Search results for: stochastic signals
1228 Polydimethylsiloxane Applications in Interferometric Optical Fiber Sensors
Authors: Zeenat Parveen, Ashiq Hussain
Abstract:
This review paper consists of applications of PDMS (polydimethylsiloxane) materials for enhanced performance, optical fiber sensors in acousto-ultrasonic, mechanical measurements, current applications, sensing, measurements and interferometric optical fiber sensors. We will discuss the basic working principle of fiber optic sensing technology, various types of fiber optic and the PDMS as a coating material to increase the performance. Optical fiber sensing methods for detecting dynamic strain signals, including general sound and acoustic signals, high frequency signals i.e. ultrasonic/ultrasound, and other signals such as acoustic emission and impact induced dynamic strain. Optical fiber sensors have Industrial and civil engineering applications in mechanical measurements. Sometimes it requires different configurations and parameters of sensors. Optical fiber current sensors are based on Faraday Effect due to which we obtain better performance as compared to the conventional current transformer. Recent advancement and cost reduction has simulated interest in optical fiber sensing. Optical techniques are also implemented in material measurement. Fiber optic interferometers are used to sense various physical parameters including temperature, pressure and refractive index. There are four types of interferometers i.e. Fabry–perot, Mach-Zehnder, Michelson, and Sagnac. This paper also describes the future work of fiber optic sensors.Keywords: fiber optic sensing, PDMS materials, acoustic, ultrasound, current sensor, mechanical measurements
Procedia PDF Downloads 3881227 Exact Solutions for Steady Response of Nonlinear Systems under Non-White Excitation
Authors: Yaping Zhao
Abstract:
In the present study, the exact solutions for the steady response of quasi-linear systems under non-white wide-band random excitation are considered by means of the stochastic averaging method. The non linearity of the systems contains the power-law damping and the cross-product term of the power-law damping and displacement. The drift and diffusion coefficients of the Fokker-Planck-Kolmogorov (FPK) equation after averaging are obtained by a succinct approach. After solving the averaged FPK equation, the joint probability density function and the marginal probability density function in steady state are attained. In the process of resolving, the eigenvalue problem of ordinary differential equation is handled by integral equation method. Some new results are acquired and the novel method to deal with the problems in nonlinear random vibration is proposed.Keywords: random vibration, stochastic averaging method, FPK equation, transition probability density
Procedia PDF Downloads 5031226 Are the Organizations Prepared for Potential Crises? A Research Intended to Measure the Proactivity Level of Industrial Organizations
Authors: M. Tahir Demirsel, Mustafa Atsan
Abstract:
Many elements of the environment in which businesses operate today leave them faced with unexpected threats and opportunities. One of the major threats is business crisis. The crisis is a state of affairs in a business wherein the executives must take urgent and unprecedented action to try to save the business from failure. In order to survive in the business environment, organizations should be prepared for the potential crises. Technological developments, uncertainty in the market and the intense competition increase the probability of encountering a crisis for organizations. Therefore, by acting proactively to predict crisis, to detect signals of crisis and be prepared for a crisis by taking necessary precautions accordingly, is of great importance for businesses. In this context, the objective of this study is to reveal that how much organizations are proactive and can predict the future crises and investigate whether they are prepared for possible crises or not. The research was conducted on 222 business executives in one of the major industrial zones of Turkey, Konya Organized Industrial Zone (KOS). The findings are analyzed through descriptive statistics and multiple regression analysis. According to the results, it has been observed that organizations cannot predict the crisis signals and are not prepared for potential crises.Keywords: crisis preparedness, crisis signals, industrial organizations, proactivity
Procedia PDF Downloads 5161225 Optimal Management of Forest Stands under Wind Risk in Czech Republic
Authors: Zohreh Mohammadi, Jan Kaspar, Peter Lohmander, Robert Marusak, Harald Vacik, Ljusk Ola Eriksson
Abstract:
Storms are important damaging agents in European forest ecosystems. In the latest decades, significant economic losses in European forestry occurred due to storms. This study investigates the problem of optimal harvest planning when forest stands risk to be felled by storms. One of the most applicable mathematical methods which are being used to optimize forest management is stochastic dynamic programming (SDP). This method belongs to the adaptive optimization class. Sequential decisions, such as harvest decisions, can be optimized based on sequential information about events that cannot be perfectly predicted, such as the future storms and the future states of wind protection from other forest stands. In this paper, stochastic dynamic programming is used to maximize the expected present value of the profits from an area consisting of several forest stands. The region of analysis is the Czech Republic. The harvest decisions, in a particular time period, should be simultaneously taken in all neighbor stands. The reason is that different stands protect each other from possible winds. The optimal harvest age of a particular stand is a function of wind speed and different wind protection effects. The optimal harvest age often decreases with wind speed, but it cannot be determined for one stand at a time. When we consider a particular stand, this stand also protects other stands. Furthermore, the particular stand is protected by neighbor stands. In some forest stands, it may even be rational to increase the harvest age under the influence of stronger winds, in order to protect more valuable stands in the neighborhood. It is important to integrate wind risk in forestry decision-making.Keywords: Czech republic, forest stands, stochastic dynamic programming, wind risk
Procedia PDF Downloads 1471224 Application of Envelope Spectrum Analysis and Spectral Kurtosis to Diagnose Debris Fault in Bearing Using Acoustic Signals
Authors: Henry Ogbemudia Omoregbee, Mabel Usunobun Olanipekun
Abstract:
Debris fault diagnosis based on acoustic signals in rolling element bearing running at low speed and high radial loads are more of low amplitudes, particularly in the case of debris faults whose signals necessitate high sensitivity analyses. As the rollers in the bearing roll over debris trapped in grease used to lubricate the bearings, the envelope signal created by amplitude demodulation carries additional diagnostic information that is not available through ordinary spectrum analysis of the raw signal. The kurtosis value obtained for three different scenarios (debris induced, outer crack induced, and a normal good bearing) couldn't be used to easily identify whether the used bearings were defective or not. It was established in this work that the envelope spectrum analysis detected the fault signature and its harmonics induced in the debris bearings when bandpass filtering of the raw signal with the frequency band specified by kurtogram and spectral kurtosis was made.Keywords: rolling bearings, rolling element bearing noise, bandpass filtering, harmonics, envelope spectrum analysis, spectral kurtosis
Procedia PDF Downloads 861223 On Generalized Cumulative Past Inaccuracy Measure for Marginal and Conditional Lifetimes
Authors: Amit Ghosh, Chanchal Kundu
Abstract:
Recently, the notion of past cumulative inaccuracy (CPI) measure has been proposed in the literature as a generalization of cumulative past entropy (CPE) in univariate as well as bivariate setup. In this paper, we introduce the notion of CPI of order α (alpha) and study the proposed measure for conditionally specified models of two components failed at different time instants called generalized conditional CPI (GCCPI). We provide some bounds using usual stochastic order and investigate several properties of GCCPI. The effect of monotone transformation on this proposed measure has also been examined. Furthermore, we characterize some bivariate distributions under the assumption of conditional proportional reversed hazard rate model. Moreover, the role of GCCPI in reliability modeling has also been investigated for a real-life problem.Keywords: cumulative past inaccuracy, marginal and conditional past lifetimes, conditional proportional reversed hazard rate model, usual stochastic order
Procedia PDF Downloads 2521222 Optimal Delivery of Two Similar Products to N Ordered Customers
Authors: Epaminondas G. Kyriakidis, Theodosis D. Dimitrakos, Constantinos C. Karamatsoukis
Abstract:
The vehicle routing problem (VRP) is a well-known problem in Operations Research and has been widely studied during the last fifty-five years. The context of the VRP is that of delivering products located at a central depot to customers who are scattered in a geographical area and have placed orders for these products. A vehicle or a fleet of vehicles start their routes from the depot and visit the customers in order to satisfy their demands. Special attention has been given to the capacitated VRP in which the vehicles have limited carrying capacity of the goods that must be delivered. In the present work, we present a specific capacitated stochastic vehicle routing problem which has realistic applications to distributions of materials to shops or to healthcare facilities or to military units. A vehicle starts its route from a depot loaded with items of two similar but not identical products. We name these products, product 1 and product 2. The vehicle must deliver the products to N customers according to a predefined sequence. This means that first customer 1 must be serviced, then customer 2 must be serviced, then customer 3 must be serviced and so on. The vehicle has a finite capacity and after servicing all customers it returns to the depot. It is assumed that each customer prefers either product 1 or product 2 with known probabilities. The actual preference of each customer becomes known when the vehicle visits the customer. It is also assumed that the quantity that each customer demands is a random variable with known distribution. The actual demand is revealed upon the vehicle’s arrival at customer’s site. The demand of each customer cannot exceed the vehicle capacity and the vehicle is allowed during its route to return to the depot to restock with quantities of both products. The travel costs between consecutive customers and the travel costs between the customers and the depot are known. If there is shortage for the desired product, it is permitted to deliver the other product at a reduced price. The objective is to find the optimal routing strategy, i.e. the routing strategy that minimizes the expected total cost among all possible strategies. It is possible to find the optimal routing strategy using a suitable stochastic dynamic programming algorithm. It is also possible to prove that the optimal routing strategy has a specific threshold-type structure, i.e. it is characterized by critical numbers. This structural result enables us to construct an efficient special-purpose dynamic programming algorithm that operates only over those routing strategies having this structure. The findings of the present study lead us to the conclusion that the dynamic programming method may be a very useful tool for the solution of specific vehicle routing problems. A problem for future research could be the study of a similar stochastic vehicle routing problem in which the vehicle instead of delivering, it collects products from ordered customers.Keywords: collection of similar products, dynamic programming, stochastic demands, stochastic preferences, vehicle routing problem
Procedia PDF Downloads 2671221 Elementary Education Outcome Efficiency in Indian States
Authors: Jyotsna Rosario, K. R. Shanmugam
Abstract:
Since elementary education is a merit good, considerable public resources are allocated to universalise it. However, elementary education outcomes vary across the Indian States. Evidences indicate that while some states are lagging in elementary education outcome primarily due to lack of resources and poor schooling infrastructure, others are lagging despite resource abundance and well-developed schooling infrastructure. Addressing the issue of efficiency, the study employs Stochastic Frontier Analysis for panel data of 27 Indian states from 2012-13 to 2017-18 to estimate the technical efficiency of State governments in generating enrolment. The mean efficiency of states was estimated to be 58%. Punjab, Meghalaya, and West Bengal were found to be the most efficient states. Whereas Jammu and Kashmir, Nagaland, Madhya Pradesh, and Odisha are one of the most inefficient states. This study emphasizes the efficient utilisation of public resources and helps in the identification of best practices.Keywords: technical efficiency, public expenditure, elementary education outcome, stochastic frontier analysis
Procedia PDF Downloads 1851220 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction
Procedia PDF Downloads 2621219 Wind Power Forecast Error Simulation Model
Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus
Abstract:
One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.Keywords: wind power, uncertainty, stochastic process, Monte Carlo simulation
Procedia PDF Downloads 4831218 Accounting for Rice Productivity Heterogeneity in Ghana: The Two-Step Stochastic Metafrontier Approach
Authors: Franklin Nantui Mabe, Samuel A. Donkoh, Seidu Al-Hassan
Abstract:
Rice yields among agro-ecological zones are heterogeneous. Farmers, researchers and policy makers are making frantic efforts to bridge rice yield gaps between agro-ecological zones through the promotion of improved agricultural technologies (IATs). Farmers are also modifying these IATs and blending them with indigenous farming practices (IFPs) to form farmer innovation systems (FISs). Also, different metafrontier models have been used in estimating productivity performances and their drivers. This study used the two-step stochastic metafrontier model to estimate the productivity performances of rice farmers and their determining factors in GSZ, FSTZ and CSZ. The study used both primary and secondary data. Farmers in CSZ are the most technically efficient. Technical inefficiencies of farmers are negatively influenced by age, sex, household size, education years, extension visits, contract farming, access to improved seeds, access to irrigation, high rainfall amount, less lodging of rice, and well-coordinated and synergized adoption of technologies. Albeit farmers in CSZ are doing well in terms of rice yield, they still have the highest potential of increasing rice yield since they had the lowest TGR. It is recommended that government through the ministry of food and agriculture, development partners and individual private companies promote the adoption of IATs as well as educate farmers on how to coordinate and synergize the adoption of the whole package. Contract farming concept and agricultural extension intensification should be vigorously pursued to the latter.Keywords: efficiency, farmer innovation systems, improved agricultural technologies, two-step stochastic metafrontier approach
Procedia PDF Downloads 2671217 Performance Analysis of Heterogeneous Cellular Networks with Multiple Connectivity
Authors: Sungkyung Kim, Jee-Hyeon Na, Dong-Seung Kwon
Abstract:
Future mobile networks following 5th generation will be characterized by one thousand times higher gains in capacity; connections for at least one hundred billion devices; user experience capable of extremely low latency and response times. To be close to the capacity requirements and higher reliability, advanced technologies have been studied, such as multiple connectivity, small cell enhancement, heterogeneous networking, and advanced interference and mobility management. This paper is focused on the multiple connectivity in heterogeneous cellular networks. We investigate the performance of coverage and user throughput in several deployment scenarios. Using the stochastic geometry approach, the SINR distributions and the coverage probabilities are derived in case of dual connection. Also, to compare the user throughput enhancement among the deployment scenarios, we calculate the spectral efficiency and discuss our results.Keywords: heterogeneous networks, multiple connectivity, small cell enhancement, stochastic geometry
Procedia PDF Downloads 3311216 Stochastic Pi Calculus in Financial Markets: An Alternate Approach to High Frequency Trading
Authors: Jerome Joshi
Abstract:
The paper presents the modelling of financial markets using the Stochastic Pi Calculus model. The Stochastic Pi Calculus model is mainly used for biological applications; however, the feature of this model promotes its use in financial markets, more prominently in high frequency trading. The trading system can be broadly classified into exchange, market makers or intermediary traders and fundamental traders. The exchange is where the action of the trade is executed, and the two types of traders act as market participants in the exchange. High frequency trading, with its complex networks and numerous market participants (intermediary and fundamental traders) poses a difficulty while modelling. It involves the participants to seek the advantage of complex trading algorithms and high execution speeds to carry out large volumes of trades. To earn profits from each trade, the trader must be at the top of the order book quite frequently by executing or processing multiple trades simultaneously. This would require highly automated systems as well as the right sentiment to outperform other traders. However, always being at the top of the book is also not best for the trader, since it was the reason for the outbreak of the ‘Hot – Potato Effect,’ which in turn demands for a better and more efficient model. The characteristics of the model should be such that it should be flexible and have diverse applications. Therefore, a model which has its application in a similar field characterized by such difficulty should be chosen. It should also be flexible in its simulation so that it can be further extended and adapted for future research as well as be equipped with certain tools so that it can be perfectly used in the field of finance. In this case, the Stochastic Pi Calculus model seems to be an ideal fit for financial applications, owing to its expertise in the field of biology. It is an extension of the original Pi Calculus model and acts as a solution and an alternative to the previously flawed algorithm, provided the application of this model is further extended. This model would focus on solving the problem which led to the ‘Flash Crash’ which is the ‘Hot –Potato Effect.’ The model consists of small sub-systems, which can be integrated to form a large system. It is designed in way such that the behavior of ‘noise traders’ is considered as a random process or noise in the system. While modelling, to get a better understanding of the problem, a broader picture is taken into consideration with the trader, the system, and the market participants. The paper goes on to explain trading in exchanges, types of traders, high frequency trading, ‘Flash Crash,’ ‘Hot-Potato Effect,’ evaluation of orders and time delay in further detail. For the future, there is a need to focus on the calibration of the module so that they would interact perfectly with other modules. This model, with its application extended, would provide a basis for researchers for further research in the field of finance and computing.Keywords: concurrent computing, high frequency trading, financial markets, stochastic pi calculus
Procedia PDF Downloads 771215 Limbic Involvement in Visual Processing
Authors: Deborah Zelinsky
Abstract:
The retina filters millions of incoming signals into a smaller amount of exiting optic nerve fibers that travel to different portions of the brain. Most of the signals are for eyesight (called "image-forming" signals). However, there are other faster signals that travel "elsewhere" and are not directly involved with eyesight (called "non-image-forming" signals). This article centers on the neurons of the optic nerve connecting to parts of the limbic system. Eye care providers are currently looking at parvocellular and magnocellular processing pathways without realizing that those are part of an enormous "galaxy" of all the body systems. Lenses are modifying both non-image and image-forming pathways, taking A.M. Skeffington's seminal work one step further. Almost 100 years ago, he described the Where am I (orientation), Where is It (localization), and What is It (identification) pathways. Now, among others, there is a How am I (animation) and a Who am I (inclination, motivation, imagination) pathway. Classic eye testing considers pupils and often assesses posture and motion awareness, but classical prescriptions often overlook limbic involvement in visual processing. The limbic system is composed of the hippocampus, amygdala, hypothalamus, and anterior nuclei of the thalamus. The optic nerve's limbic connections arise from the intrinsically photosensitive retinal ganglion cells (ipRGC) through the "retinohypothalamic tract" (RHT). There are two main hypothalamic nuclei with direct photic inputs. These are the suprachiasmatic nucleus and the paraventricular nucleus. Other hypothalamic nuclei connected with retinal function, including mood regulation, appetite, and glucose regulation, are the supraoptic nucleus and the arcuate nucleus. The retino-hypothalamic tract is often overlooked when we prescribe eyeglasses. Each person is different, but the lenses we choose are influencing this fast processing, which affects each patient's aiming and focusing abilities. These signals arise from the ipRGC cells that were only discovered 20+ years ago and do not address the campana retinal interneurons that were only discovered 2 years ago. As eyecare providers, we are unknowingly altering such factors as lymph flow, glucose metabolism, appetite, and sleep cycles in our patients. It is important to know what we are prescribing as the visual processing evaluations expand past the 20/20 central eyesight.Keywords: neuromodulation, retinal processing, retinohypothalamic tract, limbic system, visual processing
Procedia PDF Downloads 851214 Feature Extractions of EMG Signals during a Constant Workload Pedaling Exercise
Authors: Bing-Wen Chen, Alvin W. Y. Su, Yu-Lin Wang
Abstract:
Electromyography (EMG) is one of the important indicators during exercise, as it is closely related to the level of muscle activations. This work quantifies the muscle conditions of the lower limbs in a constant workload exercise. Surface EMG signals of the vastus laterals (VL), vastus medialis (VM), rectus femoris (RF), gastrocnemius medianus (GM), gastrocnemius lateral (GL) and Soleus (SOL) were recorded from fourteen healthy males. The EMG signals were segmented in two phases: activation segment (AS) and relaxation segment (RS). Period entropy (PE), peak count (PC), zero crossing (ZC), wave length (WL), mean power frequency (MPF), median frequency (MDF) and root mean square (RMS) are calculated to provide the quantitative information of the measured EMG segments. The outcomes reveal that the PE, PC, ZC and RMS have significantly changed (p<.001); WL presents moderately changed (p<.01); MPF and MDF show no changed (p>.05) during exercise. The results also suggest that the RS is also preferred for performance evaluation, while the results of the extracted features in AS are usually affected directly by the amplitudes. It is further found that the VL exhibits the most significant changes within six muscles during pedaling exercise. The proposed work could be applied to quantify the stamina analysis and to predict the instant muscle status in athletes.Keywords: electromyographic feature extraction, muscle status, pedaling exercise, relaxation segment
Procedia PDF Downloads 3021213 3D Interferometric Imaging Using Compressive Hardware Technique
Authors: Mor Diama L. O., Matthieu Davy, Laurent Ferro-Famil
Abstract:
In this article, inverse synthetic aperture radar (ISAR) is combined with compressive imaging techniques in order to perform 3D interferometric imaging. Interferometric ISAR (InISAR) imaging relies on a two-dimensional antenna array providing diversities in the elevation and azimuth directions. However, the signals measured over several antennas must be acquired by coherent receivers resulting in costly and complex hardware. This paper proposes to use a chaotic cavity as a compressive device to encode the signals arising from several antennas into a single output port. These signals are then reconstructed by solving an inverse problem. Our approach is demonstrated experimentally with a 3-elements L-shape array connected to a metallic compressive enclosure. The interferometric phases estimated from a unique broadband signal are used to jointly estimate the target’s effective rotation rate and the height of the dominant scattering centers of our target. Our experimental results show that the use of the compressive device does not adversely affect the performance of our imaging process. This study opens new perspectives to reduce the hardware complexity of high-resolution ISAR systems.Keywords: interferometric imaging, inverse synthetic aperture radar, compressive device, computational imaging
Procedia PDF Downloads 1601212 The Classification of Parkinson Tremor and Essential Tremor Based on Frequency Alteration of Different Activities
Authors: Chusak Thanawattano, Roongroj Bhidayasiri
Abstract:
This paper proposes a novel feature set utilized for classifying the Parkinson tremor and essential tremor. Ten ET and ten PD subjects are asked to perform kinetic, postural and resting tests. The empirical mode decomposition (EMD) is used to decompose collected tremor signal to a set of intrinsic mode functions (IMF). The IMFs are used for reconstructing representative signals. The feature set is composed of peak frequencies of IMFs and reconstructed signals. Hypothesize that the dominant frequency components of subjects with PD and ET change in different directions for different tests, difference of peak frequencies of IMFs and reconstructed signals of pairwise based tests (kinetic-resting, kinetic-postural and postural-resting) are considered as potential features. Sets of features are used to train and test by classifier including the quadratic discriminant classifier (QLC) and the support vector machine (SVM). The best accuracy, the best sensitivity and the best specificity are 90%, 87.5%, and 92.86%, respectively.Keywords: tremor, Parkinson, essential tremor, empirical mode decomposition, quadratic discriminant, support vector machine, peak frequency, auto-regressive, spectrum estimation
Procedia PDF Downloads 4421211 A Large Dataset Imputation Approach Applied to Country Conflict Prediction Data
Authors: Benjamin Leiby, Darryl Ahner
Abstract:
This study demonstrates an alternative stochastic imputation approach for large datasets when preferred commercial packages struggle to iterate due to numerical problems. A large country conflict dataset motivates the search to impute missing values well over a common threshold of 20% missingness. The methodology capitalizes on correlation while using model residuals to provide the uncertainty in estimating unknown values. Examination of the methodology provides insight toward choosing linear or nonlinear modeling terms. Static tolerances common in most packages are replaced with tailorable tolerances that exploit residuals to fit each data element. The methodology evaluation includes observing computation time, model fit, and the comparison of known values to replaced values created through imputation. Overall, the country conflict dataset illustrates promise with modeling first-order interactions while presenting a need for further refinement that mimics predictive mean matching.Keywords: correlation, country conflict, imputation, stochastic regression
Procedia PDF Downloads 1201210 Implementation of a Monostatic Microwave Imaging System using a UWB Vivaldi Antenna
Authors: Babatunde Olatujoye, Binbin Yang
Abstract:
Microwave imaging is a portable, noninvasive, and non-ionizing imaging technique that employs low-power microwave signals to reveal objects in the microwave frequency range. This technique has immense potential for adoption in commercial and scientific applications such as security scanning, material characterization, and nondestructive testing. This work presents a monostatic microwave imaging setup using an Ultra-Wideband (UWB), low-cost, miniaturized Vivaldi antenna with a bandwidth of 1 – 6 GHz. The backscattered signals (S-parameters) of the Vivaldi antenna used for scanning targets were measured in the lab using a VNA. An automated two-dimensional (2-D) scanner was employed for the 2-D movement of the transceiver to collect the measured scattering data from different positions. The targets consist of four metallic objects, each with a distinct shape. Similar setup was also simulated in Ansys HFSS. A high-resolution Back Propagation Algorithm (BPA) was applied to both the simulated and experimental backscattered signals. The BPA utilizes the phase and amplitude information recorded over a two-dimensional aperture of 50 cm × 50 cm with a discreet step size of 2 cm to reconstruct a focused image of the targets. The adoption of BPA was demonstrated by coherently resolving and reconstructing reflection signals from conventional time-of-flight profiles. For both the simulation and experimental data, BPA accurately reconstructed a high resolution 2D image of the targets in terms of shape and location. An improvement of the BPA, in terms of target resolution, was achieved by applying the filtering method in frequency domain.Keywords: back propagation, microwave imaging, monostatic, vivialdi antenna, ultra wideband
Procedia PDF Downloads 191209 Application of the Bionic Wavelet Transform and Psycho-Acoustic Model for Speech Compression
Authors: Chafik Barnoussi, Mourad Talbi, Adnane Cherif
Abstract:
In this paper we propose a new speech compression system based on the application of the Bionic Wavelet Transform (BWT) combined with the psychoacoustic model. This compression system is a modified version of the compression system using a MDCT (Modified Discrete Cosine Transform) filter banks of 32 filters each and the psychoacoustic model. This modification consists in replacing the banks of the MDCT filter banks by the bionic wavelet coefficients which are obtained from the application of the BWT to the speech signal to be compressed. These two methods are evaluated and compared with each other by computing bits before and bits after compression. They are tested on different speech signals and the obtained simulation results show that the proposed technique outperforms the second technique and this in term of compressed file size. In term of SNR, PSNR and NRMSE, the outputs speech signals of the proposed compression system are with acceptable quality. In term of PESQ and speech signal intelligibility, the proposed speech compression technique permits to obtain reconstructed speech signals with good quality.Keywords: speech compression, bionic wavelet transform, filterbanks, psychoacoustic model
Procedia PDF Downloads 3841208 A Retrievable Genetic Algorithm for Efficient Solving of Sudoku Puzzles
Authors: Seyed Mehran Kazemi, Bahare Fatemi
Abstract:
Sudoku is a logic-based combinatorial puzzle game which is popular among people of different ages. Due to this popularity, computer softwares are being developed to generate and solve Sudoku puzzles with different levels of difficulty. Several methods and algorithms have been proposed and used in different softwares to efficiently solve Sudoku puzzles. Various search methods such as stochastic local search have been applied to this problem. Genetic Algorithm (GA) is one of the algorithms which have been applied to this problem in different forms and in several works in the literature. In these works, chromosomes with little or no information were considered and obtained results were not promising. In this paper, we propose a new way of applying GA to this problem which uses more-informed chromosomes than other works in the literature. We optimize the parameters of our GA using puzzles with different levels of difficulty. Then we use the optimized values of the parameters to solve various puzzles and compare our results to another GA-based method for solving Sudoku puzzles.Keywords: genetic algorithm, optimization, solving Sudoku puzzles, stochastic local search
Procedia PDF Downloads 4231207 Building a Stochastic Simulation Model for Blue Crab Population Evolution in Antinioti Lagoon
Authors: Nikolaos Simantiris, Markos Avlonitis
Abstract:
This work builds a simulation platform, modeling the spatial diffusion of the invasive species Callinectes sapidus (blue crab) as a random walk, incorporating also generation, fatality, and fishing rates modeling the time evolution of its population. Antinioti lagoon in West Greece was used as a testbed for applying the simulation model. Field measurements from June 2020 to June 2021 on the lagoon’s setting, bathymetry, and blue crab juveniles provided the initial population simulation of blue crabs, as well as biological parameters from the current literature were used to calibrate simulation parameters. The scope of this study is to render the authors able to predict the evolution of the blue crab population in confined environments of the Ionian Islands region in West Greece. The first result of the simulation experiments shows the possibility for a robust prediction for blue crab population evolution in the Antinioti lagoon.Keywords: antinioti lagoon, blue crab, stochastic simulation, random walk
Procedia PDF Downloads 2291206 Textile-Based Sensing System for Sleep Apnea Detection
Authors: Mary S. Ruppert-Stroescu, Minh Pham, Bruce Benjamin
Abstract:
Sleep apnea is a condition where a person stops breathing and can lead to cardiovascular disease, hypertension, and stroke. In the United States, approximately forty percent of overnight sleep apnea detection tests are cancelled. The purpose of this study was to develop a textile-based sensing system that acquires biometric signals relevant to cardiovascular health, to transmit them wirelessly to a computer, and to quantitatively assess the signals for sleep apnea detection. Patient interviews, literature review and market analysis defined a need for a device that ubiquitously integrated into the patient’s lifestyle. A multi-disciplinary research team of biomedical scientists, apparel designers, and computer engineers collaborated to design a textile-based sensing system that gathers EKG, Sp02, and respiration, then wirelessly transmits the signals to a computer in real time. The electronic components were assembled from existing hardware, the Health Kit which came pre-set with EKG and Sp02 sensors. The respiration belt was purchased separately and its electronics were built and integrated into the Health Kit mother board. Analog ECG signals were amplified and transmitted to the Arduino™ board where the signal was converted from analog into digital. By using textile electrodes, ECG lead-II was collected, and it reflected the electrical activity of the heart. Signals were collected when the subject was in sitting position and at sampling rate of 250 Hz. Because sleep apnea most often occurs in people with obese body types, prototypes were developed for a man’s size medium, XL, and XXL. To test user acceptance and comfort, wear tests were performed on 12 subjects. Results of the wear tests indicate that the knit fabric and t-shirt-like design were acceptable from both lifestyle and comfort perspectives. The airflow signal and respiration signal sensors return good signals regardless of movement intensity. Future study includes reconfiguring the hardware to a smaller size, developing the same type of garment for the female body, and further enhancing the signal quality.Keywords: sleep apnea, sensors, electronic textiles, wearables
Procedia PDF Downloads 2741205 A Review on Enhancing Heat Transfer Processes by Open-Cell Metal Foams and Industrial Applications
Authors: S. Cheragh Dar, M. Saljooghi, A. Babrgir
Abstract:
In the last couple of decades researchers' attitudes were focused on developing and enhancing heat transfer processes by using new components or cellular solids that divide into stochastic structures and periodic structures. Open-cell metal foams are part of stochastic structures families that they can be considered as an avant-garde technology and they have unique properties, this porous media can have tremendous achievements in thermal processes. This paper argues and surveys postulating possible in industrial thermal issues which include: compact electronic cooling, heat exchanger, aerospace, fines, turbo machinery, automobiles, crygen tanks, biomechanics, high temperature filters and etc. Recently, by surveying exponential rate of publications in thermal open-cell metal foams, all can be demonstrated in a holistic view which can lead researchers to a new level of understanding in different industrial thermal sections.Keywords: heat transfer, industrial thermal, cellular solids, open cell metal foam
Procedia PDF Downloads 2921204 The Prospect of Income Contingent Loan in Malaysia Higher Education Financing Using Deterministic and Stochastic Methods in Modelling Income
Authors: Syaza Isma, Timothy Higgins
Abstract:
In Malaysia, increased take-up rates of tertiary student borrowing, and reliance on retirement savings to fund children's education show the importance of public higher education financing schemes (PTPTN). PTPTN has been operating for 2 decades now; however, there are some critical issues and challenges that include low loan recovery and loan default that suggest a detailed consideration of student loan/financing scheme alternatives is crucial. In addition, the decline in funding level per student following introduction of the new PTPTN full and partial loan scheme has raised ongoing concerns over the sustainability of the scheme to provide continuous financial assistance to students in tertiary education. This research seeks to assess these issues that put greater efficiency in an effort to ensure equitable access to student funding for current and future generations. We explore the extent of repayment hardship under the current loan arrangements that presumably led to low recovery from the borrowers, particularly low-income graduates. The concept of manageable debt exists in the design of income-contingent repayment schemes, as practiced in Australia, New Zealand, UK, Hungary, USA (in limited form), the Netherlands, and South Korea. Can Income Contingent Loans (ICL) offer the best practice for an education financing scheme, and address the issue of repayment hardship and concurrently, can a properly designed ICL scheme provide a solution to the current issues and challenges facing Malaysia student financing? We examine the different potential ICL models using deterministic and stochastic approach to simulate income of graduates.Keywords: deterministic, income contingent loan, repayment burden, simulation, stochastic
Procedia PDF Downloads 2291203 Transient Analysis of Central Region Void Fraction in a 3x3 Rod Bundle under Bubbly and Cap/Slug Flows
Authors: Ya-Chi Yu, Pei-Syuan Ruan, Shao-Wen Chen, Yu-Hsien Chang, Jin-Der Lee, Jong-Rong Wang, Chunkuan Shih
Abstract:
This study analyzed the transient signals of central region void fraction of air-water two-phase flow in a 3x3 rod bundle. Experimental tests were carried out utilizing a vertical rod bundle test section along with a set of air-water supply/flow control system, and the transient signals of the central region void fraction were collected through the electrical conductivity sensors as well as visualized via high speed photography. By converting the electric signals, transient void fraction can be obtained through the voltage ratios. With a fixed superficial water velocity (Jf=0.094 m/s), two different superficial air velocities (Jg=0.094 m/s and 0.236 m/s) were tested and presented, which were corresponding to the flow conditions of bubbly flows and cap/slug flows, respectively. The time averaged central region void fraction was obtained as 0.109-0.122 with 0.028 standard deviation for the selected bubbly flow and 0.188-0.221with 0.101 standard deviation for the selected cap/slug flow, respectively. Through Fast Fourier Transform (FFT) analysis, no clear frequency peak was found in bubbly flow, while two dominant frequencies were identified around 1.6 Hz and 2.5 Hz in the present cap/slug flow.Keywords: central region, rod bundles, transient void fraction, two-phase flow
Procedia PDF Downloads 1851202 Refined Procedures for Second Order Asymptotic Theory
Authors: Gubhinder Kundhi, Paul Rilstone
Abstract:
Refined procedures for higher-order asymptotic theory for non-linear models are developed. These include a new method for deriving stochastic expansions of arbitrary order, new methods for evaluating the moments of polynomials of sample averages, a new method for deriving the approximate moments of the stochastic expansions; an application of these techniques to gather improved inferences with the weak instruments problem is considered. It is well established that Instrumental Variable (IV) estimators in the presence of weak instruments can be poorly behaved, in particular, be quite biased in finite samples. In our application, finite sample approximations to the distributions of these estimators are obtained using Edgeworth and Saddlepoint expansions. Departures from normality of the distributions of these estimators are analyzed using higher order analytical corrections in these expansions. In a Monte-Carlo experiment, the performance of these expansions is compared to the first order approximation and other methods commonly used in finite samples such as the bootstrap.Keywords: edgeworth expansions, higher order asymptotics, saddlepoint expansions, weak instruments
Procedia PDF Downloads 2771201 Identification of EEG Attention Level Using Empirical Mode Decompositions for BCI Applications
Authors: Chia-Ju Peng, Shih-Jui Chen
Abstract:
This paper proposes a method to discriminate electroencephalogram (EEG) signals between different concentration states using empirical mode decomposition (EMD). Brain-computer interface (BCI), also called brain-machine interface, is a direct communication pathway between the brain and an external device without the inherent pathway such as the peripheral nervous system or skeletal muscles. Attention level is a common index as a control signal of BCI systems. The EEG signals acquired from people paying attention or in relaxation, respectively, are decomposed into a set of intrinsic mode functions (IMF) by EMD. Fast Fourier transform (FFT) analysis is then applied to each IMF to obtain the frequency spectrums. By observing power spectrums of IMFs, the proposed method has the better identification of EEG attention level than the original EEG signals between different concentration states. The band power of IMF3 is the most obvious especially in β wave, which corresponds to fully awake and generally alert. The signal processing method and results of this experiment paves a new way for BCI robotic system using the attention-level control strategy. The integrated signal processing method reveals appropriate information for discrimination of the attention and relaxation, contributing to a more enhanced BCI performance.Keywords: biomedical engineering, brain computer interface, electroencephalography, rehabilitation
Procedia PDF Downloads 3911200 A Robust Optimization Model for the Single-Depot Capacitated Location-Routing Problem
Authors: Abdolsalam Ghaderi
Abstract:
In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve the customers when the parameters may change under different circumstances. This problem has many applications, especially in the area of supply chain management and distribution systems. To get closer to real-world situations, travel time of vehicles, the fixed cost of vehicles usage and customers’ demand are considered as a source of uncertainty. A combined approach including robust optimization and stochastic programming was presented to deal with the uncertainty in the problem at hand. For this purpose, a mixed integer programming model is developed and a heuristic algorithm based on Variable Neighborhood Search(VNS) is presented to solve the model. Finally, the computational results are presented and future research directions are discussed.Keywords: location-routing problem, robust optimization, stochastic programming, variable neighborhood search
Procedia PDF Downloads 2681199 Effect of Specimen Thickness on Probability Distribution of Grown Crack Size in Magnesium Alloys
Authors: Seon Soon Choi
Abstract:
The fatigue crack growth is stochastic because of the fatigue behavior having an uncertainty and a randomness. Therefore, it is necessary to determine the probability distribution of a grown crack size at a specific fatigue crack propagation life for maintenance of structure as well as reliability estimation. The essential purpose of this study is to present the good probability distribution fit for the grown crack size at a specified fatigue life in a rolled magnesium alloy under different specimen thickness conditions. Fatigue crack propagation experiments are carried out in laboratory air under three conditions of specimen thickness using AZ31 to investigate a stochastic crack growth behavior. The goodness-of-fit test for probability distribution of a grown crack size under different specimen thickness conditions is performed by Anderson-Darling test. The effect of a specimen thickness on variability of a grown crack size is also investigated.Keywords: crack size, fatigue crack propagation, magnesium alloys, probability distribution, specimen thickness
Procedia PDF Downloads 499