Search results for: voting machines in the USA
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 763

Search results for: voting machines in the USA

553 Measuring Parliamentarian: Towards Analysing Members of Parliaments in Malaysia

Authors: Rosyidah Muhamad

Abstract:

Democracies are premised on the idea that citizens can hold their leaders accountable for their actions by voting for or against them in regular elections. However, in order this ideal to be realized, citizens must possess a minimum amount of information about their leaders’ performance. Citizens should be made aware of the performance of their elected representatives. This study seeks to analyse this critical information with special reference to Malaysian Parliamentarians (MPs). We adopted several existence Parliamentary Performance model with special reference to their performance inside the parliament. Among indicators used by the Scholastic for analysing this performance are the number of bills proposed by parliamentarian, the number of proposals that would benefit their constituency, the number of speeches made by the parliamentarian during plenary and the percentage of laws passed among the proposals made by certain parliamentary. The broad goals of the study include the analysis of the capacity of a representative body to accommodate the diverse claims and demands that are made on it. We find that overall performances of MPs are average. This is due to not only the background characteristic of individuals MPs but also the limitation of the mechanism provides in the Parliament itself.

Keywords: member of parliament, democracy, evaluation, Malaysia

Procedia PDF Downloads 222
552 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction

Authors: Kudzanayi Chiteka, Wellington Makondo

Abstract:

The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.

Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models

Procedia PDF Downloads 270
551 Performance Analysis of Pumps-as-Turbine Under Cavitating Conditions

Authors: Calvin Stephen, Biswajit Basu, Aonghus McNabola

Abstract:

Market liberalization in the power sector has led to the emergence of micro-hydropower schemes that are dependent on the use of pumps-as-turbines in applications that were not suitable as potential hydropower sites in earlier years. These applications include energy recovery in water supply networks, sewage systems, irrigation systems, alcohol breweries, underground mining and desalination plants. As a result, there has been an accelerated adoption of pumpsas-turbine technology due to the economic advantages it presents in comparison to the conventional turbines in the micro-hydropower space. The performance of this machines under cavitation conditions, however, is not well understood as there is a deficiency of knowledge in literature focused on their turbine mode of operation. In hydraulic machines, cavitation is a common occurrence which needs to be understood to safeguard them and prolong their operation life. The overall purpose of this study is to investigate the effects of cavitation on the performance of a pumps-as-turbine system over its entire operating range. At various operating speeds, the cavitating region is identified experimentally while monitoring the effects this has on the power produced by the machine. Initial results indicate occurrence of cavitation at higher flow rates for lower operating speeds and at lower flow rates at higher operating speeds. This implies that for cavitation free operation, low speed pumps-as-turbine must be used for low flow rate conditions whereas for sites with higher flow rate conditions high speed turbines should be adopted. Such a complete understanding of pumps-as-turbine suction performance can aid avoid cavitation induced failures hence improved reliability of the micro-hydropower plant.

Keywords: cavitation, micro-hydropower, pumps-as-turbine, system design

Procedia PDF Downloads 117
550 Factors Affecting Citizens’ Behavioural Intention to Use E-voter Registration and Verification System Towards the Electoral Process in Nigeria

Authors: Aishatu Shuaibu

Abstract:

It is expected that electronic voter registration and verification in Nigeria will enhance the integrity of elections, which is vital for democratic development; it is also expected to enhance efficiency, transparency, and security. However, the reasons for citizens' intentions with respect to behavioral use of such platforms have not been studied in the literature much. This paper, therefore, intends to look into significant characteristics affecting the acceptance and use of e-voter technology among Nigerian residents. Data will be collected using a structured questionnaire from several local government areas (LGAs) around Nigeria to evaluate the influence of demographic characteristics, technology usability, security perceptions, and governmental education on the intention to implement e-voter systems. The results will offer vital insights into the barriers and drivers of voter technology acceptance, aiding in policy suggestions to enhance voter registration and verification processes within Nigeria's electoral framework. This study is designed to aid electoral stakeholders in devising successful strategies for encouraging the broad deployment of e-voter systems in Nigeria.

Keywords: e-governance, e-voting, e-democracy, INEC, Nigeria

Procedia PDF Downloads 18
549 The Social Psychology of Illegal Game Room Addiction in the Historic Chinatown District of Honolulu, Hawaii: Illegal Compulsive Gambling, Chinese-Polynesian Organized Crime Syndicates, Police Corruption, and Loan Sharking Rings

Authors: Gordon James Knowles

Abstract:

Historically the Chinatown district in Sandwich Islands has been plagued with the traditional vice crimes of illegal drugs, gambling, and prostitution since the early 1800s. However, a new form of psychologically addictive arcade style table gambling machines has become the dominant form of illegal revenue made in Honolulu, Hawaii. This study attempts to document the drive, desire, or will to play and wager with arcade style video gaming and understand the role of illegal game rooms in facilitating pathological gambling addiction. Indicators of police corruption by Chinese organized crime syndicates related to protection rackets, bribery, and pay-offs were revealed. Information fusion from a police science and sociological intelligence perspective indicates insurgent warfare is being waged on the streets of Honolulu by the People’s Republic of China. This state-sponsored communist terrorism in the Hawaiian Islands used “contactless” irregular warfare entailing: (1) the deployment of psychologically addictive gambling machines, (2) the distribution of the physically addictive fentanyl drug as a lethal chemical weapon, and (3) psychological warfare by circulating pro-China anti-American propaganda newspapers targeted at the small island populace.

Keywords: Chinese and Polynesian organized crime, china daily newspaper, electronic arcade style table games, gaming technology addiction, illegal compulsive gambling, and police intelligence

Procedia PDF Downloads 73
548 Investigation of Boll Properties on Cotton Picker Machine Performance

Authors: Shahram Nowrouzieh, Abbas Rezaei Asl, Mohamad Ali Jafari

Abstract:

Cotton, as a strategic crop, plays an important role in providing human food and clothing need, because of its oil, protein, and fiber. Iran has been one of the largest cotton producers in the world in the past, but unfortunately, for economic reasons, its production is reduced now. One of the ways to reduce the cost of cotton production is to expand the mechanization of cotton harvesting. Iranian farmers do not accept the function of cotton harvesters. One reason for this lack of acceptance of cotton harvesting machines is the number of field losses on these machines. So, the majority of cotton fields are harvested by hand. Although the correct setting of the harvesting machine is very important in the cotton losses, the morphological properties of the cotton plant also affect the performance of cotton harvesters. In this study, the effect of some cotton morphological properties such as the height of the cotton plant, number, and length of sympodial and monopodial branches, boll dimensions, boll weight, number of carpels and bracts angle were evaluated on the performance of cotton picker. In this research, the efficiency of John Deere 9920 spindle Cotton picker is investigated on five different Iranian cotton cultivars. The results indicate that there was a significant difference between the five cultivars in terms of machine harvest efficiency. Golestan cultivar showed the best cotton harvester performance with an average of 87.6% of total harvestable seed cotton and Khorshid cultivar had the least cotton harvester performance. The principal component analysis showed that, at 50.76% probability, the cotton picker efficiency is affected by the bracts angle positively and by boll dimensions, the number of carpels and the height of cotton plants negatively. The seed cotton remains (in the plant and on the ground) after harvester in PCA scatter plot were in the same zone with boll dimensions and several carpels.

Keywords: cotton, bract, harvester, carpel

Procedia PDF Downloads 135
547 Machine Learning Techniques in Bank Credit Analysis

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner

Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines

Procedia PDF Downloads 103
546 Resolving Partisan Conflict: A Dialectical Approach

Authors: Michael F. Mascolo

Abstract:

Western democratic traditions are being strained. Western nations are losing the common agonistic ground needed to engage in traditional forms of democracy – adversarial debate, voting, and the peaceful transfer of power. Political polarization among party elites has become commonplace. Because it seeks to resolve conflict through the integration of opposites, a dialectical approach to resolving partisan conflict offers the promise of helping political partisans bridge ideological divides. This paper contains an analysis of dialectical engagement as a collaborative alternative to adversarial politics. Dialectical engagement involves two broad phases: collaborative political problem-solving and dialectical problem-solving. The paper contains a description of an 18-month longitudinal study assessing the effectiveness of dialectical engagement as a method for bridging divides on contentious socio-political issues. The study shows how dialectical engagement produced dramatic consensus among a small group of individuals from different political orientations as they worked together to resolve the issue of capital punishment.

Keywords: collaborative democracy, dialectical thinking, capital punishment, partisan conflict

Procedia PDF Downloads 70
545 An Evaluation of Impact of Media on the Electoral Reform Process in Nigeria between 2010–2015

Authors: H. Shola Adeosun, D. Adeoye Odedeji, F. Ajoke Adebiyi

Abstract:

This study examines the impact of media on the electoral process in Nigeria and the roles played by the media in the reform process. Survey research method was adopted as research methodology, and this enables the researcher to use questionnaire, and oral interview to elicit primary data from the respondents was interpreted, analysed and interpreted with statistical tools such as tables, figures, and percentages. The hypothesis formulated were tested with chi-square. The findings revealed that there is significant relationship between the media and electoral reform process in the 2011 and 2015 general elections in Nigeria. The study recommends that electoral committee should implement virile electoral system with the peaceful voting environment. The media should intensify efforts to expose violation of electoral laws; media should play an advocacy role for dialogue and debate on the reform recommendations. The study recommends that media should unite the nation through their reports on peace, national security, national integration and ethnoreligious tolerance and that adequate training should be given to media practitioners on how to report issues relating to elections.

Keywords: evaluation, impact, media, electoral reform process

Procedia PDF Downloads 287
544 Cable De-Commissioning of Legacy Accelerators at CERN

Authors: Adya Uluwita, Fernando Pedrosa, Georgi Georgiev, Christian Bernard, Raoul Masterson

Abstract:

CERN is an international organisation funded by 23 countries that provide the particle physics community with excellence in particle accelerators and other related facilities. Founded in 1954, CERN has a wide range of accelerators that allow groundbreaking science to be conducted. Accelerators bring particles to high levels of energy and make them collide with each other or with fixed targets, creating specific conditions that are of high interest to physicists. A chain of accelerators is used to ramp up the energy of particles and eventually inject them into the largest and most recent one: the Large Hadron Collider (LHC). Among this chain of machines is, for instance the Proton Synchrotron, which was started in 1959 and is still in operation. These machines, called "injectors”, keep evolving over time, as well as the related infrastructure. Massive decommissioning of obsolete cables started in 2015 at CERN in the frame of the so-called "injectors de-cabling project phase 1". Its goal was to replace aging cables and remove unused ones, freeing space for new cables necessary for upgrades and consolidation campaigns. To proceed with the de-cabling, a project co-ordination team was assembled. The start of this project led to the investigation of legacy cables throughout the organisation. The identification of cables stacked over half a century proved to be arduous. Phase 1 of the injectors de-cabling was implemented for 3 years with success after overcoming some difficulties. Phase 2, started 3 years later, focused on improving safety and structure with the introduction of a quality assurance procedure. This paper discusses the implementation of this quality assurance procedure throughout phase 2 of the project and the transition between the two phases. Over hundreds of kilometres of cable were removed in the injectors complex at CERN from 2015 to 2023.

Keywords: CERN, de-cabling, injectors, quality assurance procedure

Procedia PDF Downloads 90
543 The Influence of Remuneration Committees, Directors' Shareholding and Institutional Ownership on the Remuneration of Directors in the Large Listed Companies in South Africa

Authors: Henriette Scholtz

Abstract:

Excessive executive directors’ remuneration remains a major concern for many stakeholders and are some of the factors to blame for the recent global financial crisis. The objective of this study was to examine whether certain firm characteristics are an effective way of protecting shareholders’ interests with respect to executive directors’ remuneration. To achieve this, an ordinary least squares model was used to test the relationship between the remuneration of executive directors and a number of firm and corporate governance characteristics to determine whether these characteristics have an influence on executive directors’ remuneration of large listed companies in South Africa. It was found that corporate governance reforms relating to institutional ownership, shareholder voting on the remuneration policy and the number of remuneration committee meetings acts as an effective governance tool to protect shareholder’s interests with regard to executive remuneration. There is no evidence that the number of non-executive directors on the remuneration committee has an influence on the executive directors’ remuneration.

Keywords: executive directors’ remuneration, agency theory, corporate governance, remuneration committee, directors’ shareholding, institutional ownership

Procedia PDF Downloads 206
542 The Logistics Equation and Fractal Dimension in Escalators Operations

Authors: Ali Albadri

Abstract:

The logistics equation has never been used or studied in scientific fields outside the field of ecology. It has never been used to understand the behavior of a dynamic system of mechanical machines, like an escalator. We have studied the compatibility of the logistic map against real measurements from an escalator. This study has proven that there is good compatibility between the logistics equation and the experimental measurements. It has discovered the potential of a relationship between the fractal dimension and the non-linearity parameter, R, in the logistics equation. The fractal dimension increases as the R parameter (non-linear parameter) increases. It implies that the fractal dimension increases as the phase of the life span of the machine move from the steady/stable phase to the periodic double phase to a chaotic phase. The fractal dimension and the parameter R can be used as a tool to verify and check the health of machines. We have come up with a theory that there are three areas of behaviors, which they can be classified during the life span of a machine, a steady/stable stage, a periodic double stage, and a chaotic stage. The level of attention to the machine differs depending on the stage that the machine is in. The rate of faults in a machine increases as the machine moves through these three stages. During the double period and the chaotic stages, the number of faults starts to increase and become less predictable. The rate of predictability improves as our monitoring of the changes in the fractal dimension and the parameter R improves. The principles and foundations of our theory in this work have and will have a profound impact on the design of systems, on the way of operation of systems, and on the maintenance schedules of the systems. The systems can be mechanical, electrical, or electronic. The discussed methodology in this paper will give businesses the chance to be more careful at the design stage and planning for maintenance to control costs. The findings in this paper can be implied and used to correlate the three stages of a mechanical system to more in-depth mechanical parameters like wear and fatigue life.

Keywords: logistcs map, bifurcation map, fractal dimension, logistics equation

Procedia PDF Downloads 106
541 Leadership in the Era of AI: Growing Organizational Intelligence

Authors: Mark Salisbury

Abstract:

The arrival of artificially intelligent avatars and the automation they bring is worrying many of us, not only for our livelihood but for the jobs that may be lost to our kids. We worry about what our place will be as human beings in this new economy where much of it will be conducted online in the metaverse – in a network of 3D virtual worlds – working with intelligent machines. The Future of Leadership was written to address these fears and show what our place will be – the right place – in this new economy of AI avatars, automation, and 3D virtual worlds. But to be successful in this new economy, our job will be to bring wisdom to our workplace and the marketplace. And we will use AI avatars and 3D virtual worlds to do it. However, this book is about more than AI and the avatars that we will work with in the metaverse. It’s about building Organizational intelligence (OI) -- the capability of an organization to comprehend and create knowledge relevant to its purpose; in other words, it is the intellectual capacity of the entire organization. To increase organizational intelligence requires a new kind of knowledge worker, a wisdom worker, that requires a new kind of leadership. This book begins your story for how to become a leader of wisdom workers and be successful in the emerging wisdom economy. After this presentation, conference participants will be able to do the following: Recognize the characteristics of the new generation of wisdom workers and how they differ from their predecessors. Recognize that new leadership methods and techniques are needed to lead this new generation of wisdom workers. Apply personal and professional values – personal integrity, belief in something larger than yourself, and keeping the best interest of others in mind – to improve your work performance and lead others. Exhibit an attitude of confidence, courage, and reciprocity of sharing knowledge to increase your productivity and influence others. Leverage artificial intelligence to accelerate your ability to learn, augment your decision-making, and influence others.Utilize new technologies to communicate with human colleagues and intelligent machines to develop better solutions more quickly.

Keywords: metaverse, generative artificial intelligence, automation, leadership, organizational intelligence, wisdom worker

Procedia PDF Downloads 41
540 A Fermatean Fuzzy MAIRCA Approach for Maintenance Strategy Selection of Process Plant Gearbox Using Sustainability Criteria

Authors: Soumava Boral, Sanjay K. Chaturvedi, Ian Howard, Kristoffer McKee, V. N. A. Naikan

Abstract:

Due to strict regulations from government to enhance the possibilities of sustainability practices in industries, and noting the advances in sustainable manufacturing practices, it is necessary that the associated processes are also sustainable. Maintenance of large scale and complex machines is a pivotal task to maintain the uninterrupted flow of manufacturing processes. Appropriate maintenance practices can prolong the lifetime of machines, and prevent associated breakdowns, which subsequently reduces different cost heads. Selection of the best maintenance strategies for such machines are considered as a burdensome task, as they require the consideration of multiple technical criteria, complex mathematical calculations, previous fault data, maintenance records, etc. In the era of the fourth industrial revolution, organizations are rapidly changing their way of business, and they are giving their utmost importance to sensor technologies, artificial intelligence, data analytics, automations, etc. In this work, the effectiveness of several maintenance strategies (e.g., preventive, failure-based, reliability centered, condition based, total productive maintenance, etc.) related to a large scale and complex gearbox, operating in a steel processing plant is evaluated in terms of economic, social, environmental and technical criteria. As it is not possible to obtain/describe some criteria by exact numerical values, these criteria are evaluated linguistically by cross-functional experts. Fuzzy sets are potential soft-computing technique, which has been useful to deal with linguistic data and to provide inferences in many complex situations. To prioritize different maintenance practices based on the identified sustainable criteria, multi-criteria decision making (MCDM) approaches can be considered as potential tools. Multi-Attributive Ideal Real Comparative Analysis (MAIRCA) is a recent addition in the MCDM family and has proven its superiority over some well-known MCDM approaches, like TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ELECTRE (ELimination Et Choix Traduisant la REalité). It has a simple but robust mathematical approach, which is easy to comprehend. On the other side, due to some inherent drawbacks of Intuitionistic Fuzzy Sets (IFS) and Pythagorean Fuzzy Sets (PFS), recently, the use of Fermatean Fuzzy Sets (FFSs) has been proposed. In this work, we propose the novel concept of FF-MAIRCA. We obtain the weights of the criteria by experts’ evaluation and use them to prioritize the different maintenance practices according to their suitability by FF-MAIRCA approach. Finally, a sensitivity analysis is carried out to highlight the robustness of the approach.

Keywords: Fermatean fuzzy sets, Fermatean fuzzy MAIRCA, maintenance strategy selection, sustainable manufacturing, MCDM

Procedia PDF Downloads 137
539 Improving Security Features of Traditional Automated Teller Machines-Based Banking Services via Fingerprint Biometrics Scheme

Authors: Anthony I. Otuonye, Juliet N. Odii, Perpetual N. Ibe

Abstract:

The obvious challenges faced by most commercial bank customers while using the services of ATMs (Automated Teller Machines) across developing countries have triggered the need for an improved system with better security features. Current ATM systems are password-based, and research has proved the vulnerabilities of these systems to heinous attacks and manipulations. We have discovered by research that the security of current ATM-assisted banking services in most developing countries of the world is easily broken and maneuvered by fraudsters, majorly because it is quite difficult for these systems to identify an impostor with privileged access as against the authentic bank account owner. Again, PIN (Personal Identification Number) code passwords are easily guessed, just to mention a few of such obvious limitations of traditional ATM operations. In this research work also, we have developed a system of fingerprint biometrics with PIN code Authentication that seeks to improve the security features of traditional ATM installations as well as other Banking Services. The aim is to ensure better security at all ATM installations and raise the confidence of bank customers. It is hoped that our system will overcome most of the challenges of the current password-based ATM operation if properly applied. The researchers made use of the OOADM (Object-Oriented Analysis and Design Methodology), a software development methodology that assures proper system design using modern design diagrams. Implementation and coding were carried out using Visual Studio 2010 together with other software tools. Results obtained show a working system that provides two levels of security at the client’s side using a fingerprint biometric scheme combined with the existing 4-digit PIN code to guarantee the confidence of bank customers across developing countries.

Keywords: fingerprint biometrics, banking operations, verification, ATMs, PIN code

Procedia PDF Downloads 41
538 6G: Emerging Architectures, Technologies and Challenges

Authors: Abdulrahman Yarali

Abstract:

The advancement of technology never stops because the demands for improved internet and communication connectivity are increasing. Just as 5G networks are rolling out, the world has begun to talk about the sixth-generation networks (6G). The semantics of 6G are more or less the same as 5G networks because they strive to boost speeds, machine-to-machine (M2M) communication, and latency reduction. However, some of the distinctive focuses of 6G include the optimization of networks of machines through super speeds and innovative features. This paper discusses many aspects of the technologies, architectures, challenges, and opportunities of 6G wireless communication systems.

Keywords: 6G, characteristics, infrastructures, technologies, AI, ML, IoT, applications

Procedia PDF Downloads 23
537 A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method

Authors: Rui Wu

Abstract:

In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency.

Keywords: dynamic scheduling problem, flexible job shop, dispatching rules, deep reinforcement learning

Procedia PDF Downloads 106
536 Accident analysis in Small and Medium Enterprises (SMEs) in India

Authors: Pranab Kumar Goswami, Elena Gurung

Abstract:

Small and medium enterprises (SME) are considered as the driving force for the economic growth of a developing country like India. Most of the SMEs are located in residential/non-industrial areas to avoid legal obligations of occupational safety and health (OSH) provisions. This study was conducted in Delhiwith a view to analyze the accidents that occurredduringthe year 2019 & 2020. The objective of the study was to find out the accident prone SMEs in Delhi and major causes of such accidents. Methods: Survey and comprehensive data analysis methods, followed by applying simple statistical techniques, were used for this study. The accident reports for the study period collected from the labour department and police stations were analyzed for the study. The injured workers were interviewed to ascertain safety compliances, training and awareness programs, etc. The study was completed in March2021. Results: It was found that most of the accidents took place in SMEs located in residential/non- industrial areas in Delhi. The accident-prone machines were found to be power presses (42%) and injection moulding machines (37%). Predominantly unsafe machinery or unsafe working conditions and lack of training of worker were observed to be the major causes of accidents in such industries. Conclusions: It was concluded from the study that unsafe machinery/equipment and lack of proper training to the workers were two main reasons for increase in accidents.It was also concluded that the industries located in industrial areas were better placed in terms of workplace compliances. The managements who were running their operations from residential/non-industrial areaswere found to be less aware on health and safety issues. Lack of enforcement by government agencies in such areas has escalated this problem. Adequate training to workers, managing safe & healthy workplace, and sustained enforcement can reduce accidents in such industries.

Keywords: SME, accident prevention, cause of accident, unorganised

Procedia PDF Downloads 101
535 Modelling the Impact of Installation of Heat Cost Allocators in District Heating Systems Using Machine Learning

Authors: Danica Maljkovic, Igor Balen, Bojana Dalbelo Basic

Abstract:

Following the regulation of EU Directive on Energy Efficiency, specifically Article 9, individual metering in district heating systems has to be introduced by the end of 2016. These directions have been implemented in member state’s legal framework, Croatia is one of these states. The directive allows installation of both heat metering devices and heat cost allocators. Mainly due to bad communication and PR, the general public false image was created that the heat cost allocators are devices that save energy. Although this notion is wrong, the aim of this work is to develop a model that would precisely express the influence of installation heat cost allocators on potential energy savings in each unit within multifamily buildings. At the same time, in recent years, a science of machine learning has gain larger application in various fields, as it is proven to give good results in cases where large amounts of data are to be processed with an aim to recognize a pattern and correlation of each of the relevant parameter as well as in the cases where the problem is too complex for a human intelligence to solve. A special method of machine learning, decision tree method, has proven an accuracy of over 92% in prediction general building consumption. In this paper, a machine learning algorithms will be used to isolate the sole impact of installation of heat cost allocators on a single building in multifamily houses connected to district heating systems. Special emphasises will be given regression analysis, logistic regression, support vector machines, decision trees and random forest method.

Keywords: district heating, heat cost allocator, energy efficiency, machine learning, decision tree model, regression analysis, logistic regression, support vector machines, decision trees and random forest method

Procedia PDF Downloads 249
534 Experimental Study of an Isobaric Expansion Heat Engine with Hydraulic Power Output for Conversion of Low-Grade-Heat to Electricity

Authors: Maxim Glushenkov, Alexander Kronberg

Abstract:

Isobaric expansion (IE) process is an alternative to conventional gas/vapor expansion accompanied by a pressure decrease typical of all state-of-the-art heat engines. The elimination of the expansion stage accompanied by useful work means that the most critical and expensive parts of ORC systems (turbine, screw expander, etc.) are also eliminated. In many cases, IE heat engines can be more efficient than conventional expansion machines. In addition, IE machines have a very simple, reliable, and inexpensive design. They can also perform all the known operations of existing heat engines and provide usable energy in a very convenient hydraulic or pneumatic form. This paper reports measurement made with the engine operating as a heat-to-shaft-power or electricity converter and a comparison of the experimental results to a thermodynamic model. Experiments were carried out at heat source temperature in the range 30–85 °C and heat sink temperature around 20 °C; refrigerant R134a was used as the engine working fluid. The pressure difference generated by the engine varied from 2.5 bar at the heat source temperature 40 °C to 23 bar at the heat source temperature 85 °C. Using a differential piston, the generated pressure was quadrupled to pump hydraulic oil through a hydraulic motor that generates shaft power and is connected to an alternator. At the frequency of about 0.5 Hz, the engine operates with useful powers up to 1 kW and an oil pumping flowrate of 7 L/min. Depending on the temperature of the heat source, the obtained efficiency was 3.5 – 6 %. This efficiency looks very high, considering such a low temperature difference (10 – 65 °C) and low power (< 1 kW). The engine’s observed performance is in good agreement with the predictions of the model. The results are very promising, showing that the engine is a simple and low-cost alternative to ORC plants and other known energy conversion systems, especially at low temperatures (< 100 °C) and low power range (< 500 kW) where other known technologies are not economic. Thus low-grade solar, geothermal energy, biomass combustion, and waste heat with a temperature above 30 °C can be involved into various energy conversion processes.

Keywords: isobaric expansion, low-grade heat, heat engine, renewable energy, waste heat recovery

Procedia PDF Downloads 225
533 Controlling Youths Participation in Politics in Sokoto State: A Constructive Inclusiveness for Good Governance in Nigeria

Authors: Umar Ubandawaki

Abstract:

Political participation involves voluntary and deliberate efforts by the members of a political system to determine the kinds of political institution and individuals that will govern them and equally influence the mobilization and allocation of the available societal resources. Over the years, youths in Nigeria participated actively in political party rallies and voting to elect their leaders and representatives in governance. This paper examines categories and nature of participation in politics as well as factors that derived youths into politics in Sokoto State. Through the use of qualitative and quantitative data generated from focus group discussions, interviews and questionnaire, the paper find out that youth, in Sokoto State, have been induced in participatory activities that encourage political thuggery and manipulation of electoral outcomes. Moreover, they are neglected in the mobilization and allocation of the available resources of the society i.e they are denied dividends of good governance. The paper recommends that youths should be engaged into positive participatory activities for ensuring inclusiveness and promotion of good governance in Nigeria. It is hoped that this will enlighten youth and policy implementers on the constructive strategies in controlling youth’s participation in politics in Nigeria.

Keywords: democracy, governance, inclusivenes, participation and politic

Procedia PDF Downloads 350
532 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models

Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti

Abstract:

In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.

Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics

Procedia PDF Downloads 50
531 Forensic Medical Capacities of Research of Saliva Stains on Physical Evidence after Washing

Authors: Saule Mussabekova

Abstract:

Recent advances in genetics have allowed increasing acutely the capacities of the formation of reliable evidence in conducting forensic examinations. Thus, traces of biological origin are important sources of information about a crime. Currently, around the world, sexual offenses have increased, and among them are those in which the criminals use various detergents to remove traces of their crime. A feature of modern synthetic detergents is the presence of biological additives - enzymes. Enzymes purposefully destroy stains of biological origin. To study the nature and extent of the impact of modern washing powders on saliva stains on the physical evidence, specially prepared test specimens of different types of tissues to which saliva was applied have been examined. Materials and Methods: Washing machines of famous manufacturers of household appliances have been used with different production characteristics and advertised brands of washing powder for test washing. Over 3,500 experimental samples were tested. After washing, the traces of saliva were identified using modern research methods of forensic medicine. Results: The influence was tested and the dependence of the use of different washing programs, types of washing machines and washing powders in the process of establishing saliva trace and identify of the stains on the physical evidence while washing was revealed. The results of experimental and practical expert studies have shown that in most cases it is not possible to draw the conclusions in the identification of saliva traces on physical evidence after washing. This is a consequence of the effect of biological additives and other additional factors on traces of saliva during washing. Conclusions: On the basis of the results of the study, the feasibility of saliva traces of the stains on physical evidence after washing is established. The use of modern molecular genetic methods makes it possible to partially solve the problems arising in the study of unlaundered evidence. Additional study of physical evidence after washing facilitates detection and investigation of sexual offenses against women and children.

Keywords: saliva research, modern synthetic detergents, laundry detergents, forensic medicine

Procedia PDF Downloads 215
530 Analysis of Direct Current Motor in LabVIEW

Authors: E. Ramprasath, P. Manojkumar, P. Veena

Abstract:

DC motors have been widely used in the past centuries which are proudly known as the workhorse of industrial systems until the invention of the AC induction motors which makes a huge revolution in industries. Since then, the use of DC machines have been decreased due to enormous factors such as reliability, robustness and complexity but it lost its fame due to the losses. A new methodology is proposed to construct a DC motor through the simulation in LabVIEW to get an idea about its real time performances, if a change in parameter might have bigger improvement in losses and reliability.

Keywords: analysis, characteristics, direct current motor, LabVIEW software, simulation

Procedia PDF Downloads 550
529 A Method for False Alarm Recognition Based on Multi-Classification Support Vector Machine

Authors: Weiwei Cui, Dejian Lin, Leigang Zhang, Yao Wang, Zheng Sun, Lianfeng Li

Abstract:

Built-in test (BIT) is an important technology in testability field, and it is widely used in state monitoring and fault diagnosis. With the improvement of modern equipment performance and complexity, the scope of BIT becomes larger, and it leads to the emergence of false alarm problem. The false alarm makes the health assessment unstable, and it reduces the effectiveness of BIT. The conventional false alarm suppression methods such as repeated test and majority voting cannot meet the requirement for a complicated system, and the intelligence algorithms such as artificial neural networks (ANN) are widely studied and used. However, false alarm has a very low frequency and small sample, yet a method based on ANN requires a large size of training sample. To recognize the false alarm, we propose a method based on multi-classification support vector machine (SVM) in this paper. Firstly, we divide the state of a system into three states: healthy, false-alarm, and faulty. Then we use multi-classification with '1 vs 1' policy to train and recognize the state of a system. Finally, an example of fault injection system is taken to verify the effectiveness of the proposed method by comparing ANN. The result shows that the method is reasonable and effective.

Keywords: false alarm, fault diagnosis, SVM, k-means, BIT

Procedia PDF Downloads 155
528 An Appraisal of the Utilisation of Social Media for Political Communication in the 2015 Nigerian Presidential Election

Authors: Tsegyu Santas

Abstract:

The aim of this study was to examine the utilization of social media for political communication during the 2011 presidential election in Nigeria. The research design adopted for the study was survey; 294 copies of questionnaire were distributed to students of mass communication in three selected universities in North Central Nigeria. Simple random sampling technique was used to select the respondents for the study. The results of the descriptive statistics show that majority of the respondents choice of presidential candidates during the 2011 presidential election was influenced by the use of social media as indicated by high value of mean (1.5805). Similarly, a large number of respondents were of the opinion that the two selected presidential candidates were popular because they used social media in their political campaign (mean value of 1.5575). In addition, the respondents affirmed that their voting pattern during the 2011 presidential elections was influenced by social media usage. This was validated by a high mean value of (1.6667). Similarly, the result of the test of hypothesis indicated that voters’ choice of political candidates was influenced by political communication on social media. In view of the findings of this study, the study, therefore, concludes that social media have redefined the landscape of political communication in Nigeria. Based on the findings of the study, it was recommended that social media should be fully integrated in Nigeria political communication system.

Keywords: communication, election, politics, social media

Procedia PDF Downloads 338
527 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal

Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan

Abstract:

This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.

Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal

Procedia PDF Downloads 110
526 Precise CNC Machine for Multi-Tasking

Authors: Haroon Jan Khan, Xian-Feng Xu, Syed Nasir Shah, Anooshay Niazi

Abstract:

CNC machines are not only used on a large scale but also now become a prominent necessity among households and smaller businesses. Printed Circuit Boards manufactured by the chemical process are not only risky and unsafe but also expensive and time-consuming. A 3-axis precise CNC machine has been developed, which not only fabricates PCB but has also been used for multi-tasks just by changing the materials used and tools, making it versatile. The advanced CNC machine takes data from CAM software. The TB-6560 controller is used in the CNC machine to adjust variation in the X, Y, and Z axes. The advanced machine is efficient in automatic drilling, engraving, and cutting.

Keywords: CNC, G-code, CAD, CAM, Proteus, FLATCAM, Easel

Procedia PDF Downloads 158
525 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations

Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha

Abstract:

This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.

Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation

Procedia PDF Downloads 139
524 A Survey on Constraint Solving Approaches Using Parallel Architectures

Authors: Nebras Gharbi, Itebeddine Ghorbel

Abstract:

In the latest years and with the advancements of the multicore computing world, the constraint programming community tried to benefit from the capacity of new machines and make the best use of them through several parallel schemes for constraint solving. In this paper, we propose a survey of the different proposed approaches to solve Constraint Satisfaction Problems using parallel architectures. These approaches use in a different way a parallel architecture: the problem itself could be solved differently by several solvers or could be split over solvers.

Keywords: constraint programming, parallel programming, constraint satisfaction problem, speed-up

Procedia PDF Downloads 316