Search results for: biologically inspired algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4213

Search results for: biologically inspired algorithm

1783 Contextual Sentiment Analysis with Untrained Annotators

Authors: Lucas A. Silva, Carla R. Aguiar

Abstract:

This work presents a proposal to perform contextual sentiment analysis using a supervised learning algorithm and disregarding the extensive training of annotators. To achieve this goal, a web platform was developed to perform the entire procedure outlined in this paper. The main contribution of the pipeline described in this article is to simplify and automate the annotation process through a system of analysis of congruence between the notes. This ensured satisfactory results even without using specialized annotators in the context of the research, avoiding the generation of biased training data for the classifiers. For this, a case study was conducted in a blog of entrepreneurship. The experimental results were consistent with the literature related annotation using formalized process with experts.

Keywords: sentiment analysis, untrained annotators, naive bayes, entrepreneurship, contextualized classifier

Procedia PDF Downloads 396
1782 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects

Authors: Sami Mestiri, Abdeljelil Farhat

Abstract:

The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.

Keywords: forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC

Procedia PDF Downloads 542
1781 Development of Modular Shortest Path Navigation System

Authors: Nalinee Sophatsathit

Abstract:

This paper presents a variation of navigation systems which tallies every node along the shortest path from start to destination nodes. The underlying technique rests on the well-established Dijkstra Algorithm. The ultimate goal is to serve as a user navigation guide that furnishes stop over cost of every node along this shortest path, whereby users can decide whether or not to visit any specific nodes. The output is an implementable module that can be further refined to run on the Internet and smartphone technology. This will benefit large organizations having physical installations spreaded over wide area such as hospitals, universities, etc. The savings on service personnel, let alone lost time and unproductive work, are attributive to innovative navigation system management.

Keywords: navigation systems, shortest path, smartphone technology, user navigation guide

Procedia PDF Downloads 338
1780 Interactive, Topic-Oriented Search Support by a Centroid-Based Text Categorisation

Authors: Mario Kubek, Herwig Unger

Abstract:

Centroid terms are single words that semantically and topically characterise text documents and so may serve as their very compact representation in automatic text processing. In the present paper, centroids are used to measure the relevance of text documents with respect to a given search query. Thus, a new graphbased paradigm for searching texts in large corpora is proposed and evaluated against keyword-based methods. The first, promising experimental results demonstrate the usefulness of the centroid-based search procedure. It is shown that especially the routing of search queries in interactive and decentralised search systems can be greatly improved by applying this approach. A detailed discussion on further fields of its application completes this contribution.

Keywords: search algorithm, centroid, query, keyword, co-occurrence, categorisation

Procedia PDF Downloads 282
1779 Characterization of Aerosol Particles in Ilorin, Nigeria: Ground-Based Measurement Approach

Authors: Razaq A. Olaitan, Ayansina Ayanlade

Abstract:

Understanding aerosol properties is the main goal of global research in order to lower the uncertainty associated with climate change in the trends and magnitude of aerosol particles. In order to identify aerosol particle types, optical properties, and the relationship between aerosol properties and particle concentration between 2019 and 2021, a study conducted in Ilorin, Nigeria, examined the aerosol robotic network's ground-based sun/sky scanning radiometer. The AERONET algorithm version 2 was utilized to retrieve monthly data on aerosol optical depth and angstrom exponent. The version 3 algorithm, which is an almucantar level 2 inversion, was employed to retrieve daily data on single scattering albedo and aerosol size distribution. Excel 2016 was used to analyze the data's monthly, seasonal, and annual mean averages. The distribution of different types of aerosols was analyzed using scatterplots, and the optical properties of the aerosol were investigated using pertinent mathematical theorems. To comprehend the relationships between particle concentration and properties, correlation statistics were employed. Based on the premise that aerosol characteristics must remain constant in both magnitude and trend across time and space, the study's findings indicate that the types of aerosols identified between 2019 and 2021 are as follows: 29.22% urban industrial (UI) aerosol type, 37.08% desert (D) aerosol type, 10.67% biomass burning (BB), and 23.03% urban mix (Um) aerosol type. Convective wind systems, which frequently carry particles as they blow over long distances in the atmosphere, have been responsible for the peak-of-the-columnar aerosol loadings, which were observed during August of the study period. The study has shown that while coarse mode particles dominate, fine particles are increasing in seasonal and annual trends. Burning biomass and human activities in the city are linked to these trends. The study found that the majority of particles are highly absorbing black carbon, with the fine mode having a volume median radius of 0.08 to 0.12 meters. The investigation also revealed that there is a positive coefficient of correlation (r = 0.57) between changes in aerosol particle concentration and changes in aerosol properties. Human activity is rapidly increasing in Ilorin, causing changes in aerosol properties, indicating potential health risks from climate change and human influence on geological and environmental systems.

Keywords: aerosol loading, aerosol types, health risks, optical properties

Procedia PDF Downloads 63
1778 Comparison between Photogrammetric and Structure from Motion Techniques in Processing Unmanned Aerial Vehicles Imageries

Authors: Ahmed Elaksher

Abstract:

Over the last few years, significant progresses have been made and new approaches have been proposed for efficient collection of 3D spatial data from Unmanned aerial vehicles (UAVs) with reduced costs compared to imagery from satellite or manned aircraft. In these systems, a low-cost GPS unit provides the position, velocity of the vehicle, a low-quality inertial measurement unit (IMU) determines its orientation, and off-the-shelf cameras capture the images. Structure from Motion (SfM) and photogrammetry are the main tools for 3D surface reconstruction from images collected by these systems. Unlike traditional techniques, SfM allows the computation of calibration parameters using point correspondences across images without performing a rigorous laboratory or field calibration process and it is more flexible in that it does not require consistent image overlap or same rotation angles between successive photos. These benefits make SfM ideal for UAVs aerial mapping. In this paper, a direct comparison between SfM Digital Elevation Models (DEM) and those generated through traditional photogrammetric techniques was performed. Data was collected by a 3DR IRIS+ Quadcopter with a Canon PowerShot S100 digital camera. Twenty ground control points were randomly distributed on the ground and surveyed with a total station in a local coordinate system. Images were collected from an altitude of 30 meters with a ground resolution of nine mm/pixel. Data was processed with PhotoScan, VisualSFM, Imagine Photogrammetry, and a photogrammetric algorithm developed by the author. The algorithm starts with performing a laboratory camera calibration then the acquired imagery undergoes an orientation procedure to determine the cameras’ positions and orientations. After the orientation is attained, correlation based image matching is conducted to automatically generate three-dimensional surface models followed by a refining step using sub-pixel image information for high matching accuracy. Tests with different number and configurations of the control points were conducted. Camera calibration parameters estimated from commercial software and those obtained with laboratory procedures were comparable. Exposure station positions were within less than few centimeters and insignificant differences, within less than three seconds, among orientation angles were found. DEM differencing was performed between generated DEMs and few centimeters vertical shifts were found.

Keywords: UAV, photogrammetry, SfM, DEM

Procedia PDF Downloads 295
1777 The Impact of Entrepreneurship Education on the Entrepreneurial Tendencies of Students: A Quasi-Experimental Design

Authors: Lamia Emam

Abstract:

The attractiveness of entrepreneurship education stems from its perceived value as a venue through which students can develop an entrepreneurial mindset, skill set, and practice, which may not necessarily lead to them starting a new business, but could, more importantly, be manifested as a life skill that could be applied to all types of organizations and career endeavors. This, in turn, raises important questions about what happens in our classrooms; our role as educators, the role of students, center of learning, and the instructional approach; all of which eventually contribute to achieving the desired EE outcomes. With application to an undergraduate entrepreneurship course -Entrepreneurship as Practice- the current paper aims to explore the effect of entrepreneurship education on the development of students’ general entrepreneurial tendencies. Towards that purpose, the researcher herein uses a pre-test and post-test quasi-experimental research design where the Durham University General Enterprising Tendency Test (GET2) is administered to the same group of students before and after course delivery. As designed and delivered, the Entrepreneurship as Practice module is a highly applied and experiential course where students are required to develop an idea for a start-up while practicing the entrepreneurship-related knowledge, mindset, and skills that are taught in class, both individually and in groups. The course is delivered using a combination of short lectures, readings, group discussions, case analysis, guest speakers, and, more importantly, actively engaging in a series of activities that are inspired by diverse methods for developing successful and innovative business ideas, including design thinking, lean-start up and business feasibility analysis. The instructional approach of the course particularly aims at developing the students' critical thinking, reflective, analytical, and creativity-based problem-solving skills that are needed to launch one’s own start-up. The analysis and interpretation of the experiment’s outcomes shall simultaneously incorporate the views of both the educator and students. As presented, the study responds to the rising call for the application of experimental designs in entrepreneurship in general and EE in particular. While doing so, the paper presents an educator’s perspective of EE to complement the dominant stream of research which is constrained to the students’ point of view. Finally, the study sheds light on EE in the MENA region, where the study is applied.

Keywords: entrepreneurship education, andragogy and heutagogy, scholarship of teaching and learning, experiment

Procedia PDF Downloads 127
1776 Reliability Based Topology Optimization: An Efficient Method for Material Uncertainty

Authors: Mehdi Jalalpour, Mazdak Tootkaboni

Abstract:

We present a computationally efficient method for reliability-based topology optimization under material properties uncertainty, which is assumed to be lognormally distributed and correlated within the domain. Computational efficiency is achieved through estimating the response statistics with stochastic perturbation of second order, using these statistics to fit an appropriate distribution that follows the empirical distribution of the response, and employing an efficient gradient-based optimizer. The proposed algorithm is utilized for design of new structures and the changes in the optimized topology is discussed for various levels of target reliability and correlation strength. Predictions were verified thorough comparison with results obtained using Monte Carlo simulation.

Keywords: material uncertainty, stochastic perturbation, structural reliability, topology optimization

Procedia PDF Downloads 605
1775 A Fast and Robust Protocol for Reconstruction and Re-Enactment of Historical Sites

Authors: Sanaa I. Abu Alasal, Madleen M. Esbeih, Eman R. Fayyad, Rami S. Gharaibeh, Mostafa Z. Ali, Ahmed A. Freewan, Monther M. Jamhawi

Abstract:

This research proposes a novel reconstruction protocol for restoring missing surfaces and low-quality edges and shapes in photos of artifacts at historical sites. The protocol starts with the extraction of a cloud of points. This extraction process is based on four subordinate algorithms, which differ in the robustness and amount of resultant. Moreover, they use different -but complementary- accuracy to some related features and to the way they build a quality mesh. The performance of our proposed protocol is compared with other state-of-the-art algorithms and toolkits. The statistical analysis shows that our algorithm significantly outperforms its rivals in the resultant quality of its object files used to reconstruct the desired model.

Keywords: meshes, point clouds, surface reconstruction protocols, 3D reconstruction

Procedia PDF Downloads 457
1774 Cognitive SATP for Airborne Radar Based on Slow-Time Coding

Authors: Fanqiang Kong, Jindong Zhang, Daiyin Zhu

Abstract:

Space-time adaptive processing (STAP) techniques have been motivated as a key enabling technology for advanced airborne radar applications. In this paper, the notion of cognitive radar is extended to STAP technique, and cognitive STAP is discussed. The principle for improving signal-to-clutter ratio (SCNR) based on slow-time coding is given, and the corresponding optimization algorithm based on cyclic and power-like algorithms is presented. Numerical examples show the effectiveness of the proposed method.

Keywords: space-time adaptive processing (STAP), airborne radar, signal-to-clutter ratio, slow-time coding

Procedia PDF Downloads 273
1773 Optimal Capacitor Placement in Distribution Systems

Authors: Sana Ansari, Sirus Mohammadi

Abstract:

In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. General Algebraic Modeling System (GAMS) has been used to solve the maximization modules using the MINOS optimization software with Linear Programming (LP). The proposed method is tested on 33 node distribution system and the results show that the algorithm suitable for practical implementation on real systems with any size.

Keywords: power losses, voltage stability, radial distribution systems, capacitor

Procedia PDF Downloads 647
1772 Video Stabilization Using Feature Point Matching

Authors: Shamsundar Kulkarni

Abstract:

Video capturing by non-professionals will lead to unanticipated effects. Such as image distortion, image blurring etc. Hence, many researchers study such drawbacks to enhance the quality of videos. In this paper, an algorithm is proposed to stabilize jittery videos .A stable output video will be attained without the effect of jitter which is caused due to shaking of handheld camera during video recording. Firstly, salient points from each frame from the input video are identified and processed followed by optimizing and stabilize the video. Optimization includes the quality of the video stabilization. This method has shown good result in terms of stabilization and it discarded distortion from the output videos recorded in different circumstances.

Keywords: video stabilization, point feature matching, salient points, image quality measurement

Procedia PDF Downloads 313
1771 The Convection Heater Numerical Simulation

Authors: Cristian Patrascioiu, Loredana Negoita

Abstract:

This paper is focused on modeling and simulation of the tubular heaters. The paper is structured in four parts: the structure of the tubular convection section, the heat transfer model, the adaptation of the mathematical model and the solving model. The main hypothesis of the heat transfer modeling is that the heat exchanger of the convective tubular heater is a lumped system. In the same time, the model uses the heat balance relations, Newton’s law and criteria relations. The numerical program achieved allows for the estimation of the burn gases outlet temperature and the heated flow outlet temperature.

Keywords: heat exchanger, mathematical modelling, nonlinear equation system, Newton-Raphson algorithm

Procedia PDF Downloads 290
1770 Implementation of a Low-Cost Driver Drowsiness Evaluation System Using a Thermal Camera

Authors: Isa Moazen, Ali Nahvi

Abstract:

Driver drowsiness is a major cause of vehicle accidents, and facial images are highly valuable to detect drowsiness. In this paper, we perform our research via a thermal camera to record drivers' facial images on a driving simulator. A robust real-time algorithm extracts the features using horizontal and vertical integration projection, contours, contour orientations, and cropping tools. The features are included four target areas on the cheeks and forehead. Qt compiler and OpenCV are used with two cameras with different resolutions. A high-resolution thermal camera is used for fifteen subjects, and a low-resolution one is used for a person. The results are investigated by four temperature plots and evaluated by observer rating of drowsiness.

Keywords: advanced driver assistance systems, thermal imaging, driver drowsiness detection, feature extraction

Procedia PDF Downloads 138
1769 Finite Element Analysis of a Dynamic Linear Crack Problem

Authors: Brian E. Usibe

Abstract:

This paper addresses the problem of a linear crack located in the middle of a homogeneous elastic media under normal tension-compression harmonic loading. The problem of deformation of the fractured media is solved using the direct finite element numerical procedure, including the analysis of the dynamic field variables of the problem. A finite element algorithm that satisfies the unilateral Signorini contact constraint is also presented for the solution of the contact interaction of the crack faces and how this accounts for the qualitative and quantitative changes in the solution when determining the dynamic fracture parameter.

Keywords: harmonic loading, linear crack, fracture parameter, wave number, FEA, contact interaction

Procedia PDF Downloads 42
1768 Residual Power Series Method for System of Volterra Integro-Differential Equations

Authors: Zuhier Altawallbeh

Abstract:

This paper investigates the approximate analytical solutions of general form of Volterra integro-differential equations system by using the residual power series method (for short RPSM). The proposed method produces the solutions in terms of convergent series requires no linearization or small perturbation and reproduces the exact solution when the solution is polynomial. Some examples are given to demonstrate the simplicity and efficiency of the proposed method. Comparisons with the Laplace decomposition algorithm verify that the new method is very effective and convenient for solving system of pantograph equations.

Keywords: integro-differential equation, pantograph equations, system of initial value problems, residual power series method

Procedia PDF Downloads 418
1767 Concentration and Stability of Fatty Acids and Ammonium in the Samples from Mesophilic Anaerobic Digestion

Authors: Mari Jaakkola, Jasmiina Haverinen, Tiina Tolonen, Vesa Virtanen

Abstract:

These process monitoring of biogas plant gives valuable information of the function of the process and help to maintain a stable process. The costs of basic monitoring are often much lower than the costs associated with re-establishing a biologically destabilised plant. Reactor acidification through reactor overload is one of the most common reasons for process deterioration in anaerobic digesters. This occurs because of a build-up of volatile fatty acids (VFAs) produced by acidogenic and acetogenic bacteria. VFAs cause pH values to decrease, and result in toxic conditions in the reactor. Ammonia ensures an adequate supply of nitrogen as a nutrient substance for anaerobic biomass and increases system's buffer capacity, counteracting acidification lead by VFA production. However, elevated ammonia concentration is detrimental to the process due to its toxic effect. VFAs are considered the most reliable analytes for process monitoring. To obtain accurate results, sample storage and transportation need to be carefully controlled. This may be a challenge for off-line laboratory analyses especially when the plant is located far away from the laboratory. The aim of this study was to investigate the correlation between fatty acids, ammonium, and bacteria in the anaerobic digestion samples obtained from an industrial biogas factory. The stability of the analytes was studied comparing the results of the on-site analyses performed in the factory site to the results of the samples stored at room temperature and -18°C (up to 30 days) after sampling. Samples were collected in the biogas plant consisting of three separate mesofilic AD reactors (4000 m³ each) where the main feedstock was swine slurry together with a complex mixture of agricultural plant and animal wastes. Individual VFAs, ammonium, and nutrients (K, Ca, Mg) were studied by capillary electrophoresis (CE). Longer chain fatty acids (oleic, hexadecanoic, and stearic acids) and bacterial profiles were studied by GC-MSD (Gas Chromatography-Mass Selective Detector) and 16S rDNA, respectively. On-site monitoring of the analytes was performed by CE. The main VFA in all samples was acetic acid. However, in one reactor sample elevated levels of several individual VFAs and long chain fatty acids were detected. Also bacterial profile of this sample differed from the profiles of other samples. Acetic acid decomposed fast when the sample was stored in a room temperature. All analytes were stable when stored in a freezer. Ammonium was stable even at a room temperature for the whole testing period. One reactor sample had higher concentration of VFAs and long chain fatty acids than other samples. CE was utilized successfully in the on-site analysis of separate VFAs and NH₄ in the biogas production site. Samples should be analysed in the sampling day if stored in RT or freezed for longer storage time. Fermentation reject can be stored (and transported) at ambient temperature at least for one month without loss of NH₄. This gives flexibility to the logistic solutions when reject is used as a fertilizer.

Keywords: anaerobic digestion, capillary electrophoresis, ammonium, bacteria

Procedia PDF Downloads 168
1766 A Method for Improving the Embedded Runge Kutta Fehlberg 4(5)

Authors: Sunyoung Bu, Wonkyu Chung, Philsu Kim

Abstract:

In this paper, we introduce a method for improving the embedded Runge-Kutta-Fehlberg 4(5) method. At each integration step, the proposed method is comprised of two equations for the solution and the error, respectively. This solution and error are obtained by solving an initial value problem whose solution has the information of the error at each integration step. The constructed algorithm controls both the error and the time step size simultaneously and possesses a good performance in the computational cost compared to the original method. For the assessment of the effectiveness, EULR problem is numerically solved.

Keywords: embedded Runge-Kutta-Fehlberg method, initial value problem, EULR problem, integration step

Procedia PDF Downloads 463
1765 An Expert System Designed to Be Used with MOEAs for Efficient Portfolio Selection

Authors: Kostas Metaxiotis, Kostas Liagkouras

Abstract:

This study presents an Expert System specially designed to be used with Multiobjective Evolutionary Algorithms (MOEAs) for the solution of the portfolio selection problem. The validation of the proposed hybrid System is done by using data sets from Hang Seng 31 in Hong Kong, DAX 100 in Germany and FTSE 100 in UK. The performance of the proposed system is assessed in comparison with the Non-dominated Sorting Genetic Algorithm II (NSGAII). The evaluation of the performance is based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it. The results show that the proposed hybrid system is efficient for the solution of this kind of problems.

Keywords: expert systems, multi-objective optimization, evolutionary algorithms, portfolio selection

Procedia PDF Downloads 439
1764 Cellular Traffic Prediction through Multi-Layer Hybrid Network

Authors: Supriya H. S., Chandrakala B. M.

Abstract:

Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.

Keywords: MLHN, network traffic prediction

Procedia PDF Downloads 89
1763 Role of Self-Concept in the Relationship between Emotional Abuse and Mental Health of Employees in the North West Province, South Africa

Authors: L. Matlawe, E. S. Idemudia

Abstract:

The stability is an important topic to plan and manage the energy in the microgrids as the same as the conventional power systems. The voltage and frequency stability is one of the most important issues recently studied in microgrids. The objectives of this paper are the modeling and designing of the components and optimal controllers for the voltage and frequency control of the AC/DC hybrid microgrid under the different disturbances. Since the PI controllers have the advantages of simple structure and easy implementation, so they were designed and modeled in this paper. The harmony search (HS) algorithm is used to optimize the controllers’ parameters. According to the achieved results, the PI controllers have a good performance in voltage and frequency control of the microgrid.

Keywords: emotional abuse, employees, mental health, self-concept

Procedia PDF Downloads 256
1762 On Phase Based Stereo Matching and Its Related Issues

Authors: András Rövid, Takeshi Hashimoto

Abstract:

The paper focuses on the problem of the point correspondence matching in stereo images. The proposed matching algorithm is based on the combination of simpler methods such as normalized sum of squared differences (NSSD) and a more complex phase correlation based approach, by considering the noise and other factors, as well. The speed of NSSD and the preciseness of the phase correlation together yield an efficient approach to find the best candidate point with sub-pixel accuracy in stereo image pairs. The task of the NSSD in this case is to approach the candidate pixel roughly. Afterwards the location of the candidate is refined by an enhanced phase correlation based method which in contrast to the NSSD has to run only once for each selected pixel.

Keywords: stereo matching, sub-pixel accuracy, phase correlation, SVD, NSSD

Procedia PDF Downloads 468
1761 Improved Qualitative Modeling of the Magnetization Curve B(H) of the Ferromagnetic Materials for a Transformer Used in the Power Supply for Magnetron

Authors: M. Bassoui, M. Ferfra, M. Chrayagne

Abstract:

This paper presents a qualitative modeling for the nonlinear B-H curve of the saturable magnetic materials for a transformer with shunts used in the power supply for the magnetron. This power supply is composed of a single phase leakage flux transformer supplying a cell composed of a capacitor and a diode, which double the voltage and stabilize the current, and a single magnetron at the output of the cell. A procedure consisting of a fuzzy clustering method and a rule processing algorithm is then employed for processing the constructed fuzzy modeling rules to extract the qualitative properties of the curve.

Keywords: B(H) curve, fuzzy clustering, magnetron, power supply

Procedia PDF Downloads 236
1760 Fuzzy Vehicle Routing Problem for Extreme Environment

Authors: G. Sirbiladze, B. Ghvaberidze, B. Matsaberidze

Abstract:

A fuzzy vehicle routing problem is considered in the possibilistic environment. A new criterion, maximization of expectation of reliability for movement on closed routes is constructed. The objective of the research is to implement a two-stage scheme for solution of this problem. Based on the algorithm of preferences on the first stage, the sample of so-called “promising” routes will be selected. On the second stage, for the selected promising routes new bi-criteria problem will be solved - minimization of total traveled distance and maximization of reliability of routes. The problem will be stated as a fuzzy-partitioning problem. Two possible solutions of this scheme are considered.

Keywords: vehicle routing problem, fuzzy partitioning problem, multiple-criteria optimization, possibility theory

Procedia PDF Downloads 547
1759 Secure Transfer of Medical Images Using Hybrid Encryption

Authors: Boukhatem Mohamed Belkaid, Lahdi Mourad

Abstract:

In this paper, we propose a new encryption system for security issues medical images. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity, and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every new session of encryption, that will be used to encrypt each frame of the medical image basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.

Keywords: AES, RSA, integrity, confidentiality, authentication, medical images, encryption, decryption, key, correlation

Procedia PDF Downloads 443
1758 Development of Biosensor Chip for Detection of Specific Antibodies to HSV-1

Authors: Zatovska T. V., Nesterova N. V., Baranova G. V., Zagorodnya S. D.

Abstract:

In recent years, biosensor technologies based on the phenomenon of surface plasmon resonance (SPR) are becoming increasingly used in biology and medicine. Their application facilitates exploration in real time progress of binding of biomolecules and identification of agents that specifically interact with biologically active substances immobilized on the biosensor surface (biochips). Special attention is paid to the use of Biosensor analysis in determining the antibody-antigen interaction in the diagnostics of diseases caused by viruses and bacteria. According to WHO, the diseases that are caused by the herpes simplex virus (HSV), take second place (15.8%) after influenza as a cause of death from viral infections. Current diagnostics of HSV infection include PCR and ELISA assays. The latter allows determination the degree of immune response to viral infection and respective stages of its progress. In this regard, the searches for new and available diagnostic methods are very important. This work was aimed to develop Biosensor chip for detection of specific antibodies to HSV-1 in the human blood serum. The proteins of HSV1 (strain US) were used as antigens. The viral particles were accumulated in cell culture MDBK and purified by differential centrifugation in cesium chloride density gradient. Analysis of the HSV1 proteins was performed by polyacrylamide gel electrophoresis and ELISA. The protein concentration was measured using De Novix DS-11 spectrophotometer. The device for detection of antigen-antibody interactions was an optoelectronic two-channel spectrometer ‘Plasmon-6’, using the SPR phenomenon in the Krechman optical configuration. It was developed at the Lashkarev Institute of Semiconductor Physics of NASU. The used carrier was a glass plate covered with 45 nm gold film. Screening of human blood serums was performed using the test system ‘HSV-1 IgG ELISA’ (GenWay, USA). Development of Biosensor chip included optimization of conditions of viral antigen sorption and analysis steps. For immobilization of viral proteins 0.2% solution of Dextran 17, 200 (Sigma, USA) was used. Sorption of antigen took place at 4-8°C within 18-24 hours. After washing of chip, three times with citrate buffer (pH 5,0) 1% solution of BSA was applied to block the sites not occupied by viral antigen. It was found direct dependence between the amount of immobilized HSV1 antigen and SPR response. Using obtained biochips, panels of 25 positive and 10 negative for the content of antibodies to HSV-1 human sera were analyzed. The average value of SPR response was 185 a.s. for negative sera and from 312 to. 1264 a.s. for positive sera. It was shown that SPR data were agreed with ELISA results in 96% of samples proving the great potential of SPR in such researches. It was investigated the possibility of biochip regeneration and it was shown that application of 10 mM NaOH solution leads to rupture of intermolecular bonds. This allows reuse the chip several times. Thus, in this study biosensor chip for detection of specific antibodies to HSV1 was successfully developed expanding a range of diagnostic methods for this pathogen.

Keywords: biochip, herpes virus, SPR

Procedia PDF Downloads 417
1757 Development of a Multi-Variate Model for Matching Plant Nitrogen Requirements with Supply for Reducing Losses in Dairy Systems

Authors: Iris Vogeler, Rogerio Cichota, Armin Werner

Abstract:

Dairy farms are under pressure to increase productivity while reducing environmental impacts. Effective fertiliser management practices are critical to achieve this. Determination of optimum nitrogen (N) fertilisation rates which maximise pasture growth and minimise N losses is challenging due to variability in plant requirements and likely near-future supply of N by the soil. Remote sensing can be used for mapping N nutrition status of plants and to rapidly assess the spatial variability within a field. An algorithm is, however, lacking which relates the N status of the plants to the expected yield response to additions of N. The aim of this simulation study was to develop a multi-variate model for determining N fertilisation rate for a target percentage of the maximum achievable yield based on the pasture N concentration (ii) use of an algorithm for guiding fertilisation rates, and (iii) evaluation of the model regarding pasture yield and N losses, including N leaching, denitrification and volatilisation. A simulation study was carried out using the Agricultural Production Systems Simulator (APSIM). The simulations were done for an irrigated ryegrass pasture in the Canterbury region of New Zealand. A multi-variate model was developed and used to determine monthly required N fertilisation rates based on pasture N content prior to fertilisation and targets of 50, 75, 90 and 100% of the potential monthly yield. These monthly optimised fertilisation rules were evaluated by running APSIM for a ten-year period to provide yield and N loss estimates from both nonurine and urine affected areas. Comparison with typical fertilisation rates of 150 and 400 kg N/ha/year was also done. Assessment of pasture yield and leaching from fertiliser and urine patches indicated a large reduction in N losses when N fertilisation rates were controlled by the multi-variate model. However, the reduction in leaching losses was much smaller when taking into account the effects of urine patches. The proposed approach based on biophysical modelling to develop a multi-variate model for determining optimum N fertilisation rates dependent on pasture N content is very promising. Further analysis, under different environmental conditions and validation is required before the approach can be used to help adjust fertiliser management practices to temporal and spatial N demand based on the nitrogen status of the pasture.

Keywords: APSIM modelling, optimum N fertilization rate, pasture N content, ryegrass pasture, three dimensional surface response function.

Procedia PDF Downloads 130
1756 Application of Pattern Recognition Technique to the Quality Characterization of Superficial Microstructures in Steel Coatings

Authors: H. Gonzalez-Rivera, J. L. Palmeros-Torres

Abstract:

This paper describes the application of traditional computer vision techniques as a procedure for automatic measurement of the secondary dendrite arm spacing (SDAS) from microscopic images. The algorithm is capable of finding the lineal or curve-shaped secondary column of the main microstructure, measuring its length size in a micro-meter and counting the number of spaces between dendrites. The automatic characterization was compared with a set of 1728 manually characterized images, leading to an accuracy of −0.27 µm for the length size determination and a precision of ± 2.78 counts for dendrite spacing counting, also reducing the characterization time from 7 hours to 2 minutes.

Keywords: dendrite arm spacing, microstructure inspection, pattern recognition, polynomial regression

Procedia PDF Downloads 46
1755 Effects of Abiotic Stress on the Phytochemical Content and Bioactivity of Pistacia lentiscus L.

Authors: S. Mamoucha, N. Tsafantakis, Α. Ioannidis, S. Chatzipanagiotou, C. Nikolaou, L. Skaltsounis, N. Fokialakis, N. Christodoulakis

Abstract:

Introduction: Plant secondary metabolites (SM) can be grouped into three chemically distinct groups: terpenes, phenolics, and nitrogen-containing compounds. For many years the adaptive significance of SM was unknown. They were thought to be functionless end-products. Currently it is accepted that many secondary metabolites (also known as natural products) have important ecological roles in plants. For instance, they serve as attractants (odor, color, taste) for pollinators and seed-dispersing animals. Moreover, they protect plants from herbivores, microbial pathogens and from environmental stress (high and low temperatures, drought, alkalinity, salinity, radiation etc). It is well known that both biotic and abiotic stress often increase the accumulation of SM. The local climatic conditions, seasonal changes, external factors such as light, temperature, humidity affect the biosynthesis and composition of secondary metabolites. A well known dioecious evergreen plant, Pistacia lentiscus L. (mastic tree), was selected in order to study the metabolic variations occur in response to the different climate conditions, due to the seasonal variation and its effect on the biosynthesis of bioactive compounds. Materials-methods: Young and mature leaves were collected in January and July 2014, dried and extracted by accelerated solvent extraction (Dionex ASE™ 350) using solvents of increased polarity (DCM, MeOH, and H2O). GC-MS and UHPLC-HRMS analysis were carried out in order to define the nature and the relative abundance of SM. The antibacterial activity was evaluated by using the Agar Disc Diffusion Assay against ATCC and clinical isolates strains: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Streptococcus mutans and Klebsiella pneumoniae. All tests were carried out in duplicate and the average radii of the inhibition zones were calculated for each extract. Results: According to the phytochemical profile obtained from each extract, the biosynthesis of SM varied both qualitatively and quantitatively under the two different types of seasonal stress. With exception of the biologically inactive nonpolar DCM extract of July, all extracts inhibited the growth of most of the investigated microorganisms. A clear positive correlation has been observed between the relative abundance of SM and the bioactivity of the DCM extracts of January and July. Observed changes during phytochemical analysis were mainly focused on the triterpenoid content. On the other hand, the bioactivity of the polar extracts (MeOH and H2O) of January and July resulted practically invariable against most of the microorganisms, besides the significant variation of the SM content due to the seasonal variation. Conclusion: Our results clearly confirmed the hypothesis of abiotic stress as an important regulating factor that significantly affects the biosynthesis of secondary metabolites and thus the presence of bioactive compounds. Acknowledgment: This work was supported by IKY - State Scholarship Foundation, Athens, Greece.

Keywords: antibacterial screening, phytochemical profile, Pistacia lentiscus, abiotic stress

Procedia PDF Downloads 256
1754 Proactive SoC Balancing of Li-ion Batteries for Automotive Application

Authors: Ali Mashayekh, Mahdiye Khorasani, Thomas weyh

Abstract:

The demand for battery electric vehicles (BEV) is steadily increasing, and it can be assumed that electric mobility will dominate the market for individual transportation in the future. Regarding BEVs, the focus of state-of-the-art research and development is on vehicle batteries since their properties primarily determine vehicles' characteristic parameters, such as price, driving range, charging time, and lifetime. State-of-the-art battery packs consist of invariable configurations of battery cells, connected in series and parallel. A promising alternative is battery systems based on multilevel inverters, which can alter the configuration of the battery cells during operation via semiconductor switches. The main benefit of such topologies is that a three-phase AC voltage can be directly generated from the battery pack, and no separate power inverters are required. Therefore, modular battery systems based on different multilevel inverter topologies and reconfigurable battery systems are currently under investigation. Another advantage of the multilevel concept is that the possibility to reconfigure the battery pack allows battery cells with different states of charge (SoC) to be connected in parallel, and thus low-loss balancing can take place between such cells. In contrast, in conventional battery systems, parallel connected (hard-wired) battery cells are discharged via bleeder resistors to keep the individual SoCs of the parallel battery strands balanced, ultimately reducing the vehicle range. Different multilevel inverter topologies and reconfigurable batteries have been described in the available literature that makes the before-mentioned advantages possible. However, what has not yet been described is how an intelligent operating algorithm needs to look like to keep the SoCs of the individual battery strands of a modular battery system with integrated power electronics balanced. Therefore, this paper suggests an SoC balancing approach for Battery Modular Multilevel Management (BM3) converter systems, which can be similarly used for reconfigurable battery systems or other multilevel inverter topologies with parallel connectivity. The here suggested approach attempts to simultaneously utilize all converter modules (bypassing individual modules should be avoided) because the parallel connection of adjacent modules reduces the phase-strand's battery impedance. Furthermore, the presented approach tries to reduce the number of switching events when changing the switching state combination. Thereby, the ohmic battery losses and switching losses are kept as low as possible. Since no power is dissipated in any designated bleeder resistors and no designated active balancing circuitry is required, the suggested approach can be categorized as a proactive balancing approach. To verify the algorithm's validity, simulations are used.

Keywords: battery management system, BEV, battery modular multilevel management (BM3), SoC balancing

Procedia PDF Downloads 120