Search results for: teaching learning model
20784 Impact of Grade Sensitivity on Learning Motivation and Academic Performance
Authors: Salwa Aftab, Sehrish Riaz
Abstract:
The objective of this study was to check the impact of grade sensitivity on learning motivation and academic performance of students and to remove the degree of difference that exists among students regarding the cause of their learning motivation and also to gain knowledge about this matter since it has not been adequately researched. Data collection was primarily done through the academic sector of Pakistan and was depended upon the responses given by students solely. A sample size of 208 university students was selected. Both paper and online surveys were used to collect data from respondents. The results of the study revealed that grade sensitivity has a positive relationship with the learning motivation of students and their academic performance. These findings were carried out through systematic correlation and regression analysis.Keywords: academic performance, correlation, grade sensitivity, learning motivation, regression
Procedia PDF Downloads 40020783 Organizational Learning, Job Satisfaction and Work Performance among Nurses
Authors: Rafia Rafique, Arifa Khadim
Abstract:
This research investigates the moderating role of job satisfaction between organizational learning and work performance among nurses. Correlation research design was used. Non-probability purposive sampling technique was utilized to recruit a sample of 110 nurses from public hospitals situated in the city of Lahore. The construct of organizational learning was measured using subscale of Integrated Scale for Measuring Organizational Learning. Job satisfaction was measured with the help of Job Satisfaction Survey. Performance of employees (task performance, contextual performance and counterproductive work behavior) was assessed by Individual Work Performance Questionnaire. Job satisfaction negatively moderates the relationship between organizational learning and counterproductive work behavior. Education has a significant positive relationship with organizational learning. Age, current hospital experience, marital satisfaction and salary of the nurses have positive relationship while number of children has significant negative relationship with counterproductive work behavior. These outcomes can be insightful in understanding the dynamics involved in work performance. Based on the result of this study relevant solutions can be proposed to improve the work performance of nurses.Keywords: counterproductive work behavior, nurses, organizational learning, work performance
Procedia PDF Downloads 44520782 A “Best Practice” Model for Physical Education in the BRICS Countries
Authors: Vasti Oelofse, Niekie van der Merwe, Dorita du Toit
Abstract:
This study addresses the need for a unified best practice model for Physical Education across BRICS nations, as current research primarily offers individual country recommendations. Drawing on relevant literature within the framework of Bronfenbrenner’s Ecological Systems Theory, as well as data from open-ended questionnaires completed by Physical Education experts from the BRICS countries, , the study develops a best practice model based on identified challenges and effective practices in Physical Education. A model is proposed that incorporates flexible and resource-efficient strategies tailored to address PE challenges specific to these countries, enhancing outcomes for learners, empowering teachers, and fostering systemic collaboration among BRICS members. The proposed model comprises six key areas: “Curriculum and policy requirements”, “General approach”, “Theoretical basis”, “Strategies for presenting content”, “Teacher training”, and “Evaluation”. The “Strategies for presenting program content” area addresses both well-resourced and poorly resourced schools, adapting curriculum, teaching strategies, materials, and learner activities for varied socio-economic contexts. The model emphasizes a holistic approach to learner development, engaging environments, and continuous teacher training. A collaborative approach among BRICS countries, focusing on shared best practices and continuous improvement, is vital for the model's successful implementation, enhancing Physical Education programs and outcomes across these nations.Keywords: BRICS countries, physical education, best practice model, ecological systems theory
Procedia PDF Downloads 1320781 DeepOmics: Deep Learning for Understanding Genome Functioning and the Underlying Genetic Causes of Disease
Authors: Vishnu Pratap Singh Kirar, Madhuri Saxena
Abstract:
Advancement in sequence data generation technologies is churning out voluminous omics data and posing a massive challenge to annotate the biological functional features. With so much data available, the use of machine learning methods and tools to make novel inferences has become obvious. Machine learning methods have been successfully applied to a lot of disciplines, including computational biology and bioinformatics. Researchers in computational biology are interested to develop novel machine learning frameworks to classify the huge amounts of biological data. In this proposal, it plan to employ novel machine learning approaches to aid the understanding of how apparently innocuous mutations (in intergenic DNA and at synonymous sites) cause diseases. We are also interested in discovering novel functional sites in the genome and mutations in which can affect a phenotype of interest.Keywords: genome wide association studies (GWAS), next generation sequencing (NGS), deep learning, omics
Procedia PDF Downloads 9820780 Effectiveness of Online Language Learning
Authors: Shazi Shah Jabeen, Ajay Jesse Thomas
Abstract:
The study is aimed at understanding the learning trends of students who opt for online language courses and to assess the effectiveness of the same. Multiple factors including use of the latest available technology and the skills that are trained by these online methods have been assessed. An attempt has been made to answer how each of the various language skills is trained online and how effective the online methods are compared to the classroom methods when students interact with peers and instructor. A mixed method research design was followed for collecting information for the study where a survey by means of a questionnaire and in-depth interviews with a number of respondents were undertaken across the various institutes and study centers located in the United Arab Emirates. The questionnaire contained 19 questions which included 7 sub-questions. The study revealed that the students find learning with an instructor to be a lot more effective than learning alone in an online environment. They prefer classroom environment more than the online setting for language learning.Keywords: effectiveness, language, online learning, skills
Procedia PDF Downloads 58920779 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization
Authors: Soheila Sadeghi
Abstract:
Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction
Procedia PDF Downloads 6020778 An Analytical Study of the Concept of Emptiness Doctrine and Its Connection with Dependent Origination
Authors: Sanjoy Barua Chowdhury
Abstract:
The aim of this paper is an attempt to analyze the concept of emptiness from the early Buddhist teachings to subsequent Buddhist developmental schools, namely, Madhyamaka and Yogācāra Schools, along with attempting to examine an insightful bridge between the Buddha’s major teaching on dependent origination and the notion of emptiness. The initial part of this qualitative research focuses on the etymological term of emptiness (śūnyatā) and the Buddha’s teaching of emptiness from the Early Buddhist standpoint. Next, this research will seek to explain the concept of emptiness in the Madhyamaka School and Yogācāra School. This study further demonstrates the eradication of suffering is meant of understanding the concept emptiness from an ultimate standpoint with special concerning to focus the connection to the Buddha’s central teaching Dependent Origination.Keywords: emptiness, Madhyamaka, dependent origination, early Buddhism, Yogacara
Procedia PDF Downloads 17820777 The Difficulties Encountered in Overseeing Learner-Centered Instructional Activities for Elementary School Children in Ho Chi Minh City, Vietnam
Authors: Van Son Huynh, Thanh Huan Nguyen, Tat Thien Do, Thi Mai Thu Nguyen, Thien Vu Giang
Abstract:
Given the necessity for substantial and all-encompassing educational reform, particularly in elementary Education, it is imperative to prioritize learner-centered instruction at the elementary level. This study focuses on the difficulties encountered in overseeing learner-centered instructional activities for elementary school children in Ho Chi Minh City (HCMC), the largest city in Vietnam in terms of population. Although learner-centered solutions have been implemented, there are still certain weaknesses, including an emphasis on content and worries about lax monitoring. The purpose of this study, named "Management of Learner-Centered Teaching Activities for Primary School Students in HCMC," is to enhance and advance theories related to the management of learner-centered teaching activities. The study evaluates the present condition of learner-centered teaching activities and management practices in HCMC, aiming to suggest solutions for improving the efficiency of managing such activities in primary schools.Keywords: primary school, school children in Ho Chi Minh City, learner-centered instructional activities, learner-centered teaching activities and management.
Procedia PDF Downloads 7420776 Teaching Intercultural Literary Genres in Pakistani Universities: The Undergraduate Students’ Perspective on the Poetry of Rumi and Blake
Authors: Afshan Liaquat
Abstract:
Pakistan is a multicultural country, and people are divided across political and religious values. The major objective of this study is to investigate the pedagogical relevance of the poetry of Rumi and Blake for culturally diverse undergraduate classes in Pakistani universities in Lahore. The study was based on a survey research design. A closed-ended questionnaire was developed for data collection from 100 students purposively selected from two universities in Lahore. The findings of the study indicate that intercultural poetry with the theme of Love, written by poets like Rumi and Blake, needs to be taught at the undergraduate level. The study has implications for students, teachers, and genre-based syllabus designers associated with teaching English Literature in Pakistani universities.Keywords: intercultural literature, globalization, spiritual love, teaching of cross-cultural literature
Procedia PDF Downloads 5120775 Innovation of e-Learning for Architectural Design Courses at the University of Jordan
Authors: Samer Abu Ghazaleh, Jawdat Gousous
Abstract:
E-learning in general started in Jordan around ten years ago in universities and at different departments and colleges. This paper will investigate the possibility to apply e-learning in architecture department at University of Jordan. As known architecture departments in general depend greatly in its syllabus upon design courses and studios, which consists nearly one third of its total credit hours. A survey has been conducted for architectural students at the University of Jordan and several conclusions have been reached irrespective of age, gender and nationality of the students, where the main problem was the way of the communication between the tutor and the student.Keywords: cellular telephone, design courses, e-learning, internet
Procedia PDF Downloads 47020774 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models
Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti
Abstract:
In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics
Procedia PDF Downloads 5420773 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 3420772 Predictive Models of Ruin Probability in Retirement Withdrawal Strategies
Authors: Yuanjin Liu
Abstract:
Retirement withdrawal strategies are very important to minimize the probability of ruin in retirement. The ruin probability is modeled as a function of initial withdrawal age, gender, asset allocation, inflation rate, and initial withdrawal rate. The ruin probability is obtained based on the 2019 period life table for the Social Security, IRS Required Minimum Distribution (RMD) Worksheets, US historical bond and equity returns, and inflation rates using simulation. Several popular machine learning algorithms of the generalized additive model, random forest, support vector machine, extreme gradient boosting, and artificial neural network are built. The model validation and selection are based on the test errors using hyperparameter tuning and train-test split. The optimal model is recommended for retirees to monitor the ruin probability. The optimal withdrawal strategy can be obtained based on the optimal predictive model.Keywords: ruin probability, retirement withdrawal strategies, predictive models, optimal model
Procedia PDF Downloads 7420771 Training Program for Kindergarden Teachers on Learning through Project Approach
Authors: Dian Hartiningsih, Miranda Diponegoro, Evita Eddie Singgih
Abstract:
In facing the 21st century, children need to be prepared in reaching their optimum development level which encompasses all aspect of growth and to achieve the learning goals which include not only knowledge and skill, but also disposition and feeling. Teachers as the forefront of education need to be equipped with the understanding and skill of a learning method which can prepare the children to face this 21st century challenge. Project approach is an approach which utilizes active learning which is beneficial for the children. Subject to this research are kindergarten teachers at Dwi Matra Kindergarten and Kirana Preschool. This research is a quantitative research using before and after study design. The result suggest that through preliminary training program on learning with project approach, the kindergarten teachers ability to explain project approach including understanding, benefit and stages of project approach have increased significantly, the teachers ability to design learning with project approach have also improved significantly. The result of learning design that the teachers had made shows a remarkable result for the first stage of the project approach; however the second and third design result was not as optimal. Challenges faced in the research will be elaborated further in the research discussion.Keywords: project approach, teacher training, learning method, kindergarten
Procedia PDF Downloads 33220770 Imparting Second Language Skill through M-Learning
Authors: Subramaniam Chandran, A. Geetha
Abstract:
This paper addresses three issues: how to prepare instructional design for imparting English language skill from inter-disciplinary self-learning material; how the disadvantaged students are benefited from such kind of language skill imparted through m-learning; and how do the m-learners perform better than the other learners. This paper examines these issues through an experimental study conducted among the distance learners enrolled in preparatory program for bachelor’s degree. This program is designed for the disadvantage learners especially for the school drop-outs to qualify to pursue graduate program through distant education. It also explains how mobile learning helps them to enhance their capacity in learning despite their rural background and other disadvantages. In India nearly half of the students enrolled in schools do not complete their study. The pursuance of higher education is very low when compared with developed countries. This study finds a significant increase in their learning capacity and mobile learning seems to be a viable alternative where conventional system could not reach the disadvantaged learners. Improving the English language skill is one of the reasons for such kind of performance. Exercises framed from the relevant self-learning material for enhancing English language skill not only improves language skill but also widens the subject-knowledge. This paper explains these issues out of the study conducted among the disadvantaged learners.Keywords: English language skill, disadvantaged learners, distance education, m-learning
Procedia PDF Downloads 66720769 Parkinson’s Disease Detection Analysis through Machine Learning Approaches
Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee
Abstract:
Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier
Procedia PDF Downloads 12920768 Empirical Study From Final Exams of Graduate Courses in Computer Science to Demystify the Notion of an Average Software Engineer and Offer a Direction to Address Diversity of Professional Backgrounds of a Student Body
Authors: Alex Elentukh
Abstract:
The paper is based on data collected from final exams administered during five years of teaching the graduate course in software engineering. The visualization instrument with four distinct personas has been used to improve the effectiveness of each class. The study offers a plethora of clues toward students' behavioral preferences. Diversity among students (professional background, physical proximity) is too significant to assume a single face of a learner. This is particularly true for a body of online graduate students in computer science. Conclusions of the study (each learner is unique, and each class is unique) are extrapolated to demystify the notion of an 'average software engineer.' An immediate direction for an educator is to ensure a course applies to a wide audience of very different individuals. On the other hand, a student should be clear about his/her abilities and preferences - to follow the most effective learning path.Keywords: K.3.2 computer and information science education, learner profiling, adaptive learning, software engineering
Procedia PDF Downloads 10320767 Articulating Competencies Confidently: Employability in the Curriculum
Authors: Chris Procter
Abstract:
There is a significant debate on the role of University education in developing or teaching employability skills. Should higher education attempt to do this? Is it the best place? Is it able to do so? Different views abound, but the question is wrongly posed – one of the reasons that previous employability initiatives foundered (e.g., in the UK). Our role is less to teach than to guide, less to develop and more to help articulate: “the mind is not a vessel to be filled, but a fire to be lit” (Plutarch). This paper then addresses how this can be achieved taking into account criticism of employability initiatives as well as relevant learning theory. It discusses the experience of a large module which involved students being assessed on all stages of application for a live job description together with reflection on their professional development. The assessment itself adopted a Patchwork Text approach as a vehicle for learning. Students were guided to evaluate their strengths and areas to be developed, articulate their competencies, and reflect upon their development, moving on to new Thresholds of Employability. The paper uses the student voices to express the progress they made. It concludes that employability can and should be an effective part of the higher education curriculum when designed to encourage students to confidently articulate their competencies and take charge of their own professional development.Keywords: competencies, employability, patchwork assessment, threshold concepts
Procedia PDF Downloads 21620766 Innovative Pictogram Chinese Characters Representation
Authors: J. H. Low, S. H. Hew, C. O. Wong
Abstract:
This paper proposes an innovative approach to represent the pictogram Chinese characters. The advantage of this representation is using an extraordinary to represent the pictogram Chinese character. This extraordinary representation is created accordingly to the original pictogram Chinese characters revolution. The purpose of this innovative creation is to assistant the learner learning Chinese as second language (SCL) in Chinese language learning specifically on memorize Chinese characters. Commonly, the SCL will give up and frustrate easily while memorize the Chinese characters by rote. So, our innovative representation is able to help on memorize the Chinese character by the help of visually storytelling. This innovative representation enhances the Chinese language learning experience of SCL.Keywords: Chinese e-learning, innovative Chinese character representation, knowledge management, language learning
Procedia PDF Downloads 48720765 Factors Affecting Happiness Learning of Students of Faculty of Management Science, Suan Sunandha Rajabhat University
Authors: Somtop Keawchuer
Abstract:
The objectives of this research are to compare the satisfaction of students, towards the happiness learning, sorted by their personal profiles, and to figure out the factors that affect the students’ happiness learning. This paper used survey method to collect data from 362 students. The survey was mainly conducted in the Faculty of Management Science, Suan Sunandha Rajabhat University, including 3,443 students. The statistics used for interpreting the results included the frequencies, percentages, standard deviations and One-way ANOVA. The findings revealed that the students are aware and satisfaction that all the factors in 3 categories (knowledge, skill and attitude) influence the happiness learning at the highest levels. The comparison of the satisfaction levels of the students toward their happiness learning leads to the results that the students with different genders, ages, years of study, and majors of the study have the similar satisfaction at the high level.Keywords: happiness, learning satisfaction, students, Faculty of Management Science
Procedia PDF Downloads 31020764 Pibid and Experimentation: A High School Case Study
Authors: Chahad P. Alexandre
Abstract:
PIBID-Institutional Program of Scholarships to Encourage Teaching - is a Brazilian government program that counts today with 48.000 students. It's goal is to motivate the students to stay in the teaching undergraduate programs and to help fill the gap of 100.000 teachers that are needed today in the under graduated schools. The major lack of teachers today is in physics, chemistry, mathematics, and biology. At IFSP-Itapetininga we formatted our physics PIBID based on practical activities. Our students are divided in two São Paulo state government high schools in the same city. The project proposes class activities based on experimentation, observation and understanding of physical phenomena. The didactical experiments are always in relation with the content that the teacher is working, he is the supervisor of the program in the school. Always before an experiment is proposed a little questionnaire to learn about the students preconceptions and one is filled latter to evaluate if now concepts have been created. This procedure is made in order to compare their previous knowledge and how it changed after the experiment is developed. The primary goal of our project is to make the Physics class more attractive to the students and to develop in high school students the interest in learning physics and to show the relation of Physics to the day by day and to the technological world. The objective of the experimental activities is to facilitate the understanding of the concepts that are worked on classes because under experimentation the PIBID scholarship student stimulate the curiosity of the high school student and with this he can develop the capacity to understand and identify the physical phenomena with concrete examples. Knowing how to identify this phenomena and where they are present at the high school student life makes the learning process more significant and pleasant. This proposal make achievable to the students to practice science, to appropriate of complex, in the traditional classes, concepts and overcoming the common preconception that physics is something distant and that is present only on books. This preconception is extremely harmful in the process of scientific knowledge construction. This kind of learning – through experimentation – make the students not only accumulate knowledge but also appropriate it, also to appropriate experimental procedures and even the space that is provided by the school. The PIBID scholarship students, as future teachers also have the opportunity to try experimentation classes, to intervene in the classes and to have contact with their future career. This opportunity allows the students to make important reflection about the practices realized and consequently about the learning methods. Due to this project, we found out that the high school students stay more time focused in the experiment compared to the traditional explanation teachers´ class. As a result in a class, as a participative activity, the students got more involved and participative. We also found out that the physics under graduated students drop out percentage is smaller in our Institute than before the PIBID program started.Keywords: innovation, projects, PIBID, physics, pre-service teacher experiences
Procedia PDF Downloads 34120763 Millennial Teachers of Canada: Innovation within the Boxed-In Constraints of Tradition
Authors: Lena Shulyakovskaya
Abstract:
Every year, schools aim to develop and adopt new technology and pedagogy as a way to equip today's students with the needed 21st Century skills. However, the field of primary and secondary education may not be as open to embracing change in reality. Despite the drive to reform and innovation, the field of education in Canada is still very much steeped in tradition and uses many of the practices that came into effect over 50 years ago. Among those are employment and retention practices. Millennials are the youngest generation of professionals entering the workplace at this time and the ones leaving their jobs within just a few years. Almost half of new teachers leave Canadian schools within their first five years on the job. This paper discusses one of the contributing factors that lead Canadian millennial teachers to either leave or stay in the profession - standardized education system. Using an exploratory case study approach, in-depth interviews with former and current millennial teachers were conducted to learn about their experiences within the K-12 system. Among the findings were the young teachers' concerns about the constant changes to teaching practices and technological implementations that claimed to advance teaching and learning, and yet in reality only disguised and reiterated the same traditional, outdated, and standardized practices that already existed. Furthermore, while many millennial teachers aspired to be innovative with their curriculum and teaching practices, they felt trapped and helpless in the hands of school leaders who were very reluctant to change. While many new program ideas and technological advancements are being made openly available to teachers on a regular basis, it is important to consider the education field as a whole and how it plays into the teachers' ability to realistically implement changes. By the year 2025, millennials will make up approximately 75% of the North American workforce. It is important to examine generational differences among teachers and understand how millennial teachers may be shaping the future of primary and secondary schools, either by staying or leaving the profession.Keywords: 21st century skills, millennials, teacher attrition, tradition
Procedia PDF Downloads 22820762 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation
Authors: Mohammad Abu-Shaira, Weishi Shi
Abstract:
Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression
Procedia PDF Downloads 1420761 Exploring Teachers’ Beliefs about Diagnostic Language Assessment Practices in a Large-Scale Assessment Program
Authors: Oluwaseun Ijiwade, Chris Davison, Kelvin Gregory
Abstract:
In Australia, like other parts of the world, the debate on how to enhance teachers using assessment data to inform teaching and learning of English as an Additional Language (EAL, Australia) or English as a Foreign Language (EFL, United States) have occupied the centre of academic scholarship. Traditionally, this approach was conceptualised as ‘Formative Assessment’ and, in recent times, ‘Assessment for Learning (AfL)’. The central problem is that teacher-made tests are limited in providing data that can inform teaching and learning due to variability of classroom assessments, which are hindered by teachers’ characteristics and assessment literacy. To address this concern, scholars in language education and testing have proposed a uniformed large-scale computer-based assessment program to meet the needs of teachers and promote AfL in language education. In Australia, for instance, the Victoria state government commissioned a large-scale project called 'Tools to Enhance Assessment Literacy (TEAL) for Teachers of English as an additional language'. As part of the TEAL project, a tool called ‘Reading and Vocabulary assessment for English as an Additional Language (RVEAL)’, as a diagnostic language assessment (DLA), was developed by language experts at the University of New South Wales for teachers in Victorian schools to guide EAL pedagogy in the classroom. Therefore, this study aims to provide qualitative evidence for understanding beliefs about the diagnostic language assessment (DLA) among EAL teachers in primary and secondary schools in Victoria, Australia. To realize this goal, this study raises the following questions: (a) How do teachers use large-scale assessment data for diagnostic purposes? (b) What skills do language teachers think are necessary for using assessment data for instruction in the classroom? and (c) What factors, if any, contribute to teachers’ beliefs about diagnostic assessment in a large-scale assessment? Semi-structured interview method was used to collect data from at least 15 professional teachers who were selected through a purposeful sampling. The findings from the resulting data analysis (thematic analysis) provide an understanding of teachers’ beliefs about DLA in a classroom context and identify how these beliefs are crystallised in language teachers. The discussion shows how the findings can be used to inform professional development processes for language teachers as well as informing important factor of teacher cognition in the pedagogic processes of language assessment. This, hopefully, will help test developers and testing organisations to align the outcome of this study with their test development processes to design assessment that can enhance AfL in language education.Keywords: beliefs, diagnostic language assessment, English as an additional language, teacher cognition
Procedia PDF Downloads 19920760 Orthogonal Basis Extreme Learning Algorithm and Function Approximation
Abstract:
A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.Keywords: neural network, orthogonal basis extreme learning, function approximation
Procedia PDF Downloads 53420759 Fostering Inclusive Learning: The Role of Intercultural Communication in Multilingual Primary Education
Authors: Ozge Yalciner
Abstract:
Intercultural communication is crucial in the education of multilingual learners in primary grades, significantly influencing their academic and social development. This study explores how intercultural communication intersects with multilingual education, highlighting the importance of culturally responsive teaching practices. It addresses the challenges and opportunities presented by diverse linguistic backgrounds and proposes strategies for creating inclusive and supportive learning environments. The research emphasizes the need for teacher training programs that equip educators with the skills to recognize and address cultural differences, thereby enhancing student engagement and participation. This study was completed in an elementary school in a city in the Midwest, USA. The data was collected through observations and interviews with students and teachers. It discusses the integration of multicultural perspectives in curricula and the promotion of language diversity as an asset. Peer interactions and collaborative learning are highlighted as crucial for developing intercultural competence among young learners. The findings suggest that meaningful intercultural communication fosters a sense of belonging and mutual respect, leading to improved educational outcomes for multilingual students. Prioritizing intercultural communication in primary education is essential for supporting the linguistic and cultural identities of multilingual learners. By adopting inclusive pedagogical approaches and fostering an environment of cultural appreciation, educators can better support their students' academic success and personal growth.Keywords: diversity, intercultural communication, multilingual learners, primary grades
Procedia PDF Downloads 3920758 A Monte Carlo Fuzzy Logistic Regression Framework against Imbalance and Separation
Authors: Georgios Charizanos, Haydar Demirhan, Duygu Icen
Abstract:
Two of the most impactful issues in classical logistic regression are class imbalance and complete separation. These can result in model predictions heavily leaning towards the imbalanced class on the binary response variable or over-fitting issues. Fuzzy methodology offers key solutions for handling these problems. However, most studies propose the transformation of the binary responses into a continuous format limited within [0,1]. This is called the possibilistic approach within fuzzy logistic regression. Following this approach is more aligned with straightforward regression since a logit-link function is not utilized, and fuzzy probabilities are not generated. In contrast, we propose a method of fuzzifying binary response variables that allows for the use of the logit-link function; hence, a probabilistic fuzzy logistic regression model with the Monte Carlo method. The fuzzy probabilities are then classified by selecting a fuzzy threshold. Different combinations of fuzzy and crisp input, output, and coefficients are explored, aiming to understand which of these perform better under different conditions of imbalance and separation. We conduct numerical experiments using both synthetic and real datasets to demonstrate the performance of the fuzzy logistic regression framework against seven crisp machine learning methods. The proposed framework shows better performance irrespective of the degree of imbalance and presence of separation in the data, while the considered machine learning methods are significantly impacted.Keywords: fuzzy logistic regression, fuzzy, logistic, machine learning
Procedia PDF Downloads 7420757 Implementing Lesson Study in Qatari Mathematics Classroom: A Case Study of a New Experience for Teachers through IMPULS-QU Lesson Study Program
Authors: Areej Isam Barham
Abstract:
The implementation of Japanese lesson study approach in the mathematics classroom has been grown worldwide as a model of professional development for teachers. In Qatar, the implementation of IMPULS-QU lesson study program aimed to establish a robust organizational improvement model of professional development for mathematics teachers in Qatar schools. This study describes the implementation of a lesson study model at Al-Markhyia Independent Primary School through different stages; and discusses how the planning process, the research lesson, and the post discussion participates in providing teachers and researchers with a successful research lesson for teacher professional development. The research followed a case study approach in one mathematics classroom. Two teachers and one professional development specialist participated the planning process. One teacher conducted the research lesson study by introducing a problem solving related to the concept of the ‘Mean’ in a mathematics class, 21 students in grade 6 participated in solving the mathematic problem, 11 teachers, 4 professional development specialists, and 4 mathematics professors observed the research lesson. All previous participants except the students participated in a pre and post-lesson discussion within this research. This study followed a qualitative research approach by analyzing the collected data through different stages in the research lesson study. Observation, field notes, and semi-structured interviews conducted to collect data to achieve the research aims. One feature of this lesson study research is that this research describes the implementation for a lesson study as a new experience for one mathematics teacher and 21 students after 3 years of conducting IMPULS-QU project in Al-Markhyia school. The research describes various stages through the implementation of this lesson study model starting from the planning process and ending by the post discussion process. Findings of the study also address the impact of lesson study approach in teaching mathematics for the development of teachers from their point views. Results of the study show the benefits of using lesson study from the point views of participated teachers, theory perceptions about the essential features of lesson study, and their needs for future development. The discussion of the study addresses different features and issues related to the implementation of IMPULS-QU lesson study model in the mathematics classroom. In the light of the study, the research presents recommendations and suggestions for future professional development.Keywords: lesson study, mathematics education, mathematics teaching experience, teacher professional development
Procedia PDF Downloads 18520756 The Model of Learning Centre on OTOP Production Process Based on Sufficiency Economic Philosophy for Sustainable Life Quality
Authors: Napasri Suwanajote
Abstract:
The purposes of this research were to analyse and evaluate successful factors in OTOP production process for the developing of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The research has been designed as a qualitative study to gather information from 30 OTOP producers in Bangkontee District, Samudsongkram Province. They were all interviewed on 3 main parts. Part 1 was about the production process including 1) production 2) product development 3) the community strength 4) marketing possibility and 5) product quality. Part 2 evaluated appropriate successful factors including 1) the analysis of the successful factors 2) evaluate the strategy based on Sufficiency Economic Philosophy and 3) the model of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The results showed that the production did not affect the environment with potential in continuing standard quality production. They used the raw materials in the country. On the aspect of product and community strength in the past 1 year, it was found that there was no appropriate packaging showing product identity according to global market standard. They needed the training on packaging especially for food and drink products. On the aspect of product quality and product specification, it was found that the products were certified by the local OTOP standard. There should be a responsible organization to help the uncertified producers pass the standard. However, there was a problem on food contamination which was hazardous to the consumers. The producers should cooperate with the government sector or educational institutes involving with food processing to reach FDA standard. The results from small group discussion showed that the community expected high education and better standard living. Some problems reported by the community included informal debt and drugs in the community. There were 8 steps in developing the model of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality.Keywords: production process, OTOP, sufficiency economic philosophy, marketing management
Procedia PDF Downloads 23420755 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees
Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho
Abstract:
The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.Keywords: FSASEC, academic environment model, decision trees, k-nearest neighbor, machine learning, popularity index, support vector machine
Procedia PDF Downloads 200