Search results for: early age thermal cracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7443

Search results for: early age thermal cracking

5043 Modeling of Thermo Acoustic Emission Memory Effect in Rocks of Varying Textures

Authors: Vladimir Vinnikov

Abstract:

The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied with a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.

Keywords: crack growth, cyclic heating and cooling, rock texture, thermo acoustic emission memory effect

Procedia PDF Downloads 274
5042 Role of Transient Receptor Potential Vanilloid 1 in Electroacupuncture Analgesia on Chronic Inflammatory Pain in Mice

Authors: Jun Yang, Ching-Liang Hsieh, Yi-Wen Lin

Abstract:

Chronic inflammatory pain results from peripheral tissue injury or local inflammation to increase the release of protons, histamines, adenosine triphosphate, and several proinflammatory cytokines. Transient receptor potential vanilloid 1 (TRPV1) is involved in fibromyalgia, neuropathic, and inflammatory pain; however, its exact mechanisms in chronic inflammatory pain are still unclear. We investigate the analgesic effect of EA by injecting complete Freund’s adjuvant (CFA) in the hind paw of mice to induce chronic inflammatory pain ( > 14 d). Our results showed that EA significantly reduced chronic mechanical and thermal hyperalgesia in the chronic inflammatory pain model. Chronic mechanical and thermal hyperalgesia was also abolished in TRPV1−/− mice. TRPV1 increased in the dorsal root ganglion (DRG) and spinal cord (SC) at 2 weeks after CFA injection. The expression levels of downstream molecules such as pPKA, pPI3K, and pPKC increased, as did those of pERK, pp38, and pJNK. Transcription factors (pCREB and pNFκB) and nociceptive ion channels (Nav1.7 and Nav1.8) were involved in this process. Inflammatory mediators such as GFAP (Glial fibrillary acidic protein), S100B, and RAGE (Receptor for advanced glycation endproducts) were also involved. The expression levels of these molecules were reduced in EA (electroacupuncture) and TRPV1−/−mice but not in the sham EA group. The present study demonstrated that EA or TRPV1 gene deletion reduced chronic inflammatory pain through TRPV1 and related molecules. In addition, our data provided evidence to support the clinical use of EA for treating chronic inflammatory pain.

Keywords: auricular electric-stimulation, epileptic seizures, anti-inflammation, electroacupuncture

Procedia PDF Downloads 182
5041 Energy Efficiency Line Guides for School Buildings in Florence in a Postgraduate Master Course

Authors: Lucia Ceccherini Nelli, Alessandra Donato

Abstract:

The ABITA Master course of the University of Florence offered by the Department of Architecture covers nearly all the energy-relevant issues that can arise in public and private companies and sectors. The main purpose of the Master course, active since 2003, is to analyse the energy consumption of building technologies, components, and structures at the conceptual design stage, so it could be very helpful, for designers, when making decisions related to the selection of the most suitable design alternatives and for the materials choice that will be used in an energy-efficient building. The training course provides a solid basis for increasing the knowledge and skills of energy managers and is developed with an emphasis on practical experiences related to the knowledge through case studies, measurements, and verification of energy-efficient solutions in buildings, in the industry and in the cities. The main objectives are: i)To raise the professional standards of those engaged in energy auditing, ii) To improve the practice of energy auditors by encouraging energy auditing professionals in a continuing education program of professional development, iii) Implement in the use of instrumentations for the typical measurements, iv) To propose an integrated methodology that links energy analysis tools with green building certification systems. This methodology will be applied at the early design stage of a project’s life. The final output of the practical training is to achieve an elevated professionalism in the study of environmental design and Energy management in buildings. The results are the redaction of line guides instruction for the energy refurbishment of Public schools in Florence. The school heritage of the Municipality of Florence requires interventions for the control of energy performance, as old construction buildings are often made without taking into account the necessary envelope performance. For this reason, every year, the Master's course aims to study groups of public schools to enable the Municipality to carry out energy redevelopment interventions on the existing building heritage. The future challenges of the education and training program are related to follow-up activities, the development of interactive tools and the curriculum's customization to meet the constantly growing needs of energy experts from industry.

Keywords: expert in energy, energy auditing, public buildings, thermal analysis

Procedia PDF Downloads 194
5040 Online Early Childhood Monitoring and Evaluation of Systems in Underprivileged Communities: Tracking Growth and Progress in Young Children's Ability Levels

Authors: Lauren Kathryn Stretch

Abstract:

A study was conducted in the underprivileged setting of Nelson Mandela Bay, South Africa in order to monitor the progress of learners whose teachers receive training through the Early Inspiration Training Programme. Through tracking children’s growth & development, the effectiveness of the practitioner-training programme, which focuses on empowering women from underprivileged communities in South Africa, was analyzed. The aim was to identify impact & reach and to assess the effectiveness of this intervention programme through identifying impact on children’s growth and development. A Pre- and Post-Test was administered on about 850 young children in Pre-Grade R and Grade R classes in order to understand children’s ability level & the growth that would be evident as a result of effective teacher training. A pre-test evaluated the level of each child’s abilities, including physical-motor development, language, and speech development, cognitive development including visual perceptual skills, social-emotional development & play development. This was followed by a random selection of the classes of children into experimental and control groups. The experimental group’s teachers (practitioners) received 8-months of training & intervention, as well as mentorship & support. After the 8-month training programme, children from the experimental & control groups underwent post-assessment. The results indicate that the impact of effective practitioner training and enhancing a deep understanding of stimulation on young children, that this understanding is implemented in the classroom, highlighting the areas of growth & development in the children whose teachers received additional training & support, as compared to those who did not receive additional training. Monitoring & Evaluation systems not only track children’s ability levels, but also have a core focus on reporting systems, mentorship and providing ongoing support. As a result of the study, an Online Application (for Apple or Android Devices) was developed which is used to track children’s growth via age-appropriate assessments. The data is then statistically analysed to provide direction for relevant & impactful intervention. The App also focuses on effective reporting strategies, structures, and implementation to support organizations working with young children & maximize on outcomes.

Keywords: early childhood development, developmental child assessments, online application, monitoring and evaluating online

Procedia PDF Downloads 198
5039 A Short Dermatoscopy Training Increases Diagnostic Performance in Medical Students

Authors: Magdalena Chrabąszcz, Teresa Wolniewicz, Cezary Maciejewski, Joanna Czuwara

Abstract:

BACKGROUND: Dermoscopy is a clinical tool known to improve the early detection of melanoma and other malignancies of the skin. Over the past few years melanoma has grown into a disease of socio-economic importance due to the increasing incidence and persistently high mortality rates. Early diagnosis remains the best method to reduce melanoma and non-melanoma skin cancer– related mortality and morbidity. Dermoscopy is a noninvasive technique that consists of viewing pigmented skin lesions through a hand-held lens. This simple procedure increases melanoma diagnostic accuracy by up to 35%. Dermoscopy is currently the standard for clinical differential diagnosis of cutaneous melanoma and for qualifying lesion for the excision biopsy. Like any clinical tool, training is required for effective use. The introduction of small and handy dermoscopes contributed significantly to the switch of dermatoscopy toward a first-level useful tool. Non-dermatologist physicians are well positioned for opportunistic melanoma detection; however, education in the skin cancer examination is limited during medical school and traditionally lecture-based. AIM: The aim of this randomized study was to determine whether the adjunct of dermoscopy to the standard fourth year medical curriculum improves the ability of medical students to distinguish between benign and malignant lesions and assess acceptability and satisfaction with the intervention. METHODS: We performed a prospective study in 2 cohorts of fourth-year medical students at Medical University of Warsaw. Groups having dermatology course, were randomly assigned to:  cohort A: with limited access to dermatoscopy from their teacher only – 1 dermatoscope for 15 people  Cohort B: with a full access to use dermatoscopy during their clinical classes:1 dermatoscope for 4 people available constantly plus 15-minute dermoscopy tutorial. Students in both study arms got an image-based test of 10 lesions to assess ability to differentiate benign from malignant lesions and postintervention survey collecting minimal background information, attitudes about the skin cancer examination and course satisfaction. RESULTS: The cohort B had higher scores than the cohort A in recognition of nonmelanocytic (P < 0.05) and melanocytic (P <0.05) lesions. Medical students who have a possibility to use dermatoscope by themselves have also a higher satisfaction rates after the dermatology course than the group with limited access to this diagnostic tool. Moreover according to our results they were more motivated to learn dermatoscopy and use it in their future everyday clinical practice. LIMITATIONS: There were limited participants. Further study of the application on clinical practice is still needed. CONCLUSION: Although the use of dermatoscope in dermatology as a specialty is widely accepted, sufficiently validated clinical tools for the examination of potentially malignant skin lesions are lacking in general practice. Introducing medical students to dermoscopy in their fourth year curricula of medical school may improve their ability to differentiate benign from malignant lesions. It can can also encourage students to use dermatoscopy in their future practice which can significantly improve early recognition of malignant lesions and thus decrease melanoma mortality.

Keywords: dermatoscopy, early detection of melanoma, medical education, skin cancer

Procedia PDF Downloads 118
5038 A Retrospective Study on the Age of Onset for Type 2 Diabetes Diagnosis

Authors: Mohamed A. Hammad, Dzul Azri Mohamed Noor, Syed Azhar Syed Sulaiman, Majed Ahmed Al-Mansoub, Muhammad Qamar

Abstract:

There is a progressive increase in the prevalence of early onset Type 2 diabetes mellitus. Early detection of Type 2 diabetes enhances the length and/or quality of life which might result from a reduction in the severity, frequency or prevent or delay of its long-term complications. The study aims to determine the onset age for the first diagnosis of Type 2 diabetes mellitus. A retrospective study conducted in the endocrine clinic at Hospital Pulau Pinang in Penang, Malaysia, January- December 2016. Records of 519 patients with Type 2 diabetes mellitus were screened to collect demographic data and determine the age of first-time diabetes mellitus diagnosis. Patients classified according to the age of diagnosis, gender, and ethnicity. The study included 519 patients with age (55.6±13.7) years, female 265 (51.1%) and male 254 (48.9%). The ethnicity distribution was Malay 191 (36.8%), Chinese 189 (36.4%) and Indian 139 (26.8%). The age of Type 2 diabetes diagnosis was (42±14.8) years. The female onset of diabetes mellitus was at age (41.5±13.7) years, while male (42.6±13.7) years. Distribution of diabetic onset by ethnicity was Malay at age (40.7±13.7) years, Chinese (43.2±13.7) years and Indian (42.3±13.7) years. Diabetic onset was classified by age as follow; ≤20 years’ cohort was 33 (6.4%) cases. Group >20- ≤40 years was 190 (36.6%) patients, and category >40- ≤60 years was 270 (52%) subjects. On the other hand, the group >60 years was 22 (4.2%) patients. The range of diagnosis was between 10 and 73 years old. Conclusion: Malay and female have an earlier onset of diabetes than Indian, Chinese and male. More than half of the patients had diabetes between 40 and 60 years old. Diabetes mellitus is becoming more common in younger age <40 years. The age at diagnosis of Type 2 diabetes mellitus has decreased with time.

Keywords: age of onset, diabetes diagnosis, diabetes mellitus, Malaysia, outpatients, type 2 diabetes, retrospective study

Procedia PDF Downloads 417
5037 Hard Sludge Formation and Consolidation in Pressurized Water Reactor Steam Generators: An Experimental Study

Authors: R. Fernandez-Saavedra, M. B. Gomez-Mancebo, D. Gomez-Briceno

Abstract:

The gradual corrosion of PWR (Pressurized Water Reactor) feedwater, condensate and drain systems results in the inevitable liberation of corrosion products, principally metallic oxides, to the secondary circuit. In addition, other contaminants and impurities are introduced into the makeup water, auxiliary feedwater and by condenser leaks. All these compounds circulating in the secondary flow can eventually be transported to steam generators and be transformed into deposits on their surfaces. Deposits that accumulate on the tube sheet are known as sludge piles and when they consolidate and harden become into hard sludge. Hard sludge is especially detrimental because it favors tube deformation or denting at the top of tube sheet and further stress corrosion cracking (SCC). These failures affect the efficiency of nuclear power plants. In a recent work, a model for the formation and consolidation of hard sludge has been formulated, highlighting the influence of aluminum and silicon compounds in the initial formation of hard sludge. In this work, an experimental study has been performed in order to get a deeper understanding of the behavior of Al and Si species in hard sludge formation and consolidation. For this purpose, the key components of hard sludge (magnetite, aluminum and/or silicon sources) have been isothermally autoclaved in representative secondary circuit conditions during one week, and the resulting products have been chemically and structurally characterized by XRF and XRD techniques, respectively.

Keywords: consolidation, hard sludge, secondary circuit, steam generator

Procedia PDF Downloads 194
5036 Enhanced Thermal and Electrical Properties of Terbium Manganate-Polyvinyl Alcohol Nanocomposite Film

Authors: Monalisa Halder, Amit K. Das, Ajit K. Meikap

Abstract:

Polymer nanocomposites are very significant materials both in academia and industry for diverse potential applicability in electronics. Polymer plays the role of matrix element which has low density, flexibility, good mechanical strength and electrical properties. Use of nanosized multiferroic filler in the polymer matrix is suitable to achieve nanocomposites with enhanced magneto-dielectric effect and good mechanical properties both at the same time. Multiferroic terbium manganate (TbMnO₃) nanoparticles have been synthesized by sol-gel method using chloride precursors. Terbium manganate-polyvinyl alcohol (TbMnO₃-PVA) nanocomposite film has been prepared by solution casting method. Crystallite size of TbMnO₃ nanoparticle has been calculated to be ~ 40 nm from XRD analysis. Morphological study of the samples has been done by scanning electron microscopy and a well dispersion of the nanoparticles in the PVA matrix has been found. Thermogravimetric analysis (TGA) exhibits enhancement of thermal stability of the nanocomposite film with the inclusion of TbMnO₃ nanofiller in PVA matrix. The electrical transport properties of the nanocomposite film sample have been studied in the frequency range 20Hz - 2MHz at and above room temperature. The frequency dependent variation of ac conductivity follows universal dielectric response (UDR) obeying Jhonscher’s sublinear power law. Correlated barrier hopping (CBH) mechanism is the dominant charge transport mechanism with maximum barrier height 19 meV above room temperature. The variation of dielectric constant of the sample with frequency has been studied at different temperatures. Real part of dielectric constant at 1 KHz frequency at room temperature of the sample is found to be ~ 8 which is higher than that of the pure PVA film sample (~ 6). Dielectric constant decreases with the increase in frequency. Relaxation peaks have been observed in the variation of imaginary part of electric modulus with frequency. The relaxation peaks shift towards higher frequency as temperature increases probably due to the existence of interfacial polarization in the sample in presence of applied electric field. The current-voltage (I-V) characteristics of the nanocomposite film have been studied under ±40 V applied at different temperatures. I-V characteristic exhibits temperature dependent rectifying nature indicating the formation of Schottky barrier diode (SBD) with barrier height 23 meV. In conclusion, using multiferroic TbMnO₃ nanofiller in PVA matrix, enhanced thermal stability and electrical properties can be achieved.

Keywords: correlated barrier hopping, nanocomposite, schottky diode, TbMnO₃, TGA

Procedia PDF Downloads 131
5035 Automated Building Internal Layout Design Incorporating Post-Earthquake Evacuation Considerations

Authors: Sajjad Hassanpour, Vicente A. González, Yang Zou, Jiamou Liu

Abstract:

Earthquakes pose a significant threat to both structural and non-structural elements in buildings, putting human lives at risk. Effective post-earthquake evacuation is critical for ensuring the safety of building occupants. However, current design practices often neglect the integration of post-earthquake evacuation considerations into the early-stage architectural design process. To address this gap, this paper presents a novel automated internal architectural layout generation tool that optimizes post-earthquake evacuation performance. The tool takes an initial plain floor plan as input, along with specific requirements from the user/architect, such as minimum room dimensions, corridor width, and exit lengths. Based on these inputs, firstly, the tool randomly generates different architectural layouts. Secondly, the human post-earthquake evacuation behaviour will be thoroughly assessed for each generated layout using the advanced Agent-Based Building Earthquake Evacuation Simulation (AB2E2S) model. The AB2E2S prototype is a post-earthquake evacuation simulation tool that incorporates variables related to earthquake intensity, architectural layout, and human factors. It leverages a hierarchical agent-based simulation approach, incorporating reinforcement learning to mimic human behaviour during evacuation. The model evaluates different layout options and provides feedback on evacuation flow, time, and possible casualties due to earthquake non-structural damage. By integrating the AB2E2S model into the automated layout generation tool, architects and designers can obtain optimized architectural layouts that prioritize post-earthquake evacuation performance. Through the use of the tool, architects and designers can explore various design alternatives, considering different minimum room requirements, corridor widths, and exit lengths. This approach ensures that evacuation considerations are embedded in the early stages of the design process. In conclusion, this research presents an innovative automated internal architectural layout generation tool that integrates post-earthquake evacuation simulation. By incorporating evacuation considerations into the early-stage design process, architects and designers can optimize building layouts for improved post-earthquake evacuation performance. This tool empowers professionals to create resilient designs that prioritize the safety of building occupants in the face of seismic events.

Keywords: agent-based simulation, automation in design, architectural layout, post-earthquake evacuation behavior

Procedia PDF Downloads 109
5034 Synthesis of Polystyrene Grafted Filler Nanoparticles: Effect of Grafting on Mechanical Reinforcement

Authors: M. Khlifa, A. Youssef, A. F. Zaed, A. Kraft, V. Arrighi

Abstract:

A series of PS-nanoparticles were prepared by grafting PS from both aggregated silica and colloidally silica using atom-transfer radical polymerisation (ATRP). The mechanical behaviour of the nanocomposites have been examined by differential scanning calorimetry (DSC)and dynamic mechanical thermal analysis (DMTA).

Keywords: ATRP, nanocomposites, polystyrene, reinforcement

Procedia PDF Downloads 629
5033 Investigating the Effect of Urban Expansion on the Urban Heat Island and Land Use Land Cover Changes: The Case Study of Lahore, Pakistan

Authors: Shah Fahad

Abstract:

Managing the Urban Heat Island (UHI) effects is a pressing concern for achieving sustainable urban development and ensuring thermal comfort in major cities of developing nations, such as Lahore, Pakistan. The current UHI effect is mostly triggered by climate change and rapid urbanization. This study explored UHI over the Lahore district and its adjoining urban and rural-urban fringe areas. Landsat satellite data was utilized to investigate spatiotemporal patterns of Land Use and Land Cover changes (LULC), Land Surface Temperature (LST), UHI, Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), and Urban Thermal Field Variance Index (UTFVI). The built-up area increased very fast, with a coverage of 22.99% in 2000, 36.06% in 2010, and 47.17% in 2020, while vegetation covered 53.21 % in 2000 and 46.16 % in 2020. It also revealed a significant increase in the mean LST, from 33°C in 2000 to 34.8°C in 2020. The results indicated a significantly positive correlation between LST and NDBI, a weak correlation was also observed between LST and NDVI. The study used scatterplots to show the correlation between NDBI and NDVI with LST, results revealed that the NDBI and LST had an R² value of 0.6831 in 2000 and 0.06541 in 2022, while NDVI and LST had an R² value of 0.0235 in 1998 and 0.0295 in 2022. Proper environmental planning is vital in specific locations to enhance quality of life, protect the ecosystem, and mitigate climate change impacts.

Keywords: land use land cover, spatio-temporal analysis, remote sensing, land surface temperature, urban heat island, lahore pakistan

Procedia PDF Downloads 83
5032 Comparing the Embodied Carbon Impacts of a Passive House with the BC Energy Step Code Using Life Cycle Assessment

Authors: Lorena Polovina, Maddy Kennedy-Parrott, Mohammad Fakoor

Abstract:

The construction industry accounts for approximately 40% of total GHG emissions worldwide. In order to limit global warming to 1.5 degrees Celsius, ambitious reductions in the carbon intensity of our buildings are crucial. Passive House presents an opportunity to reduce operational carbon by as much as 90% compared to a traditional building through improving thermal insulation, limiting thermal bridging, increasing airtightness and heat recovery. Up until recently, Passive House design was mainly concerned with meeting the energy demands without considering embodied carbon. As buildings become more energy-efficient, embodied carbon becomes more significant. The main objective of this research is to calculate the embodied carbon impact of a Passive House and compare it with the BC Energy Step Code (ESC). British Columbia is committed to increasing the energy efficiency of buildings through the ESC, which is targeting net-zero energy-ready buildings by 2032. However, there is a knowledge gap in the embodied carbon impacts of more energy-efficient buildings, in particular Part 3 construction. In this case study, life cycle assessments (LCA) are performed on Part 3, a multi-unit residential building in Victoria, BC. The actual building is not constructed to the Passive House standard; however, the building envelope and mechanical systems are designed to comply with the Passive house criteria, as well as Steps 1 and 4 of the BC Energy Step Code (ESC) for comparison. OneClick LCA is used to perform the LCA of the case studies. Several strategies are also proposed to minimize the total carbon emissions of the building. The assumption is that there will not be significant differences in embodied carbon between a Passive House and a Step 4 building due to the building envelope.

Keywords: embodied carbon, energy modeling, energy step code, life cycle assessment

Procedia PDF Downloads 154
5031 Investigating the Characteristics of Multi-Plastic Composites Prepared from a Mixture of Silk Fibers and Recycled Polycarbonate

Authors: Razieh Shamsi, Mehdi Faezipour, Ali Abdolkhani

Abstract:

In this research, the characteristics of composites prepared from waste silk fibers and recycled polycarbonate polymer (used compacted boards) at four levels of 0, 10, 20, and 30% (silk fibers) and using 2% N- 2-Aminoethyl-3-Aminopropyltrimethoxysilane was investigated as a coupling agent and melt process method. Silk fibers (carpet weaving waste) with dimensions of 8-18 mm were prepared, and recycled polymer with 9 mesh grading was ground. Production boards in 3 thicknesses, 3 mm (tensile test samples), 5 mm (bending test samples, water absorption, and thickness shrinkage), 7 mm (impact resistance test samples) ) with a specific weight of 1 gram per cubic centimeter, hot pressing time and temperature of 12 minutes and 190 degrees Celsius with a pressure of 130 bar, cold pressing time of 6 minutes with a pressure of 50 bar and using the coupling agent N- (2- Aminoethyl)-3-aminopropyltrimethoxysilane was prepared in a constant amount of 2% of the dry weight of the filler. The results showed that, in general, by adding silk fibers to the base polymer, compared to the control samples (pure recycled polycarbonate polymer) and also by increasing the amount of silk fibers, almost all the resistances increased. The amount of water absorption of the constructed composite increased with the increase in the amount of silk fibers, and the thickness absorption was equal to 0% even after 72 hours of immersion in water. The thermal resistance of the pure recycled polymer was higher than the prepared composites, and by adding silk fibers to the base polymer and also by increasing the amount of silk fibers from 10 to 30%, the thermal resistance of the composites decreased.

Keywords: wood composite, recycled polycarbonate, silk fibers, polymer

Procedia PDF Downloads 97
5030 Complex Management of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy

Authors: Abdullah A. Al Qurashi, Hattan A. Hassani, Bader K. Alaslap

Abstract:

Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C) is an uncommon, inheritable cardiac disorder characterized by the progressive substitution of cardiac myocytes by fibro-fatty tissues. This pathologic substitution predisposes patients to ventricular arrhythmias and right ventricular failure. The underlying genetic defect predominantly involves genes encoding for desmosome proteins, particularly plakophilin-2 (PKP2). These aberrations lead to impaired cell adhesion, heightening the susceptibility to fibrofatty scarring under conditions of mechanical stress. Primarily, ARVD/C affects the right ventricle, but it can also compromise the left ventricle, potentially leading to biventricular heart failure. Clinical presentations can vary, spanning from asymptomatic individuals to those experiencing palpitations, syncopal episodes, and, in severe instances, sudden cardiac death. The establishment of a diagnostic criterion specifically tailored for ARVD/C significantly aids in its accurate diagnosis. Nevertheless, the task of early diagnosis is complicated by the disease's frequently asymptomatic initial stages, and the overall rarity of ARVD/C cases reported globally. In some cases, as exemplified by the adult female patient in this report, the disease may advance to terminal stages, rendering therapies like Ventricular Tachycardia (VT) ablation ineffective. This case underlines the necessity for increased awareness and understanding of ARVD/C to aid in its early detection and management. Through such efforts, we aim to decrease morbidity and mortality associated with this challenging cardiac disorder.

Keywords: arrhythmogenic right ventricular dysplasia, cardiac disease, interventional cardiology, cardiac electrophysiology

Procedia PDF Downloads 63
5029 Effectiveness Factor for Non-Catalytic Gas-Solid Pyrolysis Reaction for Biomass Pellet Under Power Law Kinetics

Authors: Haseen Siddiqui, Sanjay M. Mahajani

Abstract:

Various important reactions in chemical and metallurgical industries fall in the category of gas-solid reactions. These reactions can be categorized as catalytic and non-catalytic gas-solid reactions. In gas-solid reaction systems, heat and mass transfer limitations put an appreciable influence on the rate of the reaction. The consequences can be unavoidable for overlooking such effects while collecting the reaction rate data for the design of the reactor. Pyrolysis reaction comes in this category that involves the production of gases due to the interaction of heat and solid substance. Pyrolysis is also an important step in the gasification process and therefore, the gasification reactivity majorly influenced by the pyrolysis process that produces the char, as a feed for the gasification process. Therefore, in the present study, a non-isothermal transient 1-D model is developed for a single biomass pellet to investigate the effect of heat and mass transfer limitations on the rate of pyrolysis reaction. The obtained set of partial differential equations are firstly discretized using the concept of ‘method of lines’ to obtain a set of ordinary differential equation with respect to time. These equations are solved, then, using MATLAB ode solver ode15s. The model is capable of incorporating structural changes, porosity variation, variation in various thermal properties and various pellet shapes. The model is used to analyze the effectiveness factor for different values of Lewis number and heat of reaction (G factor). Lewis number includes the effect of thermal conductivity of the solid pellet. Higher the Lewis number, the higher will be the thermal conductivity of the solid. The effectiveness factor was found to be decreasing with decreasing Lewis number due to the fact that smaller Lewis numbers retard the rate of heat transfer inside the pellet owing to a lower rate of pyrolysis reaction. G factor includes the effect of the heat of reaction. Since the pyrolysis reaction is endothermic in nature, the G factor takes negative values. The more the negative value higher will be endothermic nature of the pyrolysis reaction. The effectiveness factor was found to be decreasing with more negative values of the G factor. This behavior can be attributed to the fact that more negative value of G factor would result in more energy consumption by the reaction owing to a larger temperature gradient inside the pellet. Further, the analytical expressions are also derived for gas and solid concentrations and effectiveness factor for two limiting cases of the general model developed. The two limiting cases of the model are categorized as the homogeneous model and unreacted shrinking core model.

Keywords: effectiveness factor, G-factor, homogeneous model, lewis number, non-catalytic, shrinking core model

Procedia PDF Downloads 145
5028 Computer Aided Diagnosis Bringing Changes in Breast Cancer Detection

Authors: Devadrita Dey Sarkar

Abstract:

Regardless of the many technologic advances in the past decade, increased training and experience, and the obvious benefits of uniform standards, the false-negative rate in screening mammography remains unacceptably high .A computer aided neural network classification of regions of suspicion (ROS) on digitized mammograms is presented in this abstract which employs features extracted by a new technique based on independent component analysis. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral breast images has the potential to improve the overall performance in the detection of breast lumps. Because breast lumps can be detected reliably by computer on lateral breast mammographs, radiologists’ accuracy in the detection of breast lumps would be improved by the use of CAD, and thus early diagnosis of breast cancer would become possible. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for breast CAD may include the computerized detection of breast nodules, as well as the computerized classification of benign and malignant nodules. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with these CAD systems, which would be reliable and useful method for quantifying the similarity of a pair of images for visual comparison by radiologists.

Keywords: CAD(computer-aided design), lesions, neural network, ROS(region of suspicion)

Procedia PDF Downloads 457
5027 The Importance of Erythrocyte Parameters in Obese Children

Authors: Orkide Donma, M. Metin Donma, Burcin Nalbantoglu, Birol Topcu, Feti Tulubas, Murat Aydin, Tuba Gokkus, Ahmet Gurel

Abstract:

Increasing prevalence of childhood obesity has increased the interest in early and late indicators of gaining weight. Cell blood counts may be indicators of proinflammatory states. The aim was to evaluate associations of hematological parameters, including Hematocrit (HTC), hemoglobin, blood cell counts, and their indices with the degree of obesity in pediatric population. A total of 249; -139 morbidly obese (MO), 82 healthy Normal Weight (NW) and 28 Overweight (OW) children were included into the scope of the study. WHO BMI-for age percentiles were used to form age- and sex-matched groups. Informed consent forms and the Ethics Committee approval were obtained. Anthropometric measurements were performed. Hematological parameters were determined. Statistical analyses were performed using SPSS. The degree for statistical significance was p≤0.05. Significant differences (p=0.000) between waist-to-hip ratios and head-to-neck ratios (hnrs) of MO and NW children were detected. A significant difference between hnrs of OW and MO children (p=0.000) was observed. Red cell Distribution Width (RDW) was higher in OW children than NW group (p=0.030). Such finding couldn’t be detected between MO and NW groups. Increased RDW was prominent in OW children. The decrease in Mean Corpuscular Hemoglobin Concentration (MCHC) values in MO children was sharper than the values in OW children (p=0.006 vs p=0.042) compared to those in NW group. Statistically higher HTC levels were observed between MO-NW (p=0.014), but none between OW-NW. Though the cause-effect relationship between obesity and erythrocyte indices still needs further investigation, alterations in RDW, HTC, MCHC during obesity may be of significance in the early life.

Keywords: anthropometry, children, erythrocytes, obesity

Procedia PDF Downloads 356
5026 Electrochemical Coordination Polymers of Copper(II) Synthesis by Using Rigid and Felexible Ligands

Authors: P. Mirahmadpour, M. H. Banitaba, D. Nematollahi

Abstract:

The chemistry of coordination polymers in recent years has grown exponentially not only because of their interesting architectures but also due to their various technical applications in many fields including ion exchange, chemical catalysis, small molecule separations, and drug release. The use of bridging ligands for the controlled self-assembly of one, two or three dimensional metallo-supramolecular species is the subject of serious study in last decade. Numerous different synthetic methods have been offered for the preparation of coordination polymers such as (a) diffusion from the gas phase, (b) slow diffusion of the reactants into a polymeric matrix, (c) evaporation of the solvent at ambient or reduced temperatures, (d) temperature controlled cooling, (e) precipitation or recrystallisation from a mixture of solvents and (f) hydrothermal synthesis. The electrosynthetic process suggested several advantages over conventional approaches. A general advantage of electrochemical synthesis is that it allows synthesis under milder conditions than typical solvothermal or microwave synthesis. In this work we have introduced a simple electrochemical method for growing metal coordination polymers based on copper with a flexible 2,2’-thiodiacetic acid (TDA) and rigid 1,2,4,5-benzenetetracarboxylate (BTC) ligands. The structure of coordination polymers were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), elemental analysis, thermal gravimetric (TG) and differential thermal analyses (DTA). The single-crystal X-ray diffraction analysis revealed that different conformations of the ligands and different coordination modes of the carboxylate group as well as different coordination geometries of the copper atoms. Electrochemical synthesis of coordination polymers has different advantages such as faster synthesis at lower temperature in compare with conventional chemical methods and crystallization of desired materials in a single synthetic step.

Keywords: 1, 2, 4, 5-benzenetetracarboxylate, coordination polymer, copper, 2, 2’-thiodiacetic acid

Procedia PDF Downloads 212
5025 Early Evaluation of Long-Span Suspension Bridges Using Smartphone Accelerometers

Authors: Ekin Ozer, Maria Q. Feng, Rupa Purasinghe

Abstract:

Structural deterioration of bridge systems possesses an ongoing threat to the transportation networks. Besides, landmark bridges’ integrity and safety are more than sole functionality, since they provide a strong presence for the society and nations. Therefore, an innovative and sustainable method to inspect landmark bridges is essential to ensure their resiliency in the long run. In this paper, a recently introduced concept, smartphone-based modal frequency estimation is addressed, and this paper targets to authenticate the fidelity of smartphone-based vibration measurements gathered from three landmark suspension bridges. Firstly, smartphones located at the bridge mid-span are adopted as portable and standalone vibration measurement devices. Then, their embedded accelerometers are utilized to gather vibration response under operational loads, and eventually frequency domain characteristics are deduced. The preliminary analysis results are compared with the reference publications and high-quality monitoring data to validate the usability of smartphones on long-span landmark suspension bridges. If the technical challenges such as high period of vibration, low amplitude excitation, embedded smartphone sensor features, sampling, and citizen engagement are tackled, smartphones can provide a novel and cost-free crowdsourcing tool for maintenance of these landmark structures. This study presents the early phase findings from three signature structures located in the United States.

Keywords: smart and mobile sensing, structural health monitoring, suspension bridges, vibration analysis

Procedia PDF Downloads 296
5024 A Statistical Analysis on the Comparison of First and Second Waves of COVID-19 and Importance of Early Actions in Public Health for Third Wave in India

Authors: Maitri Dave

Abstract:

Coronaviruses (CoV) is such infectious virus which has impacted globally in a more dangerous manner causing severe lung problems and leaving behind more serious diseases among the people. This pandemic has affected globally and created severe respiratory problems, and damaged the lungs. India has reported the first case of COVID-19 in January 2020. The first wave of COVID-19 took place from April to September of 2020. Soon after, a second peak is also noticed in the month of March 2021, which in turn becomes more dangerous due to a lack of supply of medical equipment. It created resource deficiency globally, specifically in India, where some necessary life-saving equipment like ventilators and oxygenators were not sufficient to cater to the demand-supply ratio effectively. Through carefully examining such a situation, India began to execute the process of vaccination in the month of January 2021 and successfully administered 25,46,71,259 doses of vaccines till now, which is only 15.5% of the total population while only 3.6% of the total population is fully vaccinated. India has authorized the British Oxford–AstraZeneca vaccine (Covishield), the Indian BBV152 (Covaxin) vaccine, and the Russian Sputnik V vaccine for emergency use. In the present study, we have collected all the data state wisely of both first and second wave and analyzed them using MS Excel Version 2019 and SPSS Statistics Version 26. Following the trends, we have predicted the characteristics of the upcoming third wave of COVID-19 and recommended some strategies, early actions, and measures that can be taken by the public health system in India to combat the third wave more effectively.

Keywords: COVID-19, vaccination, Covishiled, Coronavirus

Procedia PDF Downloads 219
5023 Co-Precipitation Method for the Fabrication of Charge-Transfer Molecular Crystal Nanocapsules

Authors: Rabih Al-Kaysi

Abstract:

When quasi-stable solutions of 9-methylanthracene (pi-electron donor, 0.0005 M) and 1,2,4,5-Tetracyanobenzene (pi-electron acceptor, 0.0005 M) in aqueous sodium dodecyl sulfate (SDS, 0.025 M) were gently mixed, uniform-shaped rectangular charge-transfer nanocrystals precipitated out. These red colored charge-transfer (CT) crystals were composed of a 1:1-mole ratio of acceptor/ donor and are highly insoluble in water/SDS solution. The rectangular crystals morphology is semi hollow with symmetrical twin pockets reminiscent of nanocapsules. For a typical crop of nanocapsules, the dimensions are 21 x 6 x 0.5 microns with an approximate hollow volume of 1.5 x 105 nm3. By varying the concentration of aqueous SDS, mixing duration and incubation temperature, we can control the size and volume of the nanocapsules. The initial number of CT seed nanoparticles, formed by mixing the D and A solutions, determined the number and dimensions of the obtained nanocapsules formed after several hours of incubation under still conditions. Prolonged mixing of the donor and acceptor solutions resulted in plenty of initial seeds hence smaller nanocapsules. Short mixing times yields less seed formation and larger micron-sized capsules. The addition of Doxorubicin in situ with the quasi-stable solutions while mixing leads to the formation of CT nanocapsules with Doxorubicin sealed inside. The Doxorubicin can be liberated from the nanocapsules by cracking them using ultrasonication. This method can be extended to other binary CT complex crystals as well.

Keywords: charge-transfer, nanocapsules, nanocrystals, doxorubicin

Procedia PDF Downloads 217
5022 Evaluation of Firearm Injury Syndromic Surveillance in Utah

Authors: E. Bennion, A. Acharya, S. Barnes, D. Ferrell, S. Luckett-Cole, G. Mower, J. Nelson, Y. Nguyen

Abstract:

Objective: This study aimed to evaluate the validity of a firearm injury query in the Early Notification of Community-based Epidemics syndromic surveillance system. Syndromic surveillance data are used at the Utah Department of Health for early detection of and rapid response to unusually high rates of violence and injury, among other health outcomes. The query of interest was defined by the Centers for Disease Control and Prevention and used chief complaint and discharge diagnosis codes to capture initial emergency department encounters for firearm injury of all intents. Design: Two epidemiologists manually reviewed electronic health records of emergency department visits captured by the query from April-May 2020, compared results, and sent conflicting determinations to two arbiters. Results: Of the 85 unique records captured, 67 were deemed probable, 19 were ruled out, and two were undetermined, resulting in a positive predictive value of 75.3%. Common reasons for false positives included non-initial encounters and misleading keywords. Conclusion: Improving the validity of syndromic surveillance data would better inform outbreak response decisions made by state and local health departments. The firearm injury definition could be refined to exclude non-initial encounters by negating words such as “last month,” “last week,” and “aftercare”; and to exclude non-firearm injury by negating words such as “pellet gun,” “air gun,” “nail gun,” “bullet bike,” and “exit wound” when a firearm is not mentioned.

Keywords: evaluation, health information system, firearm injury, syndromic surveillance

Procedia PDF Downloads 171
5021 Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Condition monitoring is used to increase machinery availability and machinery performance, whilst reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers induce a load on the output joint shaft flanges. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive: a five-speed gearbox with final drive gear and front wheel differential. The results obtained from practical experiments prove that the proposed method is very effective for gear fault diagnosis.

Keywords: wavelet analysis, pitted gear, autocorrelation, gear fault diagnosis

Procedia PDF Downloads 390
5020 Effect of Temperature on the Properties of Cement Paste Modified with Nanoparticles

Authors: Karine Pimenta Teixeira, Jessica Flores, Isadora PerdigãO Rocha, Leticia De Sá Carneiro, Mahsa Kamali, Ali Ghahremaninezhad

Abstract:

The advent of nanotechnology has enabled innovative solutions towards improving the behavior of infrastructure materials. Nanomaterials have the potential to revolutionize the construction industry by improving the performance and durability of construction materials, as well as imparting new functionalities to these materials. Due to variability in the environmental temperature during mixing and curing of cementitious materials in practice, it is important to understand how curing temperature influences the behavior of cementitious materials. In addition, high temperature curing is relevant in applications such as oil well cement and precast industry. Knowledge of the influence of temperature on the performance of cementitious materials modified with nanoparticles is important in the nanoengineering of cementitious materials in applications such as oil well cement and precast industry. This presentation aims to investigate the influence of temperature on the hydration, mechanical properties and durability of cementitious materials modified with TiO2 nanoparticles. It was found that temperature improved the early hydration. The cement pastes cured at high temperatures showed an increase in the compressive strength at early age but the strength gain decreased at late ages. The electrical resistivity of the cement pastes cured at high temperatures was shown to decrease more noticeably at late ages compared to that of the room temperature cured cement paste. SEM examination indicated that hydration product was more uniformly distributed in the microstructure of the cement paste cured at room temperature compared to the cement pastes cured at high temperature.

Keywords: cement paste, nanoparticles, temperature, hydration

Procedia PDF Downloads 321
5019 Economic Determinants of Maize Production in 2013-2014 in the Individual Farm

Authors: Ewa Krasnodębska

Abstract:

The article presents the costs and income maize cultivation for grain four selected varieties with different numbers of FAO in 2013-2014. Results of the experiments are derived from a field experiment conducted in indywidulnym farm specializing in the production plant located in the eastern part of Mazowieckie voivodship. The experiment examined the profitability of four varieties of maize cultivation: medium early: P8400 (FAO 240) and P8589 (FAO 250), and an average of late: PR38N86 (FAO 270) and P9027 (FAO 260). In order to evaluate the profitability of grain maize production was calculated income from 1 ha of crops in zł and profitability index taking into account the direct payments up to 1 ha. Analyzing the value of crop production can be concluded that the value of the total production of each variety was very much varied and very much depend on the sales price and yield of maize obtained from 1 ha of cultivation. The largest average seed yield of two years at a moisture content of 15% was achieved in a variety PR38N86, which amounted to 12.1 t / ha and the lowest in the variety P8400 - 9.8 t / ha. Income from 1 ha of crops including EU subsidies ranged from 4916.4 zł / ha in 2013 for variety and only 528.7 PR38N86 zł / ha for a variety of P8400 in 2014. Profitability index reached the highest average late PR38N86 variety of FAO 290 over the entire two-year period under study, and the lowest rate of profitability achieved P8400 medium early variety of FAO 240. The profitability of production ranged from 8964.0 zł / ha in 2013 for a variety of PR38N86 to 5616.0 zł / ha for a variety of P8400 in 2014. Cultivation of maize for grain production is attractive and does not require large amounts of work, but its economic rationale is based primarily on the resulting yield and the price of buying.

Keywords: corn, grain, income, profitability

Procedia PDF Downloads 396
5018 The Discovery and Application of Perspective Representation in Modern Italy

Authors: Matthias Stange

Abstract:

In the early modern period, a different image of man began to prevail in Europe. The focus was on the self-determined human being and his abilities. At first, these developments could be seen in Italian painting and architecture, which again oriented itself to the concepts and forms of antiquity. For example, through the discovery of perspective representation by Brunelleschi or later the orthogonal projection by Alberti, after the ancient knowledge of optics had been forgotten in the Middle Ages. The understanding of reality in the Middle Ages was not focused on the sensually perceptible world but was determined by ecclesiastical dogmas. The empirical part of this study examines the rediscovery and development of perspective. With the paradigm of antiquity, the figure of the architect was also recognised again - the cultural man trained theoretically and practically in numerous subjects, as Vitruvius describes him. In this context, the role of the architect, the influence on the painting of the Quattrocento as well as the influence on architectural representation in the Baroque period are examined. Baroque is commonly associated with the idea of illusionistic appearance as opposed to the tangible reality presented in the Renaissance. The study has shown that the central perspective projection developed by Filippo Brunelleschi enabled another understanding of seeing and the dissemination of painted images. Brunelleschi's development made it possible to understand the sight of nature as a reflection of what is presented to the viewer's eye. Alberti later shortened Brunelleschi's central perspective representation for practical use in painting. In early modern Italian architecture and painting, these developments apparently supported each other. The pictorial representation of architecture initially served the development of an art form before it became established in building practice itself.

Keywords: Alberti, Brunelleschi, central perspective projection, orthogonal projection, quattrocento, baroque

Procedia PDF Downloads 91
5017 Nanocellulose Reinforced Biocomposites Based on Wheat Plasticized Starch for Food Packaging

Authors: Belen Montero, Carmen Ramirez, Maite Rico, Rebeca Bouza, Irene Derungs

Abstract:

Starch is a promising polymer for producing biocomposite materials because it is renewable, completely biodegradable and easily available at a low cost. Thermoplastic starches (TPS) can be obtained after the disruption and plasticization of native starch with a plasticizer. In this work, the solvent casting method was used to obtain TPS films from wheat starch plasticized with glycerol and reinforced with nanocellulose (CNC). X-ray diffraction analysis was used to follow the evolution of the crystallinity. The native wheat starch granules have shown a profile corresponding to A-type crystal structures typical for cereal starches. When TPS films are analyzed a high amorphous halo centered on 19º is obtained, indicating the plasticization process is completed. SEM imaging was made in order to analyse the morphology. The image from the raw wheat starch granules shows a bimodal granule size distribution with some granules in large round disk-shape forms (A-type) and the others as smaller spherical particles (B-type). The image from the neat TPS surface shows a continuous surface. No starch aggregates or swollen granules can be seen so, the plasticization process is complete. In the surfaces of reinforced TPS films aggregates are seen as the CNC concentration in the matrix increases. The CNC influence on the mechanical properties of TPS films has been studied by dynamic mechanical analysis. A direct relation exists between the storage modulus values, E’, and the CNC content in reinforced TPS films: higher is the content of nanocellulose in the composite, higher is the value of E’. This reinforcement effect can be explained by the appearance of a strong and crystalline nanoparticle-TPS interphase. Thermal stability of films was analysed by TGA. It has not observed any influence on the behaviour related to the thermal degradation of films with the incorporation of the CNC. Finally, the resistance to the water absorption films was analysed following the standard UNE-EN ISO 1998:483. The percentage of water absorbed by the samples at each time was calculated. The addition of 5 wt % of CNC to the TPS matrix leads to a significant improvement in the moisture resistance of the starch based material decreasing their diffusivity. It has been associated to the formation of a nanocrystal network that prevents swelling of the starch and therefore water absorption and to the high crystallinity of cellulose compared to starch. As a conclusion, the wheat film reinforced with 5 wt % of cellulose nanocrystals seems to be a good alternative for short-life applications into the packaging industry, because of its greatest rigidity, thermal stability and moisture sorption resistance.

Keywords: biocomposites, nanocellulose, starch, wheat

Procedia PDF Downloads 215
5016 High Aspect Ratio Sio2 Capillary Based On Silicon Etching and Thermal Oxidation Process for Optical Modulator

Authors: Nguyen Van Toan, Suguru Sangu, Tetsuro Saito, Naoki Inomata, Takahito Ono

Abstract:

This paper presents the design and fabrication of an optical window for an optical modulator toward image sensing applications. An optical window consists of micrometer-order SiO2 capillaries (porous solid) that can modulate transmission light intensity by moving the liquid in and out of porous solid. A high optical transmittance of the optical window can be achieved due to refractive index matching when the liquid is penetrated into the porous solid. Otherwise, its light transmittance is lower because of light reflection and scattering by air holes and capillary walls. Silicon capillaries fabricated by deep reactive ion etching (DRIE) process are completely oxidized to form the SiO2 capillaries. Therefore, high aspect ratio SiO2 capillaries can be achieved based on silicon capillaries formed by DRIE technique. Large compressive stress of the oxide causes bending of the capillary structure, which is reduced by optimizing the design of device structure. The large stress of the optical window can be released via thin supporting beams. A 7.2 mm x 9.6 mm optical window area toward a fully integrated with the image sensor format is successfully fabricated and its optical transmittance is evaluated with and without inserting liquids (ethanol and matching oil). The achieved modulation range is approximately 20% to 35% with and without liquid penetration in visible region (wavelength range from 450 nm to 650 nm).

Keywords: thermal oxidation process, SiO2 capillaries, optical window, light transmittance, image sensor, liquid penetration

Procedia PDF Downloads 496
5015 Liquid Chromatography Microfluidics for Detection and Quantification of Urine Albumin Using Linear Regression Method

Authors: Patricia B. Cruz, Catrina Jean G. Valenzuela, Analyn N. Yumang

Abstract:

Nearly a hundred per million of the Filipino population is diagnosed with Chronic Kidney Disease (CKD). The early stage of CKD has no symptoms and can only be discovered once the patient undergoes urinalysis. Over the years, different methods were discovered and used for the quantification of the urinary albumin such as the immunochemical assays where most of these methods require large machinery that has a high cost in maintenance and resources, and a dipstick test which is yet to be proven and is still debated as a reliable method in detecting early stages of microalbuminuria. This research study involves the use of the liquid chromatography concept in microfluidic instruments with biosensor as a means of separation and detection respectively, and linear regression to quantify human urinary albumin. The researchers’ main objective was to create a miniature system that quantifies and detect patients’ urinary albumin while reducing the amount of volume used per five test samples. For this study, 30 urine samples of unknown albumin concentrations were tested using VITROS Analyzer and the microfluidic system for comparison. Based on the data shared by both methods, the actual vs. predicted regression were able to create a positive linear relationship with an R2 of 0.9995 and a linear equation of y = 1.09x + 0.07, indicating that the predicted values and actual values are approximately equal. Furthermore, the microfluidic instrument uses 75% less in total volume – sample and reagents combined, compared to the VITROS Analyzer per five test samples.

Keywords: Chronic Kidney Disease, Linear Regression, Microfluidics, Urinary Albumin

Procedia PDF Downloads 139
5014 Active Thermography Technique for High-Entropy Alloy Characterization Deposited with Cold Spray Technique

Authors: Nazanin Sheibanian, Raffaella Sesana, Sedat Ozbilen

Abstract:

In recent years, high-entropy alloys (HEAs) have attracted considerable attention due to their unique properties and potential applications. In this study, novel HEA coatings were prepared on Mg substrates using mechanically alloyed HEA powder feedstocks based on Al_(0.1-0.5)CoCrCuFeNi and MnCoCrCuFeNi multi-material systems. The coatings were deposited by the Cold Spray (CS) process using three different temperatures of the process gas (N2) (650°C, 750°C, and 850°C) to examine the effect of gas temperature on coating properties. In this study, Infrared Thermography (non-destructive) was examined as a possible quality control technique for HEA coatings applied to magnesium substrates. Active Thermography was employed to characterize coating properties using the thermal response of the coating. Various HEA chemical compositions and deposition temperatures have been investigated. As a part of this study, a comprehensive macro and microstructural analysis of Cold Spray (CS) HEA coatings has been conducted using macrophotography, optical microscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM+EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), microhardness tests, roughness measurements, and porosity assessments. These analyses provided insight into phase identification, microstructure characterization, deposition, particle deformation behavior, bonding mechanisms, and identifying a possible relationship between physical properties and thermal responses. Based on the figures and tables, it is evident that the Maximum Relative Radiance (∆RMax) of each sample differs depending on both the chemical composition of HEA and the temperature at which Cold Spray is applied.

Keywords: active thermography, coating, cold spray, high- entropy alloy, material characterization

Procedia PDF Downloads 76