haptic systems can enhance a listener’s musical experience while providing an alternative platform for the hearing impaired to experience music. Current music tactile technologies focus on representing tactile metronomes to synchronize performers or encoding musical notes into distinguishable (albeit distracting) tactile patterns. There is growing interest in the development of musical haptic systems to augment the auditory experience, although the haptic-music relationship is still not well understood. This paper represents a tactile music interface that provides vibrations to multiple fingertips in synchronicity with auditory music. Like an audio equalizer, different frequency bands are filtered out, and the power in each frequency band is computed and converted to a corresponding vibrational strength. These vibrations are felt on different fingertips, each corresponding to a different frequency band. Songs with music from different spectrums, as classified by their energy and valence, were used to test the effectiveness of the system and to understand the relationship between music and tactile sensations. Three participants were trained on one song categorized as sad (low energy and low valence score) and one song categorized as happy (high energy and high valence score). They were trained both with and without auditory feedback (listening to the song while experiencing the tactile music on their fingertips and then experiencing the vibrations alone without the music). The participants were then tested on three songs from both categories, without any auditory feedback, and were asked to classify the tactile vibrations they felt into either category. The participants were blinded to the songs being tested and were not provided any feedback on the accuracy of their classification. These participants were able to classify the music with 100% accuracy. Although the songs tested were on two opposite spectrums (sad/happy), the preliminary results show the potential of utilizing a vibrotactile equalizer, like the one presented, for augmenting musical experience while furthering the current understanding of music tactile relationship.Keywords: haptic music relationship, tactile equalizer, tactile music, vibrations and mood
Procedia PDF Downloads 181442 Creative Mapping Landuse and Human Activities: From the Inventories of Factories to the History of the City and Citizens
Authors: R. Tamborrino, F. Rinaudo
Abstract:
Digital technologies offer possibilities to effectively convert historical archives into instruments of knowledge able to provide a guide for the interpretation of historical phenomena. Digital conversion and management of those documents allow the possibility to add other sources in a unique and coherent model that permits the intersection of different data able to open new interpretations and understandings. Urban history uses, among other sources, the inventories that register human activities in a specific space (e.g. cadastres, censuses, etc.). The geographic localisation of that information inside cartographic supports allows for the comprehension and visualisation of specific relationships between different historical realities registering both the urban space and the peoples living there. These links that merge the different nature of data and documentation through a new organisation of the information can suggest a new interpretation of other related events. In all these kinds of analysis, the use of GIS platforms today represents the most appropriate answer. The design of the related databases is the key to realise the ad-hoc instrument to facilitate the analysis and the intersection of data of different origins. Moreover, GIS has become the digital platform where it is possible to add other kinds of data visualisation. This research deals with the industrial development of Turin at the beginning of the 20th century. A census of factories realized just prior to WWI provides the opportunity to test the potentialities of GIS platforms for the analysis of urban landscape modifications during the first industrial development of the town. The inventory includes data about location, activities, and people. GIS is shaped in a creative way linking different sources and digital systems aiming to create a new type of platform conceived as an interface integrating different kinds of data visualisation. The data processing allows linking this information to an urban space, and also visualising the growth of the city at that time. The sources, related to the urban landscape development in that period, are of a different nature. The emerging necessity to build, enlarge, modify and join different buildings to boost the industrial activities, according to their fast development, is recorded by different official permissions delivered by the municipality and now stored in the Historical Archive of the Municipality of Turin. Those documents, which are reports and drawings, contain numerous data on the buildings themselves, including the block where the plot is located, the district, and the people involved such as the owner, the investor, and the engineer or architect designing the industrial building. All these collected data offer the possibility to firstly re-build the process of change of the urban landscape by using GIS and 3D modelling technologies thanks to the access to the drawings (2D plans, sections and elevations) that show the previous and the planned situation. Furthermore, they access information for different queries of the linked dataset that could be useful for different research and targets such as economics, biographical, architectural, or demographical. By superimposing a layer of the present city, the past meets to the present-industrial heritage, and people meet urban history.Keywords: digital urban history, census, digitalisation, GIS, modelling, digital humanities
Procedia PDF Downloads 191441 Freight Time and Cost Optimization in Complex Logistics Networks, Using a Dimensional Reduction Method and K-Means Algorithm
Authors: Egemen Sert, Leila Hedayatifar, Rachel A. Rigg, Amir Akhavan, Olha Buchel, Dominic Elias Saadi, Aabir Abubaker Kar, Alfredo J. Morales, Yaneer Bar-Yam
Abstract:
The complexity of providing timely and cost-effective distribution of finished goods from industrial facilities to customers makes effective operational coordination difficult, yet effectiveness is crucial for maintaining customer service levels and sustaining a business. Logistics planning becomes increasingly complex with growing numbers of customers, varied geographical locations, the uncertainty of future orders, and sometimes extreme competitive pressure to reduce inventory costs. Linear optimization methods become cumbersome or intractable due to a large number of variables and nonlinear dependencies involved. Here we develop a complex systems approach to optimizing logistics networks based upon dimensional reduction methods and apply our approach to a case study of a manufacturing company. In order to characterize the complexity in customer behavior, we define a “customer space” in which individual customer behavior is described by only the two most relevant dimensions: the distance to production facilities over current transportation routes and the customer's demand frequency. These dimensions provide essential insight into the domain of effective strategies for customers; direct and indirect strategies. In the direct strategy, goods are sent to the customer directly from a production facility using box or bulk trucks. In the indirect strategy, in advance of an order by the customer, goods are shipped to an external warehouse near a customer using trains and then "last-mile" shipped by trucks when orders are placed. Each strategy applies to an area of the customer space with an indeterminate boundary between them. Specific company policies determine the location of the boundary generally. We then identify the optimal delivery strategy for each customer by constructing a detailed model of costs of transportation and temporary storage in a set of specified external warehouses. Customer spaces help give an aggregate view of customer behaviors and characteristics. They allow policymakers to compare customers and develop strategies based on the aggregate behavior of the system as a whole. In addition to optimization over existing facilities, using customer logistics and the k-means algorithm, we propose additional warehouse locations. We apply these methods to a medium-sized American manufacturing company with a particular logistics network, consisting of multiple production facilities, external warehouses, and customers along with three types of shipment methods (box truck, bulk truck and train). For the case study, our method forecasts 10.5% savings on yearly transportation costs and an additional 4.6% savings with three new warehouses.Keywords: logistics network optimization, direct and indirect strategies, K-means algorithm, dimensional reduction
Procedia PDF Downloads 139440 Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection
Authors: Hamidullah Binol, Abdullah Bal
Abstract:
Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat.Keywords: food (ground meat) inspection, Fukunaga-Koontz transform, hyperspectral imaging, kernel methods
Procedia PDF Downloads 431439 Effect of Organics on Radionuclide Partitioning in Nuclear Fuel Storage Ponds
Authors: Hollie Ashworth, Sarah Heath, Nick Bryan, Liam Abrahamsen, Simon Kellet
Abstract:
Sellafield has a number of fuel storage ponds, some of which have been open to the air for a number of decades. This has caused corrosion of the fuel resulting in a release of some activity into solution, reduced water clarity, and accumulation of sludge at the bottom of the pond consisting of brucite (Mg(OH)2) and other uranium corrosion products. Both of these phases are also present as colloidal material. 90Sr and 137Cs are known to constitute a small volume of the radionuclides present in the pond, but a large fraction of the activity, thus they are most at risk of challenging effluent discharge limits. Organic molecules are known to be present also, due to the ponds being open to the air, with occasional algal blooms restricting visibility further. The contents of the pond need to be retrieved and safely stored, but dealing with such a complex, undefined inventory poses a unique challenge. This work aims to determine and understand the sorption-desorption interactions of 90Sr and 137Cs to brucite and uranium phases, with and without the presence of organic molecules from chemical degradation and bio-organisms. The influence of organics on these interactions has not been widely studied. Partitioning of these radionuclides and organic molecules has been determined through LSC, ICP-AES/MS, and UV-vis spectrophotometry coupled with ultrafiltration in both binary and ternary systems. Further detailed analysis into the surface and bonding environment of these components is being investigated through XAS techniques and PHREEQC modelling. Experiments were conducted in CO2-free or N2 atmosphere across a high pH range in order to best simulate conditions in the pond. Humic acid used in brucite systems demonstrated strong competition against 90Sr for the brucite surface regardless of the order of addition of components. Variance of pH did have a small effect, however this range (10.5-11.5) is close to the pHpzc of brucite, causing the surface to buffer the solution pH towards that value over the course of the experiment. Sorption of 90Sr to UO2 obeyed Ho’s rate equation and demonstrated a slow second-order reaction with respect to the sharing of valence electrons from the strontium atom, with the initial rate clearly dependent on pH, with the equilibrium concentration calculated at close to 100% sorption. There was no influence of humic acid seen when introduced to these systems. Sorption of 137Cs to UO3 was significant, with more than 95% sorbed in just over 24 hours. Again, humic acid showed no influence when introduced into this system. Both brucite and uranium based systems will be studied with the incorporation of cyanobacterial cultures harvested at different stages of growth. Investigation of these systems provides insight into, and understanding of, the effect of organics on radionuclide partitioning to brucite and uranium phases at high pH. The majority of sorption-desorption work for radionuclides has been conducted at neutral to acidic pH values, and mostly without organics. These studies are particularly important for the characterisation of legacy wastes at Sellafield, with a view to their safe retrieval and storage.Keywords: caesium, legacy wastes, organics, sorption-desorption, strontium, uranium
Procedia PDF Downloads 282