Search results for: imperialist competition algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4467

Search results for: imperialist competition algorithm

2037 Artificial Intelligence Ethics: What Business Leaders Need to Consider for the Future

Authors: Kylie Leonard

Abstract:

Investment in artificial intelligence (AI) can be an attractive opportunity for business leaders as there are many easy-to-see benefits. These benefits include task completion rates, overall cost, and better forecasting. Business leaders are often unaware of the challenges that can accompany AI, such as data center costs, access to data, employee acceptance, and privacy concerns. In addition to the benefits and challenges of AI, it is important to practice AI ethics to ensure the safe creation of AI. AI ethics include aspects of algorithm bias, limits in transparency, and surveillance. To be a good business leader, it is critical to address all the considerations involving the challenges of AI and AI ethics.

Keywords: artificial intelligence, artificial intelligence ethics, business leaders, business concerns

Procedia PDF Downloads 147
2036 Grid Pattern Recognition and Suppression in Computed Radiographic Images

Authors: Igor Belykh

Abstract:

Anti-scatter grids used in radiographic imaging for the contrast enhancement leave specific artifacts. Those artifacts may be visible or may cause Moiré effect when a digital image is resized on a diagnostic monitor. In this paper, we propose an automated grid artifacts detection and suppression algorithm which is still an actual problem. Grid artifacts detection is based on statistical approach in spatial domain. Grid artifacts suppression is based on Kaiser bandstop filter transfer function design and application avoiding ringing artifacts. Experimental results are discussed and concluded with description of advantages over existing approaches.

Keywords: grid, computed radiography, pattern recognition, image processing, filtering

Procedia PDF Downloads 283
2035 Biophysical Study of the Interaction of Harmalol with Nucleic Acids of Different Motifs: Spectroscopic and Calorimetric Approaches

Authors: Kakali Bhadra

Abstract:

Binding of small molecules to DNA and recently to RNA, continues to attract considerable attention for developing effective therapeutic agents for control of gene expression. This work focuses towards understanding interaction of harmalol, a dihydro beta-carboline alkaloid, with different nucleic acid motifs viz. double stranded CT DNA, single stranded A-form poly(A), double-stranded A-form of poly(C)·poly(G) and clover leaf tRNAphe by different spectroscopic, calorimetric and molecular modeling techniques. Results of this study converge to suggest that (i) binding constant varied in the order of CT DNA > poly(C)·poly(G) > tRNAphe > poly(A), (ii) non-cooperative binding of harmalol to poly(C)·poly(G) and poly(A) and cooperative binding with CT DNA and tRNAphe, (iii) significant structural changes of CT DNA, poly(C)·poly(G) and tRNAphe with concomitant induction of optical activity in the bound achiral alkaloid molecules, while with poly(A) no intrinsic CD perturbation was observed, (iv) the binding was predominantly exothermic, enthalpy driven, entropy favoured with CT DNA and poly(C)·poly(G) while it was entropy driven with tRNAphe and poly(A), (v) a hydrophobic contribution and comparatively large role of non-polyelectrolytic forces to Gibbs energy changes with CT DNA, poly(C)·poly(G) and tRNAphe, and (vi) intercalated state of harmalol with CT DNA and poly(C)·poly(G) structure as revealed from molecular docking and supported by the viscometric data. Furthermore, with competition dialysis assay it was shown that harmalol prefers hetero GC sequences. All these findings unequivocally pointed out that harmalol prefers binding with ds CT DNA followed by ds poly(C)·poly(G), clover leaf tRNAphe and least with ss poly(A). The results highlight the importance of structural elements in these natural beta-carboline alkaloids in stabilizing different DNA and RNA of various motifs for developing nucleic acid based better therapeutic agents.

Keywords: calorimetry, docking, DNA/RNA-alkaloid interaction, harmalol, spectroscopy

Procedia PDF Downloads 228
2034 Similarity Based Retrieval in Case Based Reasoning for Analysis of Medical Images

Authors: M. Dasgupta, S. Banerjee

Abstract:

Content Based Image Retrieval (CBIR) coupled with Case Based Reasoning (CBR) is a paradigm that is becoming increasingly popular in the diagnosis and therapy planning of medical ailments utilizing the digital content of medical images. This paper presents a survey of some of the promising approaches used in the detection of abnormalities in retina images as well in mammographic screening and detection of regions of interest in MRI scans of the brain. We also describe our proposed algorithm to detect hard exudates in fundus images of the retina of Diabetic Retinopathy patients.

Keywords: case based reasoning, exudates, retina image, similarity based retrieval

Procedia PDF Downloads 348
2033 An Online 3D Modeling Method Based on a Lossless Compression Algorithm

Authors: Jiankang Wang, Hongyang Yu

Abstract:

This paper proposes a portable online 3D modeling method. The method first utilizes a depth camera to collect data and compresses the depth data using a frame-by-frame lossless data compression method. The color image is encoded using the H.264 encoding format. After the cloud obtains the color image and depth image, a 3D modeling method based on bundlefusion is used to complete the 3D modeling. The results of this study indicate that this method has the characteristics of portability, online, and high efficiency and has a wide range of application prospects.

Keywords: 3D reconstruction, bundlefusion, lossless compression, depth image

Procedia PDF Downloads 82
2032 Development of E-Tendering Models for Nigerian Public Procuring Entities

Authors: Bello Abdullahi, Kabir Bala, Yahaya M. Ibrahim, Ahmed D. Ibrahim

Abstract:

Public sector tendering has traditionally been conducted using manual paper-based processes which are known to be inefficient, less transparent, and more prone to manipulations and errors. However, the advent of the Internet and its associated technologies has led to the development of numerous e-Tendering systems that addressed many of the problems associated with the manual paper-based tendering system. Currently, in Nigeria, the public tendering processes are largely conducted based on manual paper-based system that is bedevilled by a number of problems such as inordinate delays, inefficiencies, manipulation of the tender evaluation process, corruption, lack of transparency and competition, among other problems. These problems can be addressed through the adoption of existing web-based e-Tendering systems which are known to address most of these problems. However, these existing e-Tendering systems that have been developed are not based on the Nigerian legal procurement processes and as such their suitability for local application is very limited. This paper is part of a larger study that attempt to address this problem through the development of an e-Tendering system that is based on the requirements of the Nigerian public procuring entities. In this paper, the identified tendering processes commonly used by Nigerian public procuring entities in the selection of construction sources are presented. A multi-methods research approach was used to identify those tendering processes. Specifically, 19 existing business use cases used by Nigerian public procuring entities were identified and 61 system use cases were prescribed based on the identified business use cases. The use cases were used as the basis for the development of domain and software conceptual models. The models were successfully used to guide the development of an e-Tendering system called NPS-eTender. Ripple and Unified Process were adopted as the software development methodologies.

Keywords: e-tendering, e-procurement, requirement model, conceptual model, public sector tendering, public procurement

Procedia PDF Downloads 195
2031 Descent Algorithms for Optimization Algorithms Using q-Derivative

Authors: Geetanjali Panda, Suvrakanti Chakraborty

Abstract:

In this paper, Newton-like descent methods are proposed for unconstrained optimization problems, which use q-derivatives of the gradient of an objective function. First, a local scheme is developed with alternative sufficient optimality condition, and then the method is extended to a global scheme. Moreover, a variant of practical Newton scheme is also developed introducing a real sequence. Global convergence of these schemes is proved under some mild conditions. Numerical experiments and graphical illustrations are provided. Finally, the performance profiles on a test set show that the proposed schemes are competitive to the existing first-order schemes for optimization problems.

Keywords: Descent algorithm, line search method, q calculus, Quasi Newton method

Procedia PDF Downloads 398
2030 Turin, from Factory City to Talents Power Player: The Role of Private Philanthropy Agents of Innovation in the Revolution of Human Capital Market in the Contemporary Socio-Urban Scenario

Authors: Renato Roda

Abstract:

With the emergence of the so-called 'Knowledge Society', the implementation of policies to attract, grow and retain talents, in an academic context as well, has become critical –both in the perspective of didactics and research and as far as administration and institutional management are concerned. At the same time, the contemporary philanthropic entities/organizations, which are evolving from traditional types of social support towards new styles of aid, envisaged to go beyond mere monetary donations, face the challenge of brand-new forms of complexity in supporting such specific dynamics of the global human capital market. In this sense, it becomes unavoidable for the philanthropic foundation, while carrying out their daily charitable tasks, to resort to innovative ways to facilitate the acquisition and the promotion of talents by academic and research institutions. In order to deepen such a specific perspective, this paper features the case of Turin, former 'factory city' of Italy’s North West, headquarters -and main reference territory- of Italy’s largest and richest private formerly bank-based philanthropic foundation, the Fondazione Compagnia di San Paolo. While it was assessed and classified as 'medium' in the city Global Talent Competitiveness Index (GTCI) of 2020, Turin has nevertheless acquired over the past months status of impact laboratory for a whole series of innovation strategies in the competition for the acquisition of excellence human capital. Leading actors of this new city vision are the foundations with their specifically adjusted financial engagement and a consistent role of stimulus towards innovation for research and education institutions.

Keywords: human capital, post-Fordism, private foundation, war on talents

Procedia PDF Downloads 171
2029 A Nonlinear Parabolic Partial Differential Equation Model for Image Enhancement

Authors: Tudor Barbu

Abstract:

We present a robust nonlinear parabolic partial differential equation (PDE)-based denoising scheme in this article. Our approach is based on a second-order anisotropic diffusion model that is described first. Then, a consistent and explicit numerical approximation algorithm is constructed for this continuous model by using the finite-difference method. Finally, our restoration experiments and method comparison, which prove the effectiveness of this proposed technique, are discussed in this paper.

Keywords: anisotropic diffusion, finite differences, image denoising and restoration, nonlinear PDE model, anisotropic diffusion, numerical approximation schemes

Procedia PDF Downloads 313
2028 Algorithm for Modelling Land Surface Temperature and Land Cover Classification and Their Interaction

Authors: Jigg Pelayo, Ricardo Villar, Einstine Opiso

Abstract:

The rampant and unintended spread of urban areas resulted in increasing artificial component features in the land cover types of the countryside and bringing forth the urban heat island (UHI). This paved the way to wide range of negative influences on the human health and environment which commonly relates to air pollution, drought, higher energy demand, and water shortage. Land cover type also plays a relevant role in the process of understanding the interaction between ground surfaces with the local temperature. At the moment, the depiction of the land surface temperature (LST) at city/municipality scale particularly in certain areas of Misamis Oriental, Philippines is inadequate as support to efficient mitigations and adaptations of the surface urban heat island (SUHI). Thus, this study purposely attempts to provide application on the Landsat 8 satellite data and low density Light Detection and Ranging (LiDAR) products in mapping out quality automated LST model and crop-level land cover classification in a local scale, through theoretical and algorithm based approach utilizing the principle of data analysis subjected to multi-dimensional image object model. The paper also aims to explore the relationship between the derived LST and land cover classification. The results of the presented model showed the ability of comprehensive data analysis and GIS functionalities with the integration of object-based image analysis (OBIA) approach on automating complex maps production processes with considerable efficiency and high accuracy. The findings may potentially lead to expanded investigation of temporal dynamics of land surface UHI. It is worthwhile to note that the environmental significance of these interactions through combined application of remote sensing, geographic information tools, mathematical morphology and data analysis can provide microclimate perception, awareness and improved decision-making for land use planning and characterization at local and neighborhood scale. As a result, it can aid in facilitating problem identification, support mitigations and adaptations more efficiently.

Keywords: LiDAR, OBIA, remote sensing, local scale

Procedia PDF Downloads 282
2027 The Acute Effects of a Warm-Up Including Different Dynamic Stretching on Hamstring Stiffness, Flexibility, and Strength

Authors: Che Hsiu Chen, Kuo Wei Tseng, Zih Jian Huang, Hon Wen Cheng

Abstract:

A typical warm-up contains both stretching exercises and jogging. The static stretching prior to training or competition may cause detrimental effects to athletic performance. However, it is unclear whether different types of dynamic stretching exercises had different acute effects on knee flexors stiffness, flexibility, and strength. The purpose of this study was to analyze the knee flexors stiffness, flexibility, and strength gains after dynamic straight leg raise (DSLR) and dynamic modified toe-touch (MTT) stretching. Sixteen healthy university active men (height 176.27 ± 4.03 cm; weight 72.27 ± 8.90 kg; age 22.09 ± 2.31 years). After 5 minutes (8km/h) of running subjects performed 2 randomly ordered stretching protocols: DSLR and MTT stretching protocols. There were a total of six, 30 seconds bouts of dynamic stretching (15 repetitions) with 30seconds rest between bouts. The outcome measures were maximal voluntary isokinetic concentric hamstring strength (60°/s), muscle flexibility test by passive straight leg raise (PSLR), active straight leg raise (ASLR), and muscle stiffness using ultrasound Acoustic Radiation Forced Impulse (ARFI) elastography before and immediately after stretching. The muscle stiffness and concentric strength decreased significantly (p < .05), the flexibility no significant change after DSLR protocol (p > .05). The concentric strength decreased significantly (p < .05), the flexibility and muscle stiffness no significant change after MTT protocol (p > .05), whereas no significant differences were found for the DSLR and MTT. Our findings suggest that dynamic stretching (30s x 6 bouts) resulted in change in muscle stiffness or may be induced slack in the musculotendinous unit thereby, reducing force production. Therefore, 30s x 6 bouts of dynamic stretching adversely affects efforts of hamstring muscle maximal concentric strength.

Keywords: sport injury, ultrasound, eccentric exercise, performance

Procedia PDF Downloads 285
2026 A Double Ended AC Series Arc Fault Location Algorithm Based on Currents Estimation and a Fault Map Trace Generation

Authors: Edwin Calderon-Mendoza, Patrick Schweitzer, Serge Weber

Abstract:

Series arc faults appear frequently and unpredictably in low voltage distribution systems. Many methods have been developed to detect this type of faults and commercial protection systems such AFCI (arc fault circuit interrupter) have been used successfully in electrical networks to prevent damage and catastrophic incidents like fires. However, these devices do not allow series arc faults to be located on the line in operating mode. This paper presents a location algorithm for series arc fault in a low-voltage indoor power line in an AC 230 V-50Hz home network. The method is validated through simulations using the MATLAB software. The fault location method uses electrical parameters (resistance, inductance, capacitance, and conductance) of a 49 m indoor power line. The mathematical model of a series arc fault is based on the analysis of the V-I characteristics of the arc and consists basically of two antiparallel diodes and DC voltage sources. In a first step, the arc fault model is inserted at some different positions across the line which is modeled using lumped parameters. At both ends of the line, currents and voltages are recorded for each arc fault generation at different distances. In the second step, a fault map trace is created by using signature coefficients obtained from Kirchhoff equations which allow a virtual decoupling of the line’s mutual capacitance. Each signature coefficient obtained from the subtraction of estimated currents is calculated taking into account the Discrete Fast Fourier Transform of currents and voltages and also the fault distance value. These parameters are then substituted into Kirchhoff equations. In a third step, the same procedure described previously to calculate signature coefficients is employed but this time by considering hypothetical fault distances where the fault can appear. In this step the fault distance is unknown. The iterative calculus from Kirchhoff equations considering stepped variations of the fault distance entails the obtaining of a curve with a linear trend. Finally, the fault distance location is estimated at the intersection of two curves obtained in steps 2 and 3. The series arc fault model is validated by comparing current registered from simulation with real recorded currents. The model of the complete circuit is obtained for a 49m line with a resistive load. Also, 11 different arc fault positions are considered for the map trace generation. By carrying out the complete simulation, the performance of the method and the perspectives of the work will be presented.

Keywords: indoor power line, fault location, fault map trace, series arc fault

Procedia PDF Downloads 137
2025 Capacity Optimization in Cooperative Cognitive Radio Networks

Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis

Abstract:

Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.

Keywords: cooperative networks, normalized capacity, sensing time

Procedia PDF Downloads 633
2024 On Improving Breast Cancer Prediction Using GRNN-CP

Authors: Kefaya Qaddoum

Abstract:

The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.

Keywords: neural network, conformal prediction, cancer classification, regression

Procedia PDF Downloads 291
2023 Market Solvency Capital Requirement Minimization: How Non-linear Solvers Provide Portfolios Complying with Solvency II Regulation

Authors: Abraham Castellanos, Christophe Durville, Sophie Echenim

Abstract:

In this article, a portfolio optimization problem is performed in a Solvency II context: it illustrates how advanced optimization techniques can help to tackle complex operational pain points around the monitoring, control, and stability of Solvency Capital Requirement (SCR). The market SCR of a portfolio is calculated as a combination of SCR sub-modules. These sub-modules are the results of stress-tests on interest rate, equity, property, credit and FX factors, as well as concentration on counter-parties. The market SCR is non convex and non differentiable, which does not make it a natural optimization criteria candidate. In the SCR formulation, correlations between sub-modules are fixed, whereas risk-driven portfolio allocation is usually driven by the dynamics of the actual correlations. Implementing a portfolio construction approach that is efficient on both a regulatory and economic standpoint is not straightforward. Moreover, the challenge for insurance portfolio managers is not only to achieve a minimal SCR to reduce non-invested capital but also to ensure stability of the SCR. Some optimizations have already been performed in the literature, simplifying the standard formula into a quadratic function. But to our knowledge, it is the first time that the standard formula of the market SCR is used in an optimization problem. Two solvers are combined: a bundle algorithm for convex non- differentiable problems, and a BFGS (Broyden-Fletcher-Goldfarb- Shanno)-SQP (Sequential Quadratic Programming) algorithm, to cope with non-convex cases. A market SCR minimization is then performed with historical data. This approach results in significant reduction of the capital requirement, compared to a classical Markowitz approach based on the historical volatility. A comparative analysis of different optimization models (equi-risk-contribution portfolio, minimizing volatility portfolio and minimizing value-at-risk portfolio) is performed and the impact of these strategies on risk measures including market SCR and its sub-modules is evaluated. A lack of diversification of market SCR is observed, specially for equities. This was expected since the market SCR strongly penalizes this type of financial instrument. It was shown that this direct effect of the regulation can be attenuated by implementing constraints in the optimization process or minimizing the market SCR together with the historical volatility, proving the interest of having a portfolio construction approach that can incorporate such features. The present results are further explained by the Market SCR modelling.

Keywords: financial risk, numerical optimization, portfolio management, solvency capital requirement

Procedia PDF Downloads 117
2022 Exploring the Stressors Faced by Sportspersons: A Qualitative Study on Young Indian Sportspersons and Their Coping Strategies to Stress

Authors: Moyera Sanganeria

Abstract:

In the highly competitive landscape of contemporary sports, sportspersons worldwide encounter formidable challenges, often practicing for extensive hours while contending with limited social and physical resources. A growing number of sportspersons globally are sharing their struggles with depression, anxiety, and stress arising from the complex journey and identity associated with being a sportsperson. This qualitative study aims to investigate the challenges faced by sportspersons in individual versus team sports and explore potential gender-based variations in coping strategies. It attempts to do so by recognizing the imperative to comprehend the root causes and coping mechanisms for these stressors. By employing purposive sampling, MMA and Kabaddi players from training academies across Mumbai were selected for the study. Twelve participants were interviewed through semi-structured interviews guided by an interview guide. Reflective thematic analysis was employed to discern diverse stressors and coping strategies. Key stressors encountered by young Indian sportspersons encompass injuries, socio-economic challenges, financial constraints, escalating competition, and performance anxiety. Notably, individuals engaged in team sports tended to adopt emotion-focused coping mechanisms, while those in individual sports leaned more towards problem-focused coping strategies in response to these stressors. There were no prominent gender differences found in coping strategies employed by sportspersons. This study underscores the critical issue of declining mental health among sportspersons in India, emphasizing the necessity for a structured and customized mental health intervention strategy tailored to the unique needs of this population.

Keywords: stressors, coping strategies, sports psychology, sportspersons, mental health

Procedia PDF Downloads 80
2021 Intellectual Property Laws: Protection of Celebrities’ Identity

Authors: Soumya Chaturvedi

Abstract:

Ever since India opened its doors for the world economy to enter, there has not been a single instance of recoil. A consequence of this move by the government of India resulted in India evolving as a consumer-driven market and in order to survive in this era of extreme competition, the corporate houses have employed every possible means to reach out and hit onto the sentiments of the consumers. The most obvious way to ensure a strong perseverance towards the specific product or brand is through celebrity endorsements. In a country like India, whose film industry accounts for the largest sales and output, it is indeed appalling to acknowledge the fact that it lacks an effective mechanism of protection of the commercial exploitation of celebrities’ attributes under the ambit of law. The western half of the globe has very well accepted and recognized the rights of the celebrities to decide upon the quantum of commercial exploitation of their own attributes and earn profit out of the same. However, the eastern half seems to be a little reluctant in accepting and enforcing these views per se. A celebrity has a right to publicity over the traits of his personality which involves voice, autographs, reputation, and style, so on and so forth as it is these attributes that are responsible for huge trade profits concerning the products to which such traits are attributed to. This clearly involves the right of the celebrity to benefit himself by commercially exploiting the same and refraining the unauthorized gain to third parties. The market is making it nearly impossible to proceed further with such weak laws considering the escalating rate of celebrity endorsements in the nation. This paper discusses the lacunae in law per se to identify a right as such by a celebrity over his traits that are potentially under the circle of commercial exploitation and the need of a definite legislation that would ensure a change in the paradigm of the Courts in India. Also, it discusses the only remedy available currently for violation, which is, a suit for passing off by Indian Courts under Trademark and Copyright laws and a comparison of the same with the mechanisms adopted by the legal systems across the globe.

Keywords: celebrity, rights, intellectual property, trademark, copyrights

Procedia PDF Downloads 334
2020 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates

Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe

Abstract:

Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.

Keywords: machine learning, MTB, WGS, drug resistant TB

Procedia PDF Downloads 52
2019 Survey on Big Data Stream Classification by Decision Tree

Authors: Mansoureh Ghiasabadi Farahani, Samira Kalantary, Sara Taghi-Pour, Mahboubeh Shamsi

Abstract:

Nowadays, the development of computers technology and its recent applications provide access to new types of data, which have not been considered by the traditional data analysts. Two particularly interesting characteristics of such data sets include their huge size and streaming nature .Incremental learning techniques have been used extensively to address the data stream classification problem. This paper presents a concise survey on the obstacles and the requirements issues classifying data streams with using decision tree. The most important issue is to maintain a balance between accuracy and efficiency, the algorithm should provide good classification performance with a reasonable time response.

Keywords: big data, data streams, classification, decision tree

Procedia PDF Downloads 521
2018 Model Predictive Control of Turbocharged Diesel Engine with Exhaust Gas Recirculation

Authors: U. Yavas, M. Gokasan

Abstract:

Control of diesel engine’s air path has drawn a lot of attention due to its multi input-multi output, closed coupled, non-linear relation. Today, precise control of amount of air to be combusted is a must in order to meet with tight emission limits and performance targets. In this study, passenger car size diesel engine is modeled by AVL Boost RT, and then simulated with standard, industry level PID controllers. Finally, linear model predictive control is designed and simulated. This study shows the importance of modeling and control of diesel engines with flexible algorithm development in computer based systems.

Keywords: predictive control, engine control, engine modeling, PID control, feedforward compensation

Procedia PDF Downloads 636
2017 Axisymmetric Nonlinear Analysis of Point Supported Shallow Spherical Shells

Authors: M. Altekin, R. F. Yükseler

Abstract:

Geometrically nonlinear axisymmetric bending of a shallow spherical shell with a point support at the apex under linearly varying axisymmetric load was investigated numerically. The edge of the shell was assumed to be simply supported or clamped. The solution was obtained by the finite difference and the Newton-Raphson methods. The thickness of the shell was considered to be uniform and the material was assumed to be homogeneous and isotropic. Sensitivity analysis was made for two geometrical parameters. The accuracy of the algorithm was checked by comparing the deflection with the solution of point supported circular plates and good agreement was obtained.

Keywords: Bending, Nonlinear, Plate, Point support, Shell.

Procedia PDF Downloads 264
2016 Detecting Elderly Abuse in US Nursing Homes Using Machine Learning and Text Analytics

Authors: Minh Huynh, Aaron Heuser, Luke Patterson, Chris Zhang, Mason Miller, Daniel Wang, Sandeep Shetty, Mike Trinh, Abigail Miller, Adaeze Enekwechi, Tenille Daniels, Lu Huynh

Abstract:

Machine learning and text analytics have been used to analyze child abuse, cyberbullying, domestic abuse and domestic violence, and hate speech. However, to the authors’ knowledge, no research to date has used these methods to study elder abuse in nursing homes or skilled nursing facilities from field inspection reports. We used machine learning and text analytics methods to analyze 356,000 inspection reports, which have been extracted from CMS Form-2567 field inspections of US nursing homes and skilled nursing facilities between 2016 and 2021. Our algorithm detected occurrences of the various types of abuse, including physical abuse, psychological abuse, verbal abuse, sexual abuse, and passive and active neglect. For example, to detect physical abuse, our algorithms search for combinations or phrases and words suggesting willful infliction of damage (hitting, pinching or burning, tethering, tying), or consciously ignoring an emergency. To detect occurrences of elder neglect, our algorithm looks for combinations or phrases and words suggesting both passive neglect (neglecting vital needs, allowing malnutrition and dehydration, allowing decubiti, deprivation of information, limitation of freedom, negligence toward safety precautions) and active neglect (intimidation and name-calling, tying the victim up to prevent falls without consent, consciously ignoring an emergency, not calling a physician in spite of indication, stopping important treatments, failure to provide essential care, deprivation of nourishment, leaving a person alone for an inappropriate amount of time, excessive demands in a situation of care). We further compare the prevalence of abuse before and after Covid-19 related restrictions on nursing home visits. We also identified the facilities with the most number of cases of abuse with no abuse facilities within a 25-mile radius as most likely candidates for additional inspections. We also built an interactive display to visualize the location of these facilities.

Keywords: machine learning, text analytics, elder abuse, elder neglect, nursing home abuse

Procedia PDF Downloads 146
2015 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides

Authors: V. Keim, J. Spachtholz, J. Hammer

Abstract:

The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.

Keywords: complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation

Procedia PDF Downloads 215
2014 Banking Control Law 1966 in Saudi Arabia, Shortcomings and Development: A Comparative Study in Banking Supervision between the Saudi Arabian Monetary Agency and the Bank of England

Authors: Khalid Huwaydi Alshammari

Abstract:

The paper examined the extent to which it was necessary for the Saudi Arabian Monetary Agency (SAMA), as a central bank, to update the Banking Control Law 1966 (BCL) in order to gain full independence, while ensuring that SAMA would have enough flexibility to develop the banking industry yet make sound decisions with regard to the issuance of new regulations related to banking supervision.Using a comparative study approach, the paper looked to find the best practices around these issues. The Bank of England, which was recently granted full independence, presented a good opportunity for a case study. The perspectives of the World Bank, the International Monetary Fund and commercial banks in Saudi Arabia are examined, including an analysis of their recommendations regarding SAMA regulations on banking supervision. This paper found several issues are important for SAMA as the central bank in a country which is a member of the G20, and which has recently faced unstable oil prices. The paper also discusses conflicts of interest which arose when the Saudi government became a shareholder in commercial banks while simultaneously regulating SAMA through the Ministry of Finance, resulting in a monopoly which disabled free competition in the banking market. The paper recommends further steps for SAMA to develop the banking industry, which is an important arm of Saudi’s economy, and examines the challenges SAMA faces in updating regulations such as the BCL under Sharia law. The author also suggests practical solutions to the difficulties. The paper found these difficulties could be avoiding them if SAMA focuses on Islamic banking product, and fixed the lacks of regulations of the related laws.

Keywords: Saudi Arabian monetary agency, comparative study, banking control law 1966, the bank of England

Procedia PDF Downloads 380
2013 Mixed Integer Programming-Based One-Class Classification Method for Process Monitoring

Authors: Younghoon Kim, Seoung Bum Kim

Abstract:

One-class classification plays an important role in detecting outlier and abnormality from normal observations. In the previous research, several attempts were made to extend the scope of application of the one-class classification techniques to statistical process control problems. For most previous approaches, such as support vector data description (SVDD) control chart, the design of the control limits is commonly based on the assumption that the proportion of abnormal observations is approximately equal to an expected Type I error rate in Phase I process. Because of the limitation of the one-class classification techniques based on convex optimization, we cannot make the proportion of abnormal observations exactly equal to expected Type I error rate: controlling Type I error rate requires to optimize constraints with integer decision variables, but convex optimization cannot satisfy the requirement. This limitation would be undesirable in theoretical and practical perspective to construct effective control charts. In this work, to address the limitation of previous approaches, we propose the one-class classification algorithm based on the mixed integer programming technique, which can solve problems formulated with continuous and integer decision variables. The proposed method minimizes the radius of a spherically shaped boundary subject to the number of normal data to be equal to a constant value specified by users. By modifying this constant value, users can exactly control the proportion of normal data described by the spherically shaped boundary. Thus, the proportion of abnormal observations can be made theoretically equal to an expected Type I error rate in Phase I process. Moreover, analogous to SVDD, the boundary can be made to describe complex structures by using some kernel functions. New multivariate control chart applying the effectiveness of the algorithm is proposed. This chart uses a monitoring statistic to characterize the degree of being an abnormal point as obtained through the proposed one-class classification. The control limit of the proposed chart is established by the radius of the boundary. The usefulness of the proposed method was demonstrated through experiments with simulated and real process data from a thin film transistor-liquid crystal display.

Keywords: control chart, mixed integer programming, one-class classification, support vector data description

Procedia PDF Downloads 174
2012 A Machine Learning Decision Support Framework for Industrial Engineering Purposes

Authors: Anli Du Preez, James Bekker

Abstract:

Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.

Keywords: Data analytics, Industrial engineering, Machine learning, Value creation

Procedia PDF Downloads 168
2011 Development of a Model Based on Wavelets and Matrices for the Treatment of Weakly Singular Partial Integro-Differential Equations

Authors: Somveer Singh, Vineet Kumar Singh

Abstract:

We present a new model based on viscoelasticity for the Non-Newtonian fluids.We use a matrix formulated algorithm to approximate solutions of a class of partial integro-differential equations with the given initial and boundary conditions. Some numerical results are presented to simplify application of operational matrix formulation and reduce the computational cost. Convergence analysis, error estimation and numerical stability of the method are also investigated. Finally, some test examples are given to demonstrate accuracy and efficiency of the proposed method.

Keywords: Legendre Wavelets, operational matrices, partial integro-differential equation, viscoelasticity

Procedia PDF Downloads 336
2010 Chinese Übermensches: Mobility Capital and the Entrepreneurial Experiences of Young Privileged Chinese Migrants

Authors: Wenfu Zhang

Abstract:

This study examines why young, privileged Chinese individuals emigrate, how they sustain fluid, ongoing movement, and the life goals through migrant entrepreneurship. Through interviews with 30 young Chinese migrant entrepreneurs in the UK, this study reveals that they migrate primarily to escape an increasingly "risk society", characterized by reduced social and personal freedoms, a hostile business environment, and hyper-competition within professional and entrepreneurial sectors in the PRC. In this context, elite-oriented immigration policies of Northern countries align with these migrants' goals, creating a duality of 'neoliberalism as exception' and 'exceptions to neoliberalism', which facilitates selective entry for young, privileged Chinese. Intriguingly, even within the perceived context of an increasingly 'risk society,' young, privileged migrants are hesitant to relinquish their Chinese nationality, despite having diligently obtained UK residency. This choice reflects a deliberate strategy to cultivate 'mobility capital'. A Northern country's residency offers mobility to exit China when “risks” emerge, while Chinese nationality enables a strategic return when advantageous. This study contributes to the literature on how young, privileged Chinese individuals from the not-so-distant ‘Deng Xiaoping Era’ view China’s ongoing “New Era” as shaping their future aspirations with uncertainty; it examines how revenue-driven immigration controls in postcolonial Northern countries impact Southern elites by enabling them to project their domestic inequality issues onto a global scale through the use of mobility capital. In this study, it term these young Chinese elites "Chinese Übermensches," an unparalleled phenomenon in Chinese migration history.

Keywords: mobility capital, elite migration, entrepreneurship, neoliberalism, risk society

Procedia PDF Downloads 8
2009 Close Loop Controlled Current Nerve Locator

Authors: H. A. Alzomor, B. K. Ouda, A. M. Eldeib

Abstract:

Successful regional anesthesia depends upon precise location of the peripheral nerve or nerve plexus. Locating peripheral nerves is preferred to be done using nerve stimulation. In order to generate a nerve impulse by electrical means, a minimum threshold stimulus of current “rheobase” must be applied to the nerve. The technique depends on stimulating muscular twitching at a close distance to the nerve without actually touching it. Success rate of this operation depends on the accuracy of current intensity pulses used for stimulation. In this paper, we will discuss a circuit and algorithm for closed loop control for the current, theoretical analysis and test results and compare them with previous techniques.

Keywords: Close Loop Control (CLC), constant current, nerve locator, rheobase

Procedia PDF Downloads 253
2008 A Two Phase VNS Algorithm for the Combined Production Routing Problem

Authors: Nejah Ben Mabrouk, Bassem Jarboui, Habib Chabchoub

Abstract:

Production and distribution planning is the most important part in supply chain management. In this paper, a NP-hard production-distribution problem for one product over a multi-period horizon is investigated. The aim is to minimize the sum of costs of three items: production setups, inventories and distribution, while determining, for each period, the amount produced, the inventory levels and the delivery trips. To solve this difficult problem, we propose a bi-phase approach based on a Variable Neighbourhood Search (VNS). This heuristic is tested on 90 randomly generated instances from the literature, with 20 periods and 50, 100, 200 customers. Computational results show that our approach outperforms existing solution procedures available in the literature

Keywords: logistic, production, distribution, variable neighbourhood search

Procedia PDF Downloads 337