Search results for: arrival time prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19837

Search results for: arrival time prediction

17437 Passive Neutralization of Acid Mine Drainage Using Locally Produced Limestone

Authors: Reneiloe Seodigeng, Malwandla Hanabe, Haleden Chiririwa, Hilary Rutto, Tumisang Seodigeng

Abstract:

Neutralisation of acid-mine drainage (AMD) using limestone is cost effective, and good results can be obtained. However, this process has its limitations; it cannot be used for highly acidic water which consists of Fe(III). When Fe(III) reacts with CaCO3, it results in armoring. Armoring slows the reaction, and additional alkalinity can no longer be generated. Limestone is easily accessible, so this problem can be easily dealt with. Experiments were carried out to evaluate the effect of PVC pipe length on ferric and ferrous ions. It was found that the shorter the pipe length the more these dissolved metals precipitate. The effect of the pipe length on the hydrogen ions was also studied, and it was found that these two have an inverse relationship. Experimental data were further compared with the model prediction data to see if they behave in a similar fashion. The model was able to predict the behaviour of 1.5m and 2 m pipes in ferric and ferrous ion precipitation.

Keywords: acid mine drainage, neutralisation, limestone, mathematical modelling

Procedia PDF Downloads 364
17436 Adaptive Optimal Controller for Uncertain Inverted Pendulum System: A Dynamic Programming Approach for Continuous Time System

Authors: Dao Phuong Nam, Tran Van Tuyen, Do Trong Tan, Bui Minh Dinh, Nguyen Van Huong

Abstract:

In this paper, we investigate the adaptive optimal control law for continuous-time systems with input disturbances and unknown parameters. This paper extends previous works to obtain the robust control law of uncertain systems. Through theoretical analysis, an adaptive dynamic programming (ADP) based optimal control is proposed to stabilize the closed-loop system and ensure the convergence properties of proposed iterative algorithm. Moreover, the global asymptotic stability (GAS) for closed system is also analyzed. The theoretical analysis for continuous-time systems and simulation results demonstrate the performance of the proposed algorithm for an inverted pendulum system.

Keywords: approximate/adaptive dynamic programming, ADP, adaptive optimal control law, input state stability, ISS, inverted pendulum

Procedia PDF Downloads 194
17435 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 73
17434 Study on Compressive Strength and Setting Time of Fly Ash Concrete after Slump Recovery Using Superplasticizer

Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert

Abstract:

Fresh concrete that is on bound to be rejected due to belated use either from delay construction process or unflavored traffic cause delay on concrete delivering can recover the slump and use once again by introduce second dose of superplasticizer(naphthalene based type F) into system. By adding superplasticizer as solution for recover unusable slump loss concrete may affects other concrete properties. Therefore, this paper was observed setting time and compressive strength of concrete after being re-dose with chemical admixture type F (superplasticizer, naphthalene based) for slump recovery. The concrete used in this study was fly ash concrete with fly ash replacement of 0%, 30% and 50% respectively. Concrete mix designed for test specimen was prepared with paste content (ratio of volume of cement to volume of void in the aggregate) of 1.2 and 1.3, water-to-binder ratio (w/b) range of 0.3 to 0.58, initial dose of superplasticizer (SP) range from 0.5 to 1.6%. The setting time of concrete were tested both before and after re-dosed with different amount of second dose and time of dosing. The research was concluded that addition of second dose of superplasticizer would increase both initial and final setting times accordingly to dosage of addition. As for fly ash concrete, the prolongation effect was higher as the replacement of fly ash is increase. The prolongation effect can reach up to maximum about 4 hours. In case of compressive strength, the re-dosed concrete has strength fluctuation within acceptable range of ±10%.

Keywords: compressive strength, fly ash concrete, second dose of superplasticizer, setting times

Procedia PDF Downloads 281
17433 Inter-Annual Variations of Sea Surface Temperature in the Arabian Sea

Authors: K. S. Sreejith, C. Shaji

Abstract:

Though both Arabian Sea and its counterpart Bay of Bengal is forced primarily by the semi-annually reversing monsoons, the spatio-temporal variations of surface waters is very strong in the Arabian Sea as compared to the Bay of Bengal. This study focuses on the inter-annual variability of Sea Surface Temperature (SST) in the Arabian Sea by analysing ERSST dataset which covers 152 years of SST (January 1854 to December 2002) based on the ICOADS in situ observations. To capture the dominant SST oscillations and to understand the inter-annual SST variations at various local regions of the Arabian Sea, wavelet analysis was performed on this long time-series SST dataset. This tool is advantageous over other signal analysing tools like Fourier analysis, based on the fact that it unfolds a time-series data (signal) both in frequency and time domain. This technique makes it easier to determine dominant modes of variability and explain how those modes vary in time. The analysis revealed that pentadal SST oscillations predominate at most of the analysed local regions in the Arabian Sea. From the time information of wavelet analysis, it was interpreted that these cold and warm events of large amplitude occurred during the periods 1870-1890, 1890-1910, 1930-1950, 1980-1990 and 1990-2005. SST oscillations with peaks having period of ~ 2-4 years was found to be significant in the central and eastern regions of Arabian Sea. This indicates that the inter-annual SST variation in the Indian Ocean is affected by the El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events.

Keywords: Arabian Sea, ICOADS, inter-annual variation, pentadal oscillation, SST, wavelet analysis

Procedia PDF Downloads 276
17432 Impacts of Climate Elements on the Annual Periodic Behavior of the Shallow Groundwater Level: Case Study from Central-Eastern Europe

Authors: Tamas Garamhegyi, Jozsef Kovacs, Rita Pongracz, Peter Tanos, Balazs Trasy, Norbert Magyar, Istvan G. Hatvani

Abstract:

Like most environmental processes, shallow groundwater fluctuation under natural circumstances also behaves periodically. With the statistical tools at hand, it can easily be determined if a period exists in the data or not. Thus, the question may be raised: Does the estimated average period time characterize the whole time period, or not? This is especially important in the case of such complex phenomena as shallow groundwater fluctuation, driven by numerous factors. Because of the continuous changes in the oscillating components of shallow groundwater time series, the most appropriate method should be used to investigate its periodicity, this is wavelet spectrum analysis. The aims of the research were to investigate the periodic behavior of the shallow groundwater time series of an agriculturally important and drought sensitive region in Central-Eastern Europe and its relationship to the European pressure action centers. During the research ~216 shallow groundwater observation wells located in the eastern part of the Great Hungarian Plain with a temporal coverage of 50 years were scanned for periodicity. By taking the full-time interval as 100%, the presence of any period could be determined in percentages. With the complex hydrogeological/meteorological model developed in this study, non-periodic time intervals were found in the shallow groundwater levels. On the local scale, this phenomenon linked to drought conditions, and on a regional scale linked to the maxima of the regional air pressures in the Gulf of Genoa. The study documented an important link between shallow groundwater levels and climate variables/indices facilitating the necessary adaptation strategies on national and/or regional scales, which have to take into account the predictions of drought-related climatic conditions.

Keywords: climate change, drought, groundwater periodicity, wavelet spectrum and coherence analyses

Procedia PDF Downloads 385
17431 Internal Corrosion Rupture of a 6-in Gas Line Pipe

Authors: Fadwa Jewilli

Abstract:

A sudden leak of a 6-inch gas line pipe after being in service for one year was observed. The pipe had been designed to transport dry gas. The failure had taken place in 6 o’clock position at the stage discharge of the flow process. Laboratory investigations were conducted to find out the cause of the pipe rupture. Visual and metallographic observations confirmed that the pipe split was due to a crack initiated in circumferential and then turned into longitudinal direction. Sever wall thickness reduction was noticed on the internal pipe surface. Scanning electron microscopy observations at the fracture surface revealed features of ductile fracture mode. Corrosion product analysis showed the traces of iron carbonate and iron sulphate. The laboratory analysis resulted in the conclusion that the pipe failed due to the effect of wet fluid (condensate) caused severe wall thickness dissolution resulted in pipe could not stand the continuation at in-service working condition.

Keywords: gas line pipe, corrosion prediction ductile fracture, ductile fracture, failure analysis

Procedia PDF Downloads 84
17430 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements

Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath

Abstract:

Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.

Keywords: pronunciation variations, dynamic programming, machine learning, natural language processing

Procedia PDF Downloads 175
17429 The Relationship between Iranian EFL Learners' Multiple Intelligences and Their Performance on Grammar Tests

Authors: Rose Shayeghi, Pejman Hosseinioun

Abstract:

The Multiple Intelligences theory characterizes human intelligence as a multifaceted entity that exists in all human beings with varying degrees. The most important contribution of this theory to the field of English Language Teaching (ELT) is its role in identifying individual differences and designing more learner-centered programs. The present study aims at investigating the relationship between different elements of multiple intelligence and grammar scores. To this end, 63 female Iranian EFL learner selected from among intermediate students participated in the study. The instruments employed were a Nelson English language test, Michigan Grammar Test, and Teele Inventory for Multiple Intelligences (TIMI). The results of Pearson Product-Moment Correlation revealed a significant positive correlation between grammatical accuracy and linguistic as well as interpersonal intelligence. The results of Stepwise Multiple Regression indicated that linguistic intelligence contributed to the prediction of grammatical accuracy.

Keywords: multiple intelligence, grammar, ELT, EFL, TIMI

Procedia PDF Downloads 490
17428 An ALM Matrix Completion Algorithm for Recovering Weather Monitoring Data

Authors: Yuqing Chen, Ying Xu, Renfa Li

Abstract:

The development of matrix completion theory provides new approaches for data gathering in Wireless Sensor Networks (WSN). The existing matrix completion algorithms for WSN mainly consider how to reduce the sampling number without considering the real-time performance when recovering the data matrix. In order to guarantee the recovery accuracy and reduce the recovery time consumed simultaneously, we propose a new ALM algorithm to recover the weather monitoring data. A lot of experiments have been carried out to investigate the performance of the proposed ALM algorithm by using different parameter settings, different sampling rates and sampling models. In addition, we compare the proposed ALM algorithm with some existing algorithms in the literature. Experimental results show that the ALM algorithm can obtain better overall recovery accuracy with less computing time, which demonstrate that the ALM algorithm is an effective and efficient approach for recovering the real world weather monitoring data in WSN.

Keywords: wireless sensor network, matrix completion, singular value thresholding, augmented Lagrange multiplier

Procedia PDF Downloads 384
17427 Biosorption Kinetics, Isotherms, and Thermodynamic Studies of Copper (II) on Spirogyra sp.

Authors: Diwan Singh

Abstract:

The ability of non-living Spirogyra sp. biomass for biosorption of copper(II) ions from aqueous solutions was explored. The effect of contact time, pH, initial copper ion concentration, biosorbent dosage and temperature were investigated in batch experiments. Both the Freundlich and Langmuir Isotherms were found applicable on the experimental data (R2>0.98). Qmax obtained from the Langmuir Isotherms was found to be 28.7 mg/g of biomass. The values of Gibbs free energy (ΔGº) and enthalpy change (ΔHº) suggest that the sorption is spontaneous and endothermic at 20ºC-40ºC.

Keywords: biosorption, Spirogyra sp., contact time, pH, dose

Procedia PDF Downloads 427
17426 On Four Models of a Three Server Queue with Optional Server Vacations

Authors: Kailash C. Madan

Abstract:

We study four models of a three server queueing system with Bernoulli schedule optional server vacations. Customers arriving at the system one by one in a Poisson process are provided identical exponential service by three parallel servers according to a first-come, first served queue discipline. In model A, all three servers may be allowed a vacation at one time, in Model B at the most two of the three servers may be allowed a vacation at one time, in model C at the most one server is allowed a vacation, and in model D no server is allowed a vacation. We study steady the state behavior of the four models and obtain steady state probability generating functions for the queue size at a random point of time for all states of the system. In model D, a known result for a three server queueing system without server vacations is derived.

Keywords: a three server queue, Bernoulli schedule server vacations, queue size distribution at a random epoch, steady state

Procedia PDF Downloads 296
17425 E4D-MP: Time-Lapse Multiphysics Simulation and Joint Inversion Toolset for Large-Scale Subsurface Imaging

Authors: Zhuanfang Fred Zhang, Tim C. Johnson, Yilin Fang, Chris E. Strickland

Abstract:

A variety of geophysical techniques are available to image the opaque subsurface with little or no contact with the soil. It is common to conduct time-lapse surveys of different types for a given site for improved results of subsurface imaging. Regardless of the chosen survey methods, it is often a challenge to process the massive amount of survey data. The currently available software applications are generally based on the one-dimensional assumption for a desktop personal computer. Hence, they are usually incapable of imaging the three-dimensional (3D) processes/variables in the subsurface of reasonable spatial scales; the maximum amount of data that can be inverted simultaneously is often very small due to the capability limitation of personal computers. Presently, high-performance or integrating software that enables real-time integration of multi-process geophysical methods is needed. E4D-MP enables the integration and inversion of time-lapsed large-scale data surveys from geophysical methods. Using the supercomputing capability and parallel computation algorithm, E4D-MP is capable of processing data across vast spatiotemporal scales and in near real time. The main code and the modules of E4D-MP for inverting individual or combined data sets of time-lapse 3D electrical resistivity, spectral induced polarization, and gravity surveys have been developed and demonstrated for sub-surface imaging. E4D-MP provides capability of imaging the processes (e.g., liquid or gas flow, solute transport, cavity development) and subsurface properties (e.g., rock/soil density, conductivity) critical for successful control of environmental engineering related efforts such as environmental remediation, carbon sequestration, geothermal exploration, and mine land reclamation, among others.

Keywords: gravity survey, high-performance computing, sub-surface monitoring, electrical resistivity tomography

Procedia PDF Downloads 157
17424 Impact of Varying Malting and Fermentation Durations on Specific Chemical, Functional Properties, and Microstructural Behaviour of Pearl Millet and Sorghum Flour Using Response Surface Methodology

Authors: G. Olamiti; TK. Takalani; D. Beswa, AIO Jideani

Abstract:

The study investigated the effects of malting and fermentation times on some chemical, functional properties and microstructural behaviour of Agrigreen, Babala pearl millet cultivars and sorghum flours using response surface methodology (RSM). Central Composite Rotatable Design (CCRD) was performed on two independent variables: malting and fermentation times (h), at intervals of 24, 48, and 72, respectively. The results of dependent parameters such as pH, titratable acidity (TTA), Water absorption capacity (WAC), Oil absorption capacity (OAC), bulk density (BD), dispersibility and microstructural behaviour of the flours studied showed a significant difference in p < 0.05 upon malting and fermentation time. Babala flour exhibited a higher pH value at 4.78 at 48 h malted and 81.9 fermentation times. Agrigreen flour showed a higher TTA value at 0.159% at 81.94 h malted and 48 h fermentation times. WAC content was also higher in malted and fermented Babala flour at 2.37 ml g-1 for 81.94 h malted and 48 h fermentation time. Sorghum flour exhibited the least OAC content at 1.67 ml g-1 at 14 h malted and 48 h fermentation times. Agrigreen flour recorded the least bulk density, at 0.53 g ml-1 for 72 h malted and 24 h fermentation time. Sorghum flour exhibited a higher content of dispersibility, at 56.34%, after 24 h malted and 72 h fermented time. The response surface plots showed that increased malting and fermentation time influenced the dependent parameters. The microstructure behaviour of malting and fermentation times of pearl millet varieties and sorghum flours showed isolated, oval, spherical, or polygonal to smooth surfaces. The optimal processing conditions, such as malting and fermentation time for Agrigreen, were 32.24 h and 63.32 h; 35.18 h and 34.58 h for Babala; and 36.75 h and 47.88 h for sorghum with high desirability of 1.00. The validation of the optimum processing malting and fermentation times (h) on the dependent improved the experimented values. Food processing companies can use the study's findings to improve food processing and quality.

Keywords: Pearl millet, malting, fermentation, microstructural behaviour

Procedia PDF Downloads 71
17423 A Geographic Information System Mapping Method for Creating Improved Satellite Solar Radiation Dataset Over Qatar

Authors: Sachin Jain, Daniel Perez-Astudillo, Dunia A. Bachour, Antonio P. Sanfilippo

Abstract:

The future of solar energy in Qatar is evolving steadily. Hence, high-quality spatial solar radiation data is of the uttermost requirement for any planning and commissioning of solar technology. Generally, two types of solar radiation data are available: satellite data and ground observations. Satellite solar radiation data is developed by the physical and statistical model. Ground data is collected by solar radiation measurement stations. The ground data is of high quality. However, they are limited to distributed point locations with the high cost of installation and maintenance for the ground stations. On the other hand, satellite solar radiation data is continuous and available throughout geographical locations, but they are relatively less accurate than ground data. To utilize the advantage of both data, a product has been developed here which provides spatial continuity and higher accuracy than any of the data alone. The popular satellite databases: National Solar radiation Data Base, NSRDB (PSM V3 model, spatial resolution: 4 km) is chosen here for merging with ground-measured solar radiation measurement in Qatar. The spatial distribution of ground solar radiation measurement stations is comprehensive in Qatar, with a network of 13 ground stations. The monthly average of the daily total Global Horizontal Irradiation (GHI) component from ground and satellite data is used for error analysis. The normalized root means square error (NRMSE) values of 3.31%, 6.53%, and 6.63% for October, November, and December 2019 were observed respectively when comparing in-situ and NSRDB data. The method is based on the Empirical Bayesian Kriging Regression Prediction model available in ArcGIS, ESRI. The workflow of the algorithm is based on the combination of regression and kriging methods. A regression model (OLS, ordinary least square) is fitted between the ground and NSBRD data points. A semi-variogram is fitted into the experimental semi-variogram obtained from the residuals. The kriging residuals obtained after fitting the semi-variogram model were added to NSRBD data predicted values obtained from the regression model to obtain the final predicted values. The NRMSE values obtained after merging are respectively 1.84%, 1.28%, and 1.81% for October, November, and December 2019. One more explanatory variable, that is the ground elevation, has been incorporated in the regression and kriging methods to reduce the error and to provide higher spatial resolution (30 m). The final GHI maps have been created after merging, and NRMSE values of 1.24%, 1.28%, and 1.28% have been observed for October, November, and December 2019, respectively. The proposed merging method has proven as a highly accurate method. An additional method is also proposed here to generate calibrated maps by using regression and kriging model and further to use the calibrated model to generate solar radiation maps from the explanatory variable only when not enough historical ground data is available for long-term analysis. The NRMSE values obtained after the comparison of the calibrated maps with ground data are 5.60% and 5.31% for November and December 2019 month respectively.

Keywords: global horizontal irradiation, GIS, empirical bayesian kriging regression prediction, NSRDB

Procedia PDF Downloads 89
17422 Evaluation of Particle Settling in Flow Chamber

Authors: Abdulrahman Alenezi, B. Stefan

Abstract:

Abstract— The investigation of fluids containing particles or filaments includes a category of complex fluids and is vital in both theory and application. The forecast of particle behaviors plays a significant role in the existing technology as well as future technology. This paper focuses on the prediction of the particle behavior through the investigation of the particle disentrainment from a pipe on a horizontal air stream. This allows for examining the influence of the particle physical properties on its behavior when falling on horizontal air stream. This investigation was conducted on a device located at the University of Greenwich's Medway Campus. Two materials were selected to carry out this study: Salt and Glass Beads particles. The shape of the Slat particles is cubic where the shape of the Glass Beads is almost spherical. The outcome from the experimental work were presented in terms of distance travelled by the particles according to their diameters as After that, the particles sizes were measured using Laser Diffraction device and used to determine the drag coefficient and the settling velocity.

Keywords: flow experiment, drag coefficient, Particle Settling, Flow Chamber

Procedia PDF Downloads 136
17421 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments

Authors: David X. Dong, Qingming Zhang, Meng Lu

Abstract:

Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.

Keywords: optical sensor, regression model, nitrites, water quality

Procedia PDF Downloads 72
17420 Design and Implementation of an Effective Machine Learning Approach to Crime Prediction and Prevention

Authors: Ashish Kumar, Kaptan Singh, Amit Saxena

Abstract:

Today, it is believed that crimes have the greatest impact on a person's ability to progress financially and personally. Identifying places where individuals shouldn't go is crucial for preventing crimes and is one of the key considerations. As society and technologies have advanced significantly, so have crimes and the harm they wreak. When there is a concentration of people in one place and changes happen quickly, it is even harder to prevent. Because of this, many crime prevention strategies have been embraced as a component of the development of smart cities in numerous cities. However, crimes can occur anywhere; all that is required is to identify the pattern of their occurrences, which will help to lower the crime rate. In this paper, an analysis related to crime has been done; information related to crimes is collected from all over India that can be accessed from anywhere. The purpose of this paper is to investigate the relationship between several factors and India's crime rate. The review has covered information related to every state of India and their associated regions of the period going in between 2001- 2014. However various classes of violations have a marginally unique scope over the years.

Keywords: K-nearest neighbor, random forest, decision tree, pre-processing

Procedia PDF Downloads 93
17419 Improving the Run Times of Existing and Historical Demand Models Using Simple Python Scripting

Authors: Abhijeet Ostawal, Parmjit Lall

Abstract:

The run times for a large strategic model that we were managing had become too long leading to delays in project delivery, increased costs and loss in productivity. Software developers are continuously working towards developing more efficient tools by changing their algorithms and processes. The issue faced by our team was how do you apply the latest technologies on validated existing models which are based on much older versions of software that do not have the latest software capabilities. The multi-model transport model that we had could only be run in sequential assignment order. Recent upgrades to the software now allowed the assignment to be run in parallel, a concept called parallelization. Parallelization is a Python script working only within the latest version of the software. A full model transfer to the latest version was not possible due to time, budget and the potential changes in trip assignment. This article is to show the method to adapt and update the Python script in such a way that it can be used in older software versions by calling the latest version and then recalling the old version for assignment model without affecting the results. Through a process of trial-and-error run time savings of up to 30-40% have been achieved. Assignment results were maintained within the older version and through this learning process we’ve applied this methodology to other even older versions of the software resulting in huge time savings, more productivity and efficiency for both client and consultant.

Keywords: model run time, demand model, parallelisation, python scripting

Procedia PDF Downloads 118
17418 Optimised Path Recommendation for a Real Time Process

Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa

Abstract:

Traditional execution process follows the path of execution drawn by the process analyst without observing the behaviour of resource and other real-time constraints. Identifying process model, predicting the behaviour of resource and recommending the optimal path of execution for a real time process is challenging. The proposed AlfyMiner: αyM iner gives a new dimension in process execution with the novel techniques Process Model Analyser: PMAMiner and Resource behaviour Analyser: RBAMiner for recommending the probable path of execution. PMAMiner discovers next probable activity for currently executing activity in an online process using variant matching technique to identify the set of next probable activity, among which the next probable activity is discovered using decision tree model. RBAMiner identifies the resource suitable for performing the discovered next probable activity and observe the behaviour based on; load and performance using polynomial regression model, and waiting time using queueing theory. Based on the observed behaviour αyM iner recommend the probable path of execution with; next probable activity and the best suitable resource for performing it. Experiments were conducted on process logs of CoSeLoG Project1 and 72% of accuracy is obtained in identifying and recommending next probable activity and the efficiency of resource performance was optimised by 59% by decreasing their load.

Keywords: cross-organization process mining, process behaviour, path of execution, polynomial regression model

Procedia PDF Downloads 334
17417 Using Classifiers to Predict Student Outcome at Higher Institute of Telecommunication

Authors: Fuad M. Alkoot

Abstract:

We aim at highlighting the benefits of classifier systems especially in supporting educational management decisions. The paper aims at using classifiers in an educational application where an outcome is predicted based on given input parameters that represent various conditions at the institute. We present a classifier system that is designed using a limited training set with data for only one semester. The achieved system is able to reach at previously known outcomes accurately. It is also tested on new input parameters representing variations of input conditions to see its prediction on the possible outcome value. Given the supervised expectation of the outcome for the new input we find the system is able to predict the correct outcome. Experiments were conducted on one semester data from two departments only, Switching and Mathematics. Future work on other departments with larger training sets and wider input variations will show additional benefits of classifier systems in supporting the management decisions at an educational institute.

Keywords: machine learning, pattern recognition, classifier design, educational management, outcome estimation

Procedia PDF Downloads 278
17416 Thrombocytopenia and Prolonged Prothrombin Time in Neonatal Septicemia

Authors: Shittu Bashirat, Shittu Mujeeb, Oluremi Adeolu, Orisadare Olayiwola, Jikeme Osameke, Bello Lateef

Abstract:

Septicemia in neonates refers to generalized bacterial infection documented by positive blood culture in the first 28 days of life and is one of the leading causes of neonatal mortality in sub-Sahara Africa. Thrombocytopenia in newborns is a result of increased platelet consumption; sepsis was found to be the most common risk factor. The objective of the study was to determine if there are organism-specific platelet responses among the 2 groups of bacterial agents: Gram-positive and Gram-negative bacteria, and also to examine the association of platelet count and prothrombin time with neonatal septicemia. 232 blood samples were collected for this study. The blood culture was performed using Bactec 9050, an instrumented blood culture system. The platelet count and prothrombin time were performed using Abacus Junior 5 hematology analyzer and i-STAT 1 analyzer respectively. Of the 231 neonates hospitalized with clinical sepsis, blood culture reports were positive in 51 cases (21.4%). Klebsiella spp. (35.3%) and Staphylococcus aureus (27.5%) were the most common Gram-negative and Gram-positive isolates respectively. Thrombocytopenia was observed in 30 (58.8%) of the neonates with septicemia. Of the 9 (17.6%) patients with severe thrombocytopenia, seven (77.8%) had Klebsiella spp. septicemia. Out of the 21(63.6%) of thrombocytopenia produced by Gram-negative isolate, 17 (80.9) had increased prothrombin time. In conclusion, Gram-negative organisms showed the highest cases of severe thrombocytopenia and prolonged PT. This study has helped to establish a disturbance in hemostatic systems in neonates with septicemia. Further studies, however, may be required to assess other hemostasis parameters in order to understand their interaction with the infectious organisms in neonates.

Keywords: neonates, septicemia, thrombocytopenia, prolonged prothrombin time, platelet count

Procedia PDF Downloads 406
17415 Concussion Prediction for Speed Skater Impacting on Crash Mats by Computer Simulation Modeling

Authors: Yilin Liao, Hewen Li, Paula McConvey

Abstract:

Concussion for speed skaters often occurs when skaters fall on the ice and impact the crash mats during practices and competition races. Gaining insight into the impact of interactions is of essential interest as it is directly related to skaters’ potential health risks and injuries. Precise concussion measurements are challenging and very difficult, making computer simulation the only reliable way to analyze accidents. This research aims to create the crash mat and skater’s multi-body model using Solidworks, develop a computer simulation model for skater-mat impact using ANSYS software, and predict the skater’s concussion degree by evaluating the “head injury criteria” (HIC) through the resulting accelerations. The developed method and results help understand the relationship between impact parameters and concussion risk for speed skaters and inform the design of crash mats and skating rink layouts more specifically by considering athletes’ health risks.

Keywords: computer simulation modeling, concussion, impact, speed skater

Procedia PDF Downloads 141
17414 The Exploitation of the MOSES Project Outcomes on Supply Chain Optimisation

Authors: Reza Karimpour

Abstract:

Ports play a decisive role in the EU's external and internal trade, as about 74% of imports and exports and 37% of exchanges go through ports. Although ports, especially Deep Sea Shipping (DSS) ports, are integral nodes within multimodal logistic flows, Short Sea Shipping (SSS) and inland waterways are not so well integrated. The automated vessels and supply chain optimisations for sustainable shortsea shipping (MOSES) project aims to enhance the short sea shipping component of the European supply chain by addressing the vulnerabilities and strains related to the operation of large containerships. The MOSES concept can be shortly described as a large containership (mother-vessel) approaching a DSS port (or a large container terminal). Upon her arrival, a combined intelligent mega-system consisting of the MOSES Autonomous tugboat swarm for manoeuvring and the MOSES adapted AutoMoor system. Then, container handling processes are ready to start moving containers to their destination via hinterland connections (trucks and/or rail) or to be shipped to destinations near small ports (on the mainland or island). For the first case, containers are stored in a dedicated port area (Storage area), waiting to be moved via trucks and/or rail. For the second case, containers are stacked by existing port equipment near-dedicated berths of the DSS port. They then are loaded on the MOSES Innovative Feeder Vessel, equipped with the MOSES Robotic Container-Handling System that provides (semi-) autonomous (un) feeding of the feeder. The Robotic Container-Handling System is remotely monitored through a Shore Control Centre. When the MOSES innovative Feeder vessel approaches the small port, where her docking is achieved without tugboats, she automatically unloads the containers using the Robotic Container-Handling System on the quay or directly on trucks. As a result, ports with minimal or no available infrastructure may be effectively integrated with the container supply chain. Then, the MOSES innovative feeder vessel continues her voyage to the next small port, or she returns to the DSS port. MOSES exploitation activity mainly aims to exploit research outcomes beyond the project, facilitate utilisation of the pilot results by others, and continue the pilot service after the project ends. By the mid-lifetime of the project, the exploitation plan introduces the reader to the MOSES project and its key exploitable results. It provides a plan for delivering the MOSES innovations to the market as part of the overall exploitation plan.

Keywords: automated vessels, exploitation, shortsea shipping, supply chain

Procedia PDF Downloads 110
17413 Crude Oil Electrostatic Mathematical Modelling on an Existing Industrial Plant

Authors: Fatemeh Yazdanmehr, Iulian Nistor

Abstract:

The scope of the current study is the prediction of water separation in a two-stage industrial crude oil desalting plant. This research study was focused on developing a desalting operation in an existing production unit of one Iranian heavy oil field with 75 MBPD capacity. Because of some operational issues, such as oil dehydration at high temperatures, the optimization of the desalter operational parameters was essential. The mathematical desalting is modeled based on the population balance method. The existing operational data is used for tuning and validation of the accuracy of the modeling. The inlet oil temperature to desalter used was decreased from 110°C to 80°C, and the desalted electrical field was increased from 0.75 kv to 2.5 kv. The proposed condition for the desalter also meets the water oil specification. Based on these conditions of desalter, the oil recovery is increased by 574 BBL/D, and the gas flaring decrease by 2.8 MMSCF/D. Depending on the oil price, the additional production of oil can increase the annual income by about $15 MM and reduces greenhouse gas production caused by gas flaring.

Keywords: desalter, demulsification, modelling, water-oil separation, crude oil emulsion

Procedia PDF Downloads 76
17412 Phytoadaptation in Desert Soil Prediction Using Fuzzy Logic Modeling

Authors: S. Bouharati, F. Allag, M. Belmahdi, M. Bounechada

Abstract:

In terms of ecology forecast effects of desertification, the purpose of this study is to develop a predictive model of growth and adaptation of species in arid environment and bioclimatic conditions. The impact of climate change and the desertification phenomena is the result of combined effects in magnitude and frequency of these phenomena. Like the data involved in the phytopathogenic process and bacteria growth in arid soil occur in an uncertain environment because of their complexity, it becomes necessary to have a suitable methodology for the analysis of these variables. The basic principles of fuzzy logic those are perfectly suited to this process. As input variables, we consider the physical parameters, soil type, bacteria nature, and plant species concerned. The result output variable is the adaptability of the species expressed by the growth rate or extinction. As a conclusion, we prevent the possible strategies for adaptation, with or without shifting areas of plantation and nature adequate vegetation.

Keywords: climate changes, dry soil, phytopathogenicity, predictive model, fuzzy logic

Procedia PDF Downloads 323
17411 An Alternative Richards’ Growth Model Based on Hyperbolic Sine Function

Authors: Samuel Oluwafemi Oyamakin, Angela Unna Chukwu

Abstract:

Richrads growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richards growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richards growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richards nonlinear growth models better than the classical Richards growth model.

Keywords: height, diameter at breast height, DBH, hyperbolic sine function, Pinus caribaea, Richards' growth model

Procedia PDF Downloads 392
17410 Biosorption of Fluoride from Aqueous Solutions by Tinospora Cordifolia Leaves

Authors: Srinivasulu Dasaiah, Kalyan Yakkala, Gangadhar Battala, Pavan Kumar Pindi, Ramakrishna Naidu Gurijala

Abstract:

Tinospora cordifolia leaves biomass used for the removal fluoride from aqueous solutions. Batch biosorption technique was applied, pH, contact time, biosorbent dose and initial fluoride concentration was studied. The Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) techniques used to study the surface characteristics and the presence of chemical functional groups on the biosorbent. Biosorption isotherm models and kinetic models were applied to understand the sorption mechanism. Results revealed that pH, contact time, biosorbent dose and initial fluoride concentration played a significant effect on fluoride removal from aqueous solutions. The developed biosorbent derived from Tinospora cordifolia leaves biomass found to be a low-cost biosorbent and could be used for the effective removal of fluoride in synthetic as well as real water samples.

Keywords: biosorption, contact time, fluoride, isotherms

Procedia PDF Downloads 177
17409 Optimal and Best Timing for Capturing Satellite Thermal Images of Concrete Object

Authors: Toufic Abd El-Latif Sadek

Abstract:

The concrete object represents the concrete areas, like buildings. The best, easy, and efficient extraction of the concrete object from satellite thermal images occurred at specific times during the days of the year, by preventing the gaps in times which give the close and same brightness from different objects. Thus, to achieve the best original data which is the aim of the study and then better extraction of the concrete object and then better analysis. The study was done using seven sample objects, asphalt, concrete, metal, rock, dry soil, vegetation, and water, located at one place carefully investigated in a way that all the objects achieve the homogeneous in acquired data at the same time and same weather conditions. The samples of the objects were on the roof of building at position taking by global positioning system (GPS) which its geographical coordinates is: Latitude= 33 degrees 37 minutes, Longitude= 35 degrees 28 minutes, Height= 600 m. It has been found that the first choice and the best time in February is at 2:00 pm, in March at 4 pm, in April and may at 12 pm, in August at 5:00 pm, in October at 11:00 am. The best time in June and November is at 2:00 pm.

Keywords: best timing, concrete areas, optimal, satellite thermal images

Procedia PDF Downloads 354
17408 Research of the Three-Dimensional Visualization Geological Modeling of Mine Based on Surpac

Authors: Honggang Qu, Yong Xu, Rongmei Liu, Zhenji Gao, Bin Wang

Abstract:

Today's mining industry is advancing gradually toward digital and visual direction. The three-dimensional visualization geological modeling of mine is the digital characterization of mineral deposits and is one of the key technology of digital mining. Three-dimensional geological modeling is a technology that combines geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in a three-dimensional environment with computer technology and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between the distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provides scientific bases for mine resource assessment, reserve calculation, mining design and so on.

Keywords: three-dimensional geological modeling, geological database, geostatistics, block model

Procedia PDF Downloads 77