Search results for: residual urine volume
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3479

Search results for: residual urine volume

3269 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network

Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing

Abstract:

Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.

Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes

Procedia PDF Downloads 152
3268 Residual Stress Around Embedded Particles in Bulk YBa2Cu3Oy Samples

Authors: Anjela Koblischka-Veneva, Michael R. Koblischka

Abstract:

To increase the flux pinning performance of bulk YBa2Cu3O7-δ (YBCO or Y-123) superconductors, it is common to employ secondary phase particles, either Y2BaCuO5 (Y-211) particles created during the growth of the samples or additionally added (nano)particles of various types, embedded in the superconducting Y-123 matrix. As the crystallographic parameters of all the particles indicate a misfit to Y-123, there will be residual strain within the Y-123 matrix around such particles. With a dedicated analysis of electron backscatter diffraction (EBSD) data obtained on various bulk, Y-123 superconductor samples, the strain distribution around such embedded secondary phase particles can be revealed. The results obtained are presented in form of Kernel Average Misorientation (KAM) mappings. Around large Y-211 particles, the strain can be so large that YBCO subgrains are formed. Therefore, it is essential to properly control the particle size as well as their distribution within the bulk sample to obtain the best performance. The impact of the strain distribution on the flux pinning properties is discussed.

Keywords: Bulk superconductors, EBSD, Strain, YBa2Cu3Oy

Procedia PDF Downloads 125
3267 Modeling of a Pilot Installation for the Recovery of Residual Sludge from Olive Oil Extraction

Authors: Riad Benelmir, Muhammad Shoaib Ahmed Khan

Abstract:

The socio-economic importance of the olive oil production is significant in the Mediterranean region, both in terms of wealth and tradition. However, the extraction of olive oil generates huge quantities of wastes that may have a great impact on land and water environment because of their high phytotoxicity. Especially olive mill wastewater (OMWW) is one of the major environmental pollutants in olive oil industry. This work projects to design a smart and sustainable integrated thermochemical catalytic processes of residues from olive mills by hydrothermal carbonization (HTC) of olive mill wastewater (OMWW) and fast pyrolysis of olive mill wastewater sludge (OMWS). The byproducts resulting from OMWW-HTC treatment are a solid phase enriched in carbon, called biochar and a liquid phase (residual water with less dissolved organic and phenolic compounds). HTC biochar can be tested as a fuel in combustion systems and will also be utilized in high-value applications, such as soil bio-fertilizer and as catalyst or/and catalyst support. The HTC residual water is characterized, treated and used in soil irrigation since the organic and the toxic compounds will be reduced under the permitted limits. This project’s concept includes also the conversion of OMWS to a green diesel through a catalytic pyrolysis process. The green diesel is then used as biofuel in an internal combustion engine (IC-Engine) for automotive application to be used for clean transportation. In this work, a theoretical study is considered for the use of heat from the pyrolysis non-condensable gases in a sorption-refrigeration machine for pyrolysis gases cooling and condensation of bio-oil vapors.

Keywords: biomass, olive oil extraction, adsorption cooling, pyrolisis

Procedia PDF Downloads 58
3266 Temperature and Substrate Orientation Effects on the Thermal Stability of Graphene Sheet Attached on the Si Surface

Authors: Wen-Jay Lee, Kuo-Ning Chiang

Abstract:

The graphene binding with silicon substrate has apparently Schottky barriers property, which can be used in the application of solar cell and light source. Because graphene has only one atom layer, the atomistic structure of graphene binding with the silicon surface plays an important role to affect the properties of graphene. In this work, temperature effect on the morphology of graphene sheet attached on different crystal planes of silicon substrates are investigated by Molecular dynamics (MD) (LAMMPS, developed by Sandia National Laboratories). The results show that the covered graphene sheet would cause the structural deformation of the surface Si atoms of stubtrate. To achieve a stable state in the binding process, the surface Si atoms would adjust their position and fit the honeycomb structure of graphene after the graphene attaches to the Si surface. The height contour of graphene on different plane of silicon surfaces presents different pattern, leading the local residual stress at the interface. Due to the high density of dangling bond on the Si (111)7x7 surface, the surface of Si(111)7x7 is not matching with the graphene so well in contrast with Si(100)2x1and Si(111)2x1. Si(111)7x7 is found that only partial silicon adatoms are rearranged on surface after the attachment when the temperature is lower than 200K, As the temperature gradually increases, the deformation of surface structure becomes significant, as well as the residue stress. With increasing temperature till the 815K, the graphene sheet begins to destroy and mixes with the silicon atoms. For the Si(100)2x1 and Si(111)2x1, the silicon surface structure keep its structural arrangement with a higher temperature. With increasing temperature, the residual stress gradually decrease till a critical temperatures. When the temperature is higher than the critical temperature, the residual stress gradually increases and the structural deformation is found on the surface of the Si substrates.

Keywords: molecular dynamics, graphene, silicon, Schottky barriers, interface

Procedia PDF Downloads 300
3265 Topping Failure Analysis of Anti-Dip Bedding Rock Slopes Subjected to Crest Loads

Authors: Chaoyi Sun, Congxin Chen, Yun Zheng, Kaizong Xia, Wei Zhang

Abstract:

Crest loads are often encountered in hydropower, highway, open-pit and other engineering rock slopes. Toppling failure is one of the most common deformation failure types of anti-dip bedding rock slopes. Analysis on such failure of anti-dip bedding rock slopes subjected to crest loads has an important influence on engineering practice. Based on the step-by-step analysis approach proposed by Goodman and Bray, a geo-mechanical model was developed, and the related analysis approach was proposed for the toppling failure of anti-dip bedding rock slopes subjected to crest loads. Using the transfer coefficient method, a formulation was derived for calculating the residual thrust of slope toe and the support force required to meet the requirements of the slope stability under crest loads, which provided a scientific reference to design and support for such slopes. Through slope examples, the influence of crest loads on the residual thrust and sliding ratio coefficient was investigated for cases of different block widths and slope cut angles. The results show that there exists a critical block width for such slope. The influence of crest loads on the residual thrust is non-negligible when the block thickness is smaller than the critical value. Moreover, the influence of crest loads on the slope stability increases with the slope cut angle and the sliding ratio coefficient of anti-dip bedding rock slopes increases with the crest loads. Finally, the theoretical solutions and numerical simulations using Universal Distinct Element Code (UDEC) were compared, in which the consistent results show the applicability of both approaches.

Keywords: anti-dip bedding rock slope, crest loads, stability analysis, toppling failure

Procedia PDF Downloads 159
3264 Development of a Multi-Variate Model for Matching Plant Nitrogen Requirements with Supply for Reducing Losses in Dairy Systems

Authors: Iris Vogeler, Rogerio Cichota, Armin Werner

Abstract:

Dairy farms are under pressure to increase productivity while reducing environmental impacts. Effective fertiliser management practices are critical to achieve this. Determination of optimum nitrogen (N) fertilisation rates which maximise pasture growth and minimise N losses is challenging due to variability in plant requirements and likely near-future supply of N by the soil. Remote sensing can be used for mapping N nutrition status of plants and to rapidly assess the spatial variability within a field. An algorithm is, however, lacking which relates the N status of the plants to the expected yield response to additions of N. The aim of this simulation study was to develop a multi-variate model for determining N fertilisation rate for a target percentage of the maximum achievable yield based on the pasture N concentration (ii) use of an algorithm for guiding fertilisation rates, and (iii) evaluation of the model regarding pasture yield and N losses, including N leaching, denitrification and volatilisation. A simulation study was carried out using the Agricultural Production Systems Simulator (APSIM). The simulations were done for an irrigated ryegrass pasture in the Canterbury region of New Zealand. A multi-variate model was developed and used to determine monthly required N fertilisation rates based on pasture N content prior to fertilisation and targets of 50, 75, 90 and 100% of the potential monthly yield. These monthly optimised fertilisation rules were evaluated by running APSIM for a ten-year period to provide yield and N loss estimates from both nonurine and urine affected areas. Comparison with typical fertilisation rates of 150 and 400 kg N/ha/year was also done. Assessment of pasture yield and leaching from fertiliser and urine patches indicated a large reduction in N losses when N fertilisation rates were controlled by the multi-variate model. However, the reduction in leaching losses was much smaller when taking into account the effects of urine patches. The proposed approach based on biophysical modelling to develop a multi-variate model for determining optimum N fertilisation rates dependent on pasture N content is very promising. Further analysis, under different environmental conditions and validation is required before the approach can be used to help adjust fertiliser management practices to temporal and spatial N demand based on the nitrogen status of the pasture.

Keywords: APSIM modelling, optimum N fertilization rate, pasture N content, ryegrass pasture, three dimensional surface response function.

Procedia PDF Downloads 110
3263 Impact of Length of Straw by the Use of a Straw Mill on the Selective Feeding of Young Cattle and Their Effects for the Cattle

Authors: Heiko Scholz

Abstract:

When feeding high qualitysilagetoheifersfromthe age of two, there is a riskofenergyoversupply. Depending on the feeding valueorscarceavailability ofsilageorcorn silage diets withhighproportionsof straw is often incorporated. Foran energetically standardized young cattle supply of strawproportion can be more than 20% of dry matter. It was investigated whether the grinding of straw with the strawmillselective feeding significantly limits. The investigation has been carried out with young cattle in the second year. 78 animals were kept and fed under similar conditions in two groups. The experimental group (EG) consisted of cattle 12 to 15 months, and in the control group (CG), the cattle were 15 to 20 months old. The experimental feeding took place in five days of feed distribution, and residual feed were weighed. The ration of EG contained ground with the straw mill straw, and CG was further fed rotor-cut pressed straw. To determine the selective seizure samples of feed distributionandtheremainingfood with the particle separator boxandthecrude protein-and energy-content have been determined. The grinding of the straw increased the daily feed intake.IntheEGan increase infeed intakewas observedby grinding of the straw. Feed intakedirectlyon the day for changing the dietoflongonground straw increased by more than 2.0 kgofDMper animal. In the following days, the feed intakewasincreasedby 0.9kg DMper animal and day on average (7.4 vs. 8.3 kg DM per day). The results of the screen distribution of residual feed point to a differentiated feeding behavior between the groups. In the EG, the particle length of the residual feed to a large extent with the template matches. The acid-base-balance (NSBA)valuesofEGarewithin normal limits. Ifstrawsharesof25% and more are federations to young cattle (heifers), the theparticlelengthof straw has significant impact ontheselectivefeeding behavior. Aparticlelength of 1.5cmcompared to7.5 cmlongpreventedstrawcertainly discarding of the straw on the feeding barn. The feed intake increases whenshortstrawis mixed into theTMR.

Keywords: straw mill, heifer, feed selection, dry matter intake

Procedia PDF Downloads 171
3262 Evaluation of an Air Energy Recovery System in Greenhouse Fed by an Axial Air Extractor

Authors: Eugueni Romantchik, Gilbero Lopez, Diego Terrazas

Abstract:

The residual wind energy recovery from axial air extractors in greenhouses represents a constant source of clean energy production, which reduces production costs by reducing energy consumption costs. The objective of this work is to design, build and evaluate a residual wind energy recovery system. This system consists of a wind turbine placed at an optimal distance, a cone in the air discharge and a mechanism to vary the blades angle of the wind turbine. The system energy balance was analyzed, measuring the main energy parameters such as voltage, amperage, air velocities and angular speeds of the rotors. Tests were carried in a greenhouse with extractor Multifan 130 (1.2 kW, 550 rpm and 1.3 m of diameter) without cone and with cone, with the wind turbine (3 blades with 1.2 m in diameter). The implementation of the system allowed recovering up to 55% of the motor's energy. With the cone installed, the electric energy recovered was increased by 10%. Experimentally, it was shown that changing in 3 degrees the original angle of the wind turbine blades, the angular velocity increases 17.7%.

Keywords: air energy, exhaust fan, greenhouse, wind turbine

Procedia PDF Downloads 139
3261 Optimization of Submerged Arc Welding Parameters for Joining SS304 and MS1018

Authors: Jasvinder Singh, Manjinder Singh

Abstract:

Welding of dissimilar materials is a complicated process due to the difference in melting point of two materials. Thermal conductivity and coefficient of thermal expansion of dissimilar materials also different; therefore, residual stresses produced in the weldment and base metal are the most critical problem associated with the joining of dissimilar materials. Tensile strength and impact toughness also reduced due to the residual stresses. In the present research work, an attempt has been made to weld SS304 and MS1018 dissimilar materials by submerged arc welding (SAW). By conducting trail, runs most effective parameters welding current, Arc voltage, welding speed and nozzle to plate distance were selected to weld these materials. The fractional factorial technique was used to optimize the welding parameters. Effect on tensile strength (TS), fracture toughness (FT) and microhardness of weldment were studied. It was concluded that by optimizing welding current, voltage and welding speed the properties of weldment can be enhanced.

Keywords: SAW, Tensile Strength (TS), fracture toughness, micro hardness

Procedia PDF Downloads 516
3260 Optimization of Operational Water Quality Parameters in a Drinking Water Distribution System Using Response Surface Methodology

Authors: Sina Moradi, Christopher W. K. Chow, John Van Leeuwen, David Cook, Mary Drikas, Patrick Hayde, Rose Amal

Abstract:

Chloramine is commonly used as a disinfectant in drinking water distribution systems (DWDSs), particularly in Australia and the USA. Maintaining a chloramine residual throughout the DWDS is important in ensuring microbiologically safe water is supplied at the customer’s tap. In order to simulate how chloramine behaves when it moves through the distribution system, a water quality network model (WQNM) can be applied. In this work, the WQNM was based on mono-chloramine decomposition reactions, which enabled prediction of mono-chloramine residual at different locations through a DWDS in Australia, using the Bentley commercial hydraulic package (Water GEMS). The accuracy of WQNM predictions is influenced by a number of water quality parameters. Optimization of these parameters in order to obtain the closest results in comparison with actual measured data in a real DWDS would result in both cost reduction as well as reduction in consumption of valuable resources such as energy and materials. In this work, the optimum operating conditions of water quality parameters (i.e. temperature, pH, and initial mono-chloramine concentration) to maximize the accuracy of mono-chloramine residual predictions for two water supply scenarios in an entire network were determined using response surface methodology (RSM). To obtain feasible and economical water quality parameters for highest model predictability, Design Expert 8.0 software (Stat-Ease, Inc.) was applied to conduct the optimization of three independent water quality parameters. High and low levels of the water quality parameters were considered, inevitably, as explicit constraints, in order to avoid extrapolation. The independent variables were pH, temperature and initial mono-chloramine concentration. The lower and upper limits of each variable for two water supply scenarios were defined and the experimental levels for each variable were selected based on the actual conditions in studied DWDS. It was found that at pH of 7.75, temperature of 34.16 ºC, and initial mono-chloramine concentration of 3.89 (mg/L) during peak water supply patterns, root mean square error (RMSE) of WQNM for the whole network would be minimized to 0.189, and the optimum conditions for averaged water supply occurred at pH of 7.71, temperature of 18.12 ºC, and initial mono-chloramine concentration of 4.60 (mg/L). The proposed methodology to predict mono-chloramine residual can have a great potential for water treatment plant operators in accurately estimating the mono-chloramine residual through a water distribution network. Additional studies from other water distribution systems are warranted to confirm the applicability of the proposed methodology for other water samples.

Keywords: chloramine decay, modelling, response surface methodology, water quality parameters

Procedia PDF Downloads 204
3259 The Analysis of Questionnaires about the Health Condition of Students Involved in the Korean Medicine Doctors` Visiting School Program-Cohort Study: Middle and High School Participator of Seong-Nam-

Authors: Narae Yang, Hyun Kyung Sung, Seon Mi Shin, Hee Jung, Yong Ji Kim, Tae-Yong Park, Ho Yeon Go

Abstract:

The aim of this study was to build base-line data for the Korean Medicine Doctors` Visiting School Program (KMDVSP) by analyzing a student health survey filled out by the students. Korean medicine doctors assigned to 20 middle and high schools in Seong-nam visited these schools eight times in five months. During each visit, the assigned doctors performed health consultations and Korean medicine treatment, and taught health education classes. 12115 students answered self-reported questionnaires about their own physical condition at the beginning of the program. In a question about pain, 7080(58%) reported having a headache, while 4048(33%) said they had a backache, nuchal pain/shoulder pain was reported by 5993(49%), dyspepsia was present in 2736(23%), rhinitis/sinusitis was reported by 4176(34%), coughing/dyspnea by 7102(59%), itching/skin rash by 2840(23%), and constipation was reported by 1091(9%), while 2264(18%) said they had diarrhea. Increased urinary frequency/feeling of residual urine was reported by 569 students (5%), and 3324(27%) said they had insomnia/fitful sleep/morning fatigue. When asked about menstruation, 4450(83%) of the female students reported irregular menstruation or said they experienced menstrual pain. Understanding the health condition of adolescent students is the starting point to determining national health policy to prevent various diseases in the future. We have developed the pilot project of KMDVSP and collected research about students’ health. Based on this data, further studies should be performed in order to develop a cooperative program between schools and the Korean medical center.

Keywords: korean medicine doctors` visiting school program(kmdvsp), student`s health condition, questionnaires, cohort study

Procedia PDF Downloads 452
3258 Microbiological Profile of UTI along with Their Antibiotic Sensitivity Pattern with Special Reference to Nitrofurantoin

Authors: Rupinder Bakshi, Geeta Walia, Anita Gupta

Abstract:

Introduction: Urinary tract infections (UTI) are considered to be one of the most common bacterial infections with an estimated annual global incidence of 150 million. Antimicrobial drug resistance is one of the major threats due to widespread usage of uncontrolled antibiotics. Materials and Methods: A total number of 9149 urine samples were collected from R.H Patiala and processed in the Department of Microbiology G.M.C Patiala. Urine samples were inoculated on MacConkey’s and blood agar plates by using calibrated loop delivering 0.001 ml of sample and incubated at 37 °C for 24 hrs. The organisms were identified by colony characters, gram’s staining and biochemical reactions. Antimicrobial susceptibility of the isolates was determined against various antimicrobial agents (Hi – Media Mumbai India) by Kirby-Bauer disk diffusion method on Muller Hinton agar plates. Results: Maximum patients were in the age group of 21-30 yrs followed by 31-40 yrs. Males (34%) are less prone to urinary tract infections than females (66%). Out of 9149 urine sample, the culture was positive in 25% (2290) samples. Esch. coli was the most common isolate 60.3% (n = 1378) followed by Klebsiella pneumoniae 13.5% (n = 310), Proteus spp. 9% (n = 209), Staphylococcus aureus 7.6 % (n = 173), Pseudomonas aeruginosa 3.7% (n = 84), Citrobacter spp. 3.1 % (70), Staphylococcus saprophyticus 1.8 % (n = 142), Enterococcus faecalis 0.8%(n=19) and Acinetobacter spp. 0.2%(n=5). Gram negative isolates showed higher sensitivity towards, Piperacillin +Tazobactum (67%), Amikacin (80%), Nitrofurantoin (82%), Aztreonam (100%), Imipenem (100%) and Meropenam (100%) while gram positive showed good response towards Netilmicin (69%), Nitrofurantoin (79%), Linezolid (98%), Vancomycin (100%) and Teicoplanin (100%). 465 (23%) isolates were resistant to Penicillins, 1st generation and 2nd generation Cehalosporins which were further tested by double disk approximation test and combined disk method for ESBL production. Out of 465 isolates, 375 were ESBLs consisting of n 264 (70.6%) Esch.coli and 111 (29.4%) Klebsiella pneumoniae. Susceptibility of ESBL producers to Imipenem, Nitrofurantoin and Amikacin were found to be 100%, 76%, and 75% respectively. Conclusion: Uropathogens are increasingly showing resistance to many antibiotics making empiric management of outpatients UTIs challenging. Ampicillin, Cotrimoxazole, and Ciprofloxacin should not be used in empiric treatment. Nitrofurantoin could be used in lower urinary tract infection. Knowledge of uropathogens and their antimicrobial susceptibility pattern in a geographical region will help inappropriate and judicious antibiotic usage in a health care setup.

Keywords: Urinary Tract Infection, UTI, antibiotic susceptibility pattern, ESBL

Procedia PDF Downloads 317
3257 Study on the Mechanism of CO₂-Viscoelastic Fluid Synergistic Oil Displacement in Tight Sandstone Reservoirs

Authors: Long Long Chen, Xinwei Liao, Shanfa Tang, Shaojing Jiang, Ruijia Tang, Rui Wang, Shu Yun Feng, Si Yao Wang

Abstract:

Tight oil reservoirs have poor physical properties, insufficient formation energy, and low natural productivity; it is necessary to effectively improve their crude oil recovery. CO₂ flooding is an important technical means to enhance oil recovery and achieve effective CO₂ storage in tight oil reservoirs, but its heterogeneity is strong, which makes CO₂ flooding prone to gas channeling and poor recovery. Aiming at the problem of gas injection channeling, combined with the excellent performance of low interfacial tension viscoelastic fluid (GOBTK), the research on CO₂-low interfacial tension viscoelastic fluid synergistic oil displacement in tight reservoirs was carried out, and the synergy of CO₂ and low interfacial tension viscoelastic fluid was discussed. Oil displacement mechanism. Experiments show that GOBTK has good injectability in tight oil reservoirs (Kg=0.141~0.793mD); CO₂-0.4% GOBTK synergistic flooding can improve the recovery factor of low permeability layers (31.41%) under heterogeneous (gradient difference of 10) conditions the) effect is better than that of CO₂ flooding (0.56%) and 0.4% GOBT-water flooding (20.99%); CO₂-GOBT synergistic oil displacement mechanism includes: 1) The formation of CO₂ foam increases the flow resistance of viscoelastic fluid, forcing the displacement fluid to flow 2) GOBTK can emulsify and disperse residual oil into small oil droplets, and smoothly pass through narrow pores to produce; 3) CO₂ dissolved in GOBTK synergistically enhances the water wettability of the core, and the use of viscosity Elastomeric fluid injection and stripping of residual oil; 4) CO₂-GOBTK synergy superimposes multiple mechanisms, effectively improving the swept volume and oil washing efficiency of the injected fluid to the reservoir.

Keywords: tight oil reservoir, CO₂ flooding, low interfacial tension viscoelastic fluid flooding, synergistic oil displacement, EOR mechanism

Procedia PDF Downloads 154
3256 Calcium Biochemical Indicators in a Group of Schoolchildren with Low Socioeconomic Status from Barranquilla, Colombia

Authors: Carmiña L. Vargas-Zapata, María A. Conde-Sarmiento, Maria Consuelo Maestre-Vargas

Abstract:

Calcium is an essential element for good growth and development of the organism, and its requirement is increased at school age. Low socio-economic populations of developing countries such as Colombia may have food deficiency of this mineral in schoolchildren that could be reflected in calcium biochemical indicators, bone alterations and anthropometric indicators. The objective of this investigation was to evaluate some calcium biochemical indicators in a group of schoolchildren of low socioeconomic level from Barranquilla city and to correlate with body mass index. 60 schoolchildren aged 7 to 15 years were selected from Jesus’s Heart Educational Institution in Barranquilla-Atlántico, apparently healthy, without suffering from infectious or gastrointestinal diseases, without habits of drinking alcohol or smoking another hallucinogenic substance and without taking supplementation with calcium in the last six months or another substance that compromises bone metabolism. The research was approved by the ethics committee at Universidad del Atlántico. The selected children were invited to donate a blood and urine sample in a fasting time of 12 hours, the serum was separated by centrifugation and frozen at ˗20 ℃ until analyzed and the same was done with the urine sample. On the day of the biological collections, the weight and height of the students were measured to determine the nutritional status by BMI using the WHO tables. Calcium concentrations in serum and urine (SCa, UCa), alkaline phosphatase activity total and of bone origin (SAPT, SBAP) and urinary creatinine (UCr) were determined by spectrophotometric methods using commercial kits. Osteocalcin and Cross-linked N-telopeptides of type I collagen (NTx-1) in serum were measured with an enzyme-linked inmunosorbent assay. For statistical analysis the Statgraphics software Centurium XVII was used. 63% (n = 38) and 37% (n = 22) of the participants were male and female, respectively. 78% (n = 47), 5% (n = 3) and 17% (n = 10) had a normal, malnutrition and high nutritional status, respectively. The averages of evaluated indicators levels were (mean ± SD): 9.50 ± 1.06 mg/dL for SCa; 181.3 ± 64.3 U/L for SAPT, 143.8 ± 73.9 U/L for SBAP; 9.0 ± 3.48 ng/mL for osteocalcin and 101.3 ± 12.8 ng/mL for NTx-1. UCa level was 12.8 ± 7.7 mg/dL that adjusted with creatinine ranged from 0.005 to 0.395 mg/mg. Considering serum calcium values, approximately 7% of school children were hypocalcemic, 16% hypercalcemic and 77% normocalcemic. The indicators evaluated did not correlate with the BMI. Low values ​​were observed in calcium urinary excretion and high in NTx-1, suggesting that mechanisms such as increase in renal retention of calcium and in bone remodeling may be contributing to calcium homeostasis.

Keywords: calcium, calcium biochemical, indicators, school children, low socioeconomic status

Procedia PDF Downloads 87
3255 Comparison of Microstructure, Mechanical Properties and Residual Stresses in Laser and Electron Beam Welded Ti–5Al–2.5Sn Titanium Alloy

Authors: M. N. Baig, F. N. Khan, M. Junaid

Abstract:

Titanium alloys are widely employed in aerospace, medical, chemical, and marine applications. These alloys offer many advantages such as low specific weight, high strength to weight ratio, excellent corrosion resistance, high melting point and good fatigue behavior. These attractive properties make titanium alloys very unique and therefore they require special attention in all areas of processing, especially welding. In this work, 1.6 mm thick sheets of Ti-5Al-2,5Sn, an alpha titanium (α-Ti) alloy, were welded using electron beam (EBW) and laser beam (LBW) welding processes to achieve a full penetration Bead-on Plate (BoP) configuration. The weldments were studied using polarized optical microscope, SEM, EDS and XRD. Microhardness distribution across the weld zone and smooth and notch tensile strengths of the weldments were also recorded. Residual stresses using Hole-drill Strain Measurement (HDSM) method and deformation patterns of the weldments were measured for the purpose of comparison of the two welding processes. Fusion zone widths of both EBW and LBW weldments were found to be approximately equivalent owing to fairly similar high power densities of both the processes. Relatively less oxide content and consequently high joint quality were achieved in EBW weldment as compared to LBW due to vacuum environment and absence of any shielding gas. However, an increase in heat-affected zone width and partial ά-martensitic transformation infusion zone of EBW weldment were observed because of lesser cooling rates associated with EBW as compared with LBW. The microstructure infusion zone of EBW weldment comprised both acicular α and ά martensite within the prior β grains whereas complete ά martensitic transformation was observed within the fusion zone of LBW weldment. Hardness of the fusion zone in EBW weldment was found to be lower than the fusion zone of LBW weldment due to the observed microstructural differences. Notch tensile specimen of LBW exhibited higher load capacity, ductility, and absorbed energy as compared with EBW specimen due to the presence of high strength ά martensitic phase. It was observed that the sheet deformation and deformation angle in EBW weldment were more than LBW weldment due to relatively more heat retention in EBW which led to more thermal strains and hence higher deformations and deformation angle. The lowest residual stresses were found in LBW weldments which were tensile in nature. This was owing to high power density and higher cooling rates associated with LBW process. EBW weldment exhibited highest compressive residual stresses due to which the service life of EBW weldment is expected to improve.

Keywords: Laser and electron beam welding, Microstructure and mechanical properties, Residual stress and distortions, Titanium alloys

Procedia PDF Downloads 197
3254 Study on Reusable, Non Adhesive Silicone Male External Catheter: Clinical Proof of Study and Quality Improvement Project

Authors: Venkata Buddharaju, Irene Mccarron, Hazel Alba

Abstract:

Introduction: Male external catheters (MECs) are commonly used to collect and drain urine. MECs are increasingly used in acute care, long-term acute care hospitals, and nursing facilities, and in other patients as an alternative to invasive urinary catheters to reduce catheter-associated urinary tract infections (CAUTI).MECs are also used to avoid the need for incontinence pads and diapers. Most of the Male External Catheters are held in place by skin adhesive, with the exception of a few, which uses a foam strap clamp around the penile shaft. The adhesive condom catheters typically stay for 24 hours or less. It is also a common practice that extra skin adhesive tape is wrapped around the condom catheter for additional security of the device. The fixed nature of the adhesive will not allow the normal skin expansion of penile size over time. The adhesive can cause skin irritation, redness, erosion, and skin damage. Acanthus condom catheter (ACC) is a patented, specially designed, stretchable silicone catheter without adhesive, adapts to the size and contour of the penis. It is held in place with a single elastic strap that wraps around the lower back and tied to the opposite catheter ring holescriss cross. It can be reused for up to 5 days on the same patient after daily cleaning and washingpotentially reducing cost. Methods: The study was conducted from September 17th to October 8th, 2020. The nursing staff was educated and trained on how to use and reuse the catheter. After identifying five (5) appropriate patients, the catheter was placed and maintained by nursing staff. The data on the ease of use, leak, and skin damage were collected and reported by nurses to the nursing education department of the hospital for analysis. Setting: RML Chicago, long-term acute care hospital, an affiliate of Loyola University Medical Center, Chicago, IL USA. Results: The data showed that the catheter was easy to apply, remove, wash and reuse, without skin problems or urine infections. One patient had used for 16 days after wash, reuse, and replacement without any urine leak or skin issues. A minimal leak was observed on two patients. Conclusion: Acanthus condom catheter was easy to use, functioned well with minimal or no leak during use and reuse. The skin was intact in all patients studied. There were no urinary tract infections in any of the studied patients.

Keywords: CAUTI, male external catheter, reusable, skin adhesive

Procedia PDF Downloads 85
3253 Partition of Nonylphenol between Different Compartment for Mother-Fetus Pairs and Health Effects of Newborns

Authors: Chun-Hao Lai, Yu-Fang Huang, Pei-Wei Wang, Meng-Han Lin, Mei-Lien Chen

Abstract:

Nonylphenol (NP) is a degradation product of nonylphenol ethoxylates (NPEOs). It is a well-known endocrine disruptor which may cause estrogenic effects. The growing fetus and infants are more vulnerable to exposure to NP than adults. It is important to know the levels and influences of prenatal exposure to NP. The aims of this study were (1) to determine the levels of prenatal exposure among Taiwanese, (2) to evaluate the potential risk for the infants who were breastfed and exposed to NP through the milk. (3) To investigate the correlation between birth outcomes and prenatal exposure to NP. We analyzed thirty one pairs of maternal urines, placentas, first month’ breast milk by high-performance liquid chromatography coupling with fluorescence detector. The questionnaire included socio- demographics, lifestyle, delivery method, dietary and work history. Information about the birth outcomes were obtained from medical records. The daily intake of NP from breast milk was calculated using deterministic and probabilistic risk assessment methods. The geometric means and geometric standard deviation of NP levels in placenta, and breast milk in the first month were 31.2 (1.8) ng/g, 17.2 (1.6) ng/g, respectively. The medium of daily intake NP in breast milk was 1.33 μg/kg-bw/day in the first month. We found negative association between NP levels of placenta and birth height. And we observed negative correlation between maternal urine NP levels and birth weight. In this study, we could provide the NP exposure profile among Taiwan pregnant women and the daily intake of NP in Taiwan infants. Prenatal exposure to higher levels of NP may increase the risk of lower birth weight and shorter birth height.

Keywords: nonylphenol, mother, fetus, placenta, breast milk, urine

Procedia PDF Downloads 215
3252 Investigation of Residual Stress Relief by in-situ Rolling Deposited Bead in Directed Laser Deposition

Authors: Ravi Raj, Louis Chiu, Deepak Marla, Aijun Huang

Abstract:

Hybridization of the directed laser deposition (DLD) process using an in-situ micro-roller to impart a vertical compressive load on the deposited bead at elevated temperatures can relieve tensile residual stresses incurred in the process. To investigate this stress relief mechanism and its relationship with the in-situ rolling parameters, a fully coupled dynamic thermo-mechanical model is presented in this study. A single bead deposition of Ti-6Al-4V alloy with an in-situ roller made of mild steel moving at a constant speed with a fixed nominal bead reduction is simulated using the explicit solver of the finite element software, Abaqus. The thermal model includes laser heating during the deposition process and the heat transfer between the roller and the deposited bead. The laser heating is modeled using a moving heat source with a Gaussian distribution, applied along the pre-formed bead’s surface using the VDFLUX Fortran subroutine. The bead’s cross-section is assumed to be semi-elliptical. The interfacial heat transfer between the roller and the bead is considered in the model. Besides, the roller is cooled internally using axial water flow, considered in the model using convective heat transfer. The mechanical model for the bead and substrate includes the effects of rolling along with the deposition process, and their elastoplastic material behavior is captured using the J2 plasticity theory. The model accounts for strain, strain rate, and temperature effects on the yield stress based on Johnson-Cook’s theory. Various aspects of this material behavior are captured in the FE software using the subroutines -VUMAT for elastoplastic behavior, VUHARD for yield stress, and VUEXPAN for thermal strain. The roller is assumed to be elastic and does not undergo any plastic deformation. Also, contact friction at the roller-bead interface is considered in the model. Based on the thermal results of the bead, the distance between the roller and the deposition nozzle (roller o set) can be determined to ensure rolling occurs around the beta-transus temperature for the Ti-6Al-4V alloy. It is identified that roller offset and the nominal bead height reduction are crucial parameters that influence the residual stresses in the hybrid process. The results obtained from a simulation at roller offset of 20 mm and nominal bead height reduction of 7% reveal that the tensile residual stresses decrease to about 52% due to in-situ rolling throughout the deposited bead. This model can be used to optimize the rolling parameters to minimize the residual stresses in the hybrid DLD process with in-situ micro-rolling.

Keywords: directed laser deposition, finite element analysis, hybrid in-situ rolling, thermo-mechanical model

Procedia PDF Downloads 88
3251 A Study on the Microbilogical Profile and Antibiotic Sensitivity Pattern of Bacterial Isolates Causing Urinary Tract Infection in Intensive Care Unit Patients in a Tertiary Care Hospital in Eastern India

Authors: Pampita Chakraborty, Sukumar Mukherjee

Abstract:

The study was done to determine the microbiological profile and changing pattern of the pathogens causing UTI in the ICU patients. All the patients admitted to the ICU with urinary catheter insertion for more than 48hours were included in the study. Urine samples were collected in a sterile container with aseptic precaution using disposable syringe and was processed as per standards. Antimicrobial susceptibility test was done by Disc Diffusion method as per CLSI guidelines. A total of 100 urine samples were collected from ICU patients, out of which 30% showed significant bacterial growth and 7% showed growth of candida spp. Prevalence of UTI was more in female (73%) than male (27.%). Gram-negative bacilli 26(86.67%) were more common in our study followed by gram-positive cocci 4(13.33%). The most common uropathogens isolated were Escherichia coli 14 (46.67%), followed by Klebsiella spp 7(23.33%), Staphylococcus aureus 4(13.33%), Acinetobacter spp 3(10%), Enterococcus faecalis 1(3.33%) and Pseudomonas aeruginosa 1(3.33%). Most of the Gram-negative bacilli were sensitive to amikacin (80%) and nitrofurantoin (80%), where as all gram-positive organisms were sensitive to Vancomycin. A large number ESBL producers were also observed in this study. The study finding showed that E.coli is the predominant pathogen and has increasing resistance pattern to the commonly used antibiotics. The study proposes that the adherence to antibiotic policy is the key ingredients for successful outcome in ICU patients and also emphasizes that repeated evaluation of microbial characteristics and continuous surveillance of resistant bacteria is required for selection of appropriate antibiotic therapy.

Keywords: antimicrobial sensitivity, intensive care unit, nosocomial infection, urinary tract infection

Procedia PDF Downloads 247
3250 Anti-Apoptotic Effect of Pueraria tuberosa in Rats with Streptozotocin Induced Diabetic Nephropathy

Authors: Rashmi Shukla, Yamini Bhusan Tripathi

Abstract:

Diabetic nephropathy (DN) is characterized as diabetic kidney disease which involves many pathways e.g. hyperactivated protein kinase c (PKC), polyol pathway, excess production of advanced glycation end product (AGEs) & free radical accumulation etc. All of them results to hypoxia followed by apoptosis of podocytes, glomerulosclerosis, extracellular matrix (ECM) accumulation and fibrosis resulting to irreversible changes in kidney. This is continuously rising worldwide and there are not enough specific drugs, to retard its progress. Due to increasing side effects of allopathic drugs, interest in herbal remedies is growing. Earlier, we have reported that PTY-2 (a phytomedicine, derived from Pueraria tuberosa Linn.) inhibits the accumulation of extracellular matrix (ECM) through activation of MMP-9. Present study exhibited the therapeutic potential of Pueraria tuberosa in the prevention of podocytes apoptosis and modulation of nephrin expression in streptozotocin (STZ) induced DN rats. DN rats were produced by maintaining persistent hyperglycemia for 8 weeks by intra-peritoneal injection of 55 mg/kg streptozotocin (STZ). These rats were randomly divided in 2 groups, i.e. DN control, and DN+ water extract of Pueraria tuberosa (PTW). One group of age-matched normal rats served as non-diabetic control (group-1), The STZ induced DN rats (group-2) and DN+PTW treated rats (group-3). The PTW was orally administered (0.3g/kg) daily to group-2 rats and drug vector (1 ml of 10% tween 20) in control rats. The treatments were continued for 20 days and blood and urine samples were collected. Rats were then sacrificed to investigate the expression Bcl2, Bax and nephroprotective protein i.e. nephrin in kidney glomerulus. The effect of PTW was evaluated, we have found that the PTW significantly(p < .001) reversed the raised serum urea, serum creatinine, urine protein and improved the creatinine clearance in STZ induce diabetic nephropathy in rats and also significantly(p < .001) prevented the rise in urine albumin excretion. The Western blot analysis of kidney tissue homogenate showed increased expression of Bcl2 in PTW treated rats. The RT-PCR showed the increased expression and accumulation of nephrin mRNA. The confocal photomicrographs also supported the reduction of Bax and a simultaneous increase in Bcl2 and nephrin in glomerular podocytes. Hence, our finding suggests that the nephroprotective role of PTW is mediated via restoration of nephrin thus prevents the podocytes apoptosis and ameliorates diabetic nephropathy. The clinical trial of PTW would prove to be a potential food supplement/ drug of alternative medicine for patients with diabetic nephropathy in early stage.

Keywords: Pueraria tuberosa, diabetic nephropathy, anti-apoptosis, nephrin

Procedia PDF Downloads 192
3249 Urine Neutrophil Gelatinase-Associated Lipocalin as an Early Marker of Acute Kidney Injury in Hematopoietic Stem Cell Transplantation Patients

Authors: Sara Ataei, Maryam Taghizadeh-Ghehi, Amir Sarayani, Asieh Ashouri, Amirhossein Moslehi, Molouk Hadjibabaie, Kheirollah Gholami

Abstract:

Background: Acute kidney injury (AKI) is common in hematopoietic stem cell transplantation (HSCT) patients with an incidence of 21–73%. Prevention and early diagnosis reduces the frequency and severity of this complication. Predictive biomarkers are of major importance to timely diagnosis. Neutrophil gelatinase associated lipocalin (NGAL) is a widely investigated novel biomarker for early diagnosis of AKI. However, no study assessed NGAL for AKI diagnosis in HSCT patients. Methods: We performed further analyses on gathered data from our recent trial to evaluate the performance of urine NGAL (uNGAL) as an indicator of AKI in 72 allogeneic HSCT patients. AKI diagnosis and severity were assessed using Risk–Injury–Failure–Loss–End-stage renal disease and AKI Network criteria. We assessed uNGAL on days -6, -3, +3, +9 and +15. Results: Time-dependent Cox regression analysis revealed a statistically significant relationship between uNGAL and AKI occurrence. (HR=1.04 (1.008-1.07), P=0.01). There was a relation between uNGAL day +9 to baseline ratio and incidence of AKI (unadjusted HR=.1.047(1.012-1.083), P<0.01). The area under the receiver-operating characteristic curve for day +9 to baseline ratio was 0.86 (0.74-0.99, P<0.01) and a cut-off value of 2.62 was 85% sensitive and 83% specific in predicting AKI. Conclusions: Our results indicated that increase in uNGAL augmented the risk of AKI and the changes of day +9 uNGAL concentrations from baseline could be of value for predicting AKI in HSCT patients. Additionally uNGAL changes preceded serum creatinine rises by nearly 2 days.

Keywords: acute kidney injury, hemtopoietic stem cell transplantation, neutrophil gelatinase-associated lipocalin, Receiver-operating characteristic curve

Procedia PDF Downloads 388
3248 Improved Network Construction Methods Based on Virtual Rails for Mobile Sensor Network

Authors: Noritaka Shigei, Kazuto Matsumoto, Yoshiki Nakashima, Hiromi Miyajima

Abstract:

Although Mobile Wireless Sensor Networks (MWSNs), which consist of mobile sensor nodes (MSNs), can cover a wide range of observation region by using a small number of sensor nodes, they need to construct a network to collect the sensing data on the base station by moving the MSNs. As an effective method, the network construction method based on Virtual Rails (VRs), which is referred to as VR method, has been proposed. In this paper, we propose two types of effective techniques for the VR method. They can prolong the operation time of the network, which is limited by the battery capabilities of MSNs and the energy consumption of MSNs. The first technique, an effective arrangement of VRs, almost equalizes the number of MSNs belonging to each VR. The second technique, an adaptive movement method of MSNs, takes into account the residual energy of battery. In the simulation, we demonstrate that each technique can improve the network lifetime and the combination of both techniques is the most effective.

Keywords: mobile sensor node, relay of sensing data, residual energy, virtual rail, wireless sensor network

Procedia PDF Downloads 310
3247 Durham Region: How to Achieve Zero Waste in a Municipal Setting

Authors: Mirka Januszkiewicz

Abstract:

The Regional Municipality of Durham is the upper level of a two-tier municipal and regional structure comprised of eight lower-tier municipalities. With a population of 655,000 in both urban and rural settings, the Region is approximately 2,537 square kilometers neighboring the City of Toronto, Ontario Canada to the east. The Region has been focused on diverting waste from disposal since the development of its Long Term Waste Management Strategy Plan for 2000-2020. With a 54 percent solid waste diversion rate, the focus now is on achieving 70 percent diversion on the path to zero waste using local waste management options whenever feasible. The Region has an Integrated Waste Management System that consists of a weekly curbside collection of recyclable printed paper and packaging and source separated organics; a seasonal collection of leaf and yard waste; a bi-weekly collection of residual garbage; and twice annual collection of intact, sealed household batteries. The Region also maintains three Waste Management Facilities for residential drop-off of household hazardous waste, polystyrene, construction and demolition debris and electronics. Special collection events are scheduled in the spring, summer and fall months for reusable items, household hazardous waste, and electronics. The Region is in the final commissioning stages of an energy from the waste facility for residual waste disposal that will recover energy from non-recyclable wastes. This facility is state of the art and is equipped for installation of carbon capture technology in the future. Despite all of these diversion programs and efforts, there is still room for improvement. Recent residential waste studies revealed that over 50% of the residual waste placed at the curb that is destined for incineration could be recycled. To move towards a zero waste community, the Region is looking to more advanced technologies for extracting the maximum recycling value from residential waste. Plans are underway to develop a pre-sort facility to remove organics and recyclables from the residual waste stream, including the growing multi-residential sector. Organics would then be treated anaerobically to generate biogas and fertilizer products for beneficial use within the Region. This project could increase the Region’s diversion rate beyond 70 percent and enhance the Region’s climate change mitigation goals. Zero waste is an ambitious goal in a changing regulatory and economic environment. Decision makers must be willing to consider new and emerging technologies and embrace change to succeed.

Keywords: municipal waste, residential, waste diversion, zero waste

Procedia PDF Downloads 203
3246 Effects of Different Types of Perioperative Analgesia on Minimal Residual Disease Development After Colon Cancer Surgery

Authors: Lubomir Vecera, Tomas Gabrhelik, Benjamin Tolmaci, Josef Srovnal, Emil Berta, Petr Prasil, Petr Stourac

Abstract:

Cancer is the second leading cause of death worldwide and colon cancer is the second most common type of cancer. Currently, there are only a few studies evaluating the effect of postoperative analgesia on the prognosis of patients undergoing radical colon cancer surgery. Postoperative analgesia in patients undergoing colon cancer surgery is usually managed in two ways, either with strong opioids (morphine, piritramide) or epidural analgesia. In our prospective study, we evaluated the effect of postoperative analgesia on the presence of circulating tumor cells or minimal residual disease after colon cancer surgery. A total of 60 patients who underwent radical colon cancer surgery were enrolled in this prospective, randomized, two-center study. Patients were randomized into three groups, namely piritramide, morphine and postoperative epidural analgesia. We evaluated the presence of carcinoembryonic antigen (CEA) and cytokeratin 20 (CK-20) mRNA positive circulating tumor cells in peripheral blood before surgery, immediately after surgery, on postoperative day two and one month after surgery. The presence of circulating tumor cells was assessed by quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR). In the priritramide postoperative analgesia group, the presence of CEA mRNA positive cells was significantly lower on a postoperative day two compared to the other groups (p=0.04). The value of CK-20 mRNA positive cells was the same in all groups on all days. In all groups, both types of circulating tumor cells returned to normal levels one month after surgery. Demographic and baseline clinical characteristics were similar in all groups. Compared with morphine and epidural analgesia, piritramide significantly reduces the amount of CEA mRNA positive circulating tumor cells after radical colon cancer surgery.

Keywords: cancer progression, colon cancer, minimal residual disease, perioperative analgesia.

Procedia PDF Downloads 160
3245 HPSEC Application as a New Indicator of Nitrification Occurrence in Water Distribution Systems

Authors: Sina Moradi, Sanly Liu, Christopher W. K. Chow, John Van Leeuwen, David Cook, Mary Drikas, Soha Habibi, Rose Amal

Abstract:

In recent years, chloramine has been widely used for both primary and secondary disinfection. However, a major concern with the use of chloramine as a secondary disinfectant is the decay of chloramine and nitrification occurrence. The management of chloramine decay and the prevention of nitrification are critical for water utilities managing chloraminated drinking water distribution systems. The detection and monitoring of nitrification episodes is usually carried out through measuring certain water quality parameters, which are commonly referred to as indicators of nitrification. The approach taken in this study was to collect water samples from different sites throughout a drinking water distribution systems, Tailem Bend – Keith (TBK) in South Australia, and analyse the samples by high performance size exclusion chromatography (HPSEC). We investigated potential association between the water qualities from HPSEC analysis with chloramine decay and/or nitrification occurrence. MATLAB 8.4 was used for data processing of HPSEC data and chloramine decay. An increase in the absorbance signal of HPSEC profiles at λ=230 nm between apparent molecular weights of 200 to 1000 Da was observed at sampling sites that experienced rapid chloramine decay and nitrification while its absorbance signal of HPSEC profiles at λ=254 nm decreased. An increase in absorbance at λ=230 nm and AMW < 500 Da was detected for Raukkan CT (R.C.T), a location that experienced nitrification and had significantly lower chloramine residual (<0.1 mg/L). This increase in absorbance was not detected in other sites that did not experience nitrification. Moreover, the UV absorbance at 254 nm of the HPSEC spectra was lower at R.C.T. than other sites. In this study, a chloramine residual index (C.R.I) was introduced as a new indicator of chloramine decay and nitrification occurrence, and is defined based on the ratio of area underneath the HPSEC spectra at two different wavelengths of 230 and 254 nm. The C.R.I index is able to indicate DS sites that experienced nitrification and rapid chloramine loss. This index could be useful for water treatment and distribution system managers to know if nitrification is occurring at a specific location in water distribution systems.

Keywords: nitrification, HPSEC, chloramine decay, chloramine residual index

Procedia PDF Downloads 274
3244 Aeromagnetic Data Interpretation and Source Body Evaluation Using Standard Euler Deconvolution Technique in Obudu Area, Southeastern Nigeria

Authors: Chidiebere C. Agoha, Chukwuebuka N. Onwubuariri, Collins U.amasike, Tochukwu I. Mgbeojedo, Joy O. Njoku, Lawson J. Osaki, Ifeyinwa J. Ofoh, Francis B. Akiang, Dominic N. Anuforo

Abstract:

In order to interpret the airborne magnetic data and evaluate the approximate location, depth, and geometry of the magnetic sources within Obudu area using the standard Euler deconvolution method, very high-resolution aeromagnetic data over the area was acquired, processed digitally and analyzed using Oasis Montaj 8.5 software. Data analysis and enhancement techniques, including reduction to the equator, horizontal derivative, first and second vertical derivatives, upward continuation and regional-residual separation, were carried out for the purpose of detailed data Interpretation. Standard Euler deconvolution for structural indices of 0, 1, 2, and 3 was also carried out and respective maps were obtained using the Euler deconvolution algorithm. Results show that the total magnetic intensity ranges from -122.9nT to 147.0nT, regional intensity varies between -106.9nT to 137.0nT, while residual intensity ranges between -51.5nT to 44.9nT clearly indicating the masking effect of deep-seated structures over surface and shallow subsurface magnetic materials. Results also indicated that the positive residual anomalies have an NE-SW orientation, which coincides with the trend of major geologic structures in the area. Euler deconvolution for all the considered structural indices has depth to magnetic sources ranging from the surface to more than 2000m. Interpretation of the various structural indices revealed the locations and depths of the source bodies and the existence of geologic models, including sills, dykes, pipes, and spherical structures. This area is characterized by intrusive and very shallow basement materials and represents an excellent prospect for solid mineral exploration and development.

Keywords: Euler deconvolution, horizontal derivative, Obudu, structural indices

Procedia PDF Downloads 50
3243 A Review on Future of Plant Based Medicine in Treatment of Urolithiatic Disorder

Authors: Gopal Lamichhane, Biswash Sapkota, Grinsun Sharma, Mahendra Adhikari

Abstract:

Urolithiasis is a condition in which insoluble or less soluble salts like oxalate, phosphate etc. precipitate in urinary tract and causes obstruction in ureter resulting renal colic or sometimes haematuria. It is the third most common disorder of urinary tract affecting nearly 2% of world’s population. Poor urinary drainage, microbial infection, oxalate and calcium containing diet, calciferol, hyperparathyroidism, cysteine in urine, gout, dysfunction of intestine, drought environment, lifestyle, exercise, stress etc. are risk factors for urolithiasis. Wide ranges of treatments are available in allopathic system of medicine but reoccurrence is unpreventable even with the surgical removal of stone or lithotripsy. So, people prefer alternative medicinal systems such as Unani, homeopathic, ayurvedic etc. systems of medicine due to their fewer side effects over allopathic counterpart. Different plants based ethnomedicines are being well established by their continuous effective use in human since long time in treatment of urinary problem. Many studies have scientifically proved those ethnomedicines for antiurolithiatic effect in animal and in vitro model. Plant-based remedies were found to be therapeutically effective for both prevention as well as cure of calcium oxalate urolithiasis. Plants were known to show these effects through a combination of many effects such as antioxidant, diuretic, hypocalciuric, urine alkalinizing effect in them. Berberine, triterpenoids, lupeol are the phytochemicals established for antiurolithiatic effect. Hence, plant-based medicine can be the effective herbal alternative as well as means of discovery of novel drug molecule for curing urolithiatic disorder and should be focused on further research to discover their value in coming future.

Keywords: urolithiasis, herbal medicine, ethnomedicine, kidney stone, calcium oxalate

Procedia PDF Downloads 251
3242 Finite Element Modelling and Optimization of Post-Machining Distortion for Large Aerospace Monolithic Components

Authors: Bin Shi, Mouhab Meshreki, Grégoire Bazin, Helmi Attia

Abstract:

Large monolithic components are widely used in the aerospace industry in order to reduce airplane weight. Milling is an important operation in manufacturing of the monolithic parts. More than 90% of the material could be removed in the milling operation to obtain the final shape. This results in low rigidity and post-machining distortion. The post-machining distortion is the deviation of the final shape from the original design after releasing the clamps. It is a major challenge in machining of the monolithic parts, which costs billions of economic losses every year. Three sources are directly related to the part distortion, including initial residual stresses (RS) generated from previous manufacturing processes, machining-induced RS and thermal load generated during machining. A finite element model was developed to simulate a milling process and predicate the post-machining distortion. In this study, a rolled-aluminum plate AA7175 with a thickness of 60 mm was used for the raw block. The initial residual stress distribution in the block was measured using a layer-removal method. A stress-mapping technique was developed to implement the initial stress distribution into the part. It is demonstrated that this technique significantly accelerates the simulation time. Machining-induced residual stresses on the machined surface were measured using MTS3000 hole-drilling strain-gauge system. The measured RS was applied on the machined surface of a plate to predict the distortion. The predicted distortion was compared with experimental results. It is found that the effect of the machining-induced residual stress on the distortion of a thick plate is very limited. The distortion can be ignored if the wall thickness is larger than a certain value. The RS generated from the thermal load during machining is another important factor causing part distortion. Very limited number of research on this topic was reported in literature. A coupled thermo-mechanical FE model was developed to evaluate the thermal effect on the plastic deformation of a plate. A moving heat source with a feed rate was used to simulate the dynamic cutting heat in a milling process. When the heat source passed the part surface, a small layer was removed to simulate the cutting operation. The results show that for different feed rates and plate thicknesses, the plastic deformation/distortion occurs only if the temperature exceeds a critical level. It was found that the initial residual stress has a major contribution to the part distortion. The machining-induced stress has limited influence on the distortion for thin-wall structure when the wall thickness is larger than a certain value. The thermal load can also generate part distortion when the cutting temperature is above a critical level. The developed numerical model was employed to predict the distortion of a frame part with complex structures. The predictions were compared with the experimental measurements, showing both are in good agreement. Through optimization of the position of the part inside the raw plate using the developed numerical models, the part distortion can be significantly reduced by 50%.

Keywords: modelling, monolithic parts, optimization, post-machining distortion, residual stresses

Procedia PDF Downloads 30
3241 Deproteination and Demineralization of Shrimp Waste Using Lactic Acid Bacteria for the Production of Crude Chitin and Chitosan

Authors: Farramae Francisco, Rhoda Mae Simora, Sharon Nunal

Abstract:

Deproteination and demineralization efficiencies of shrimp waste using two Lactobacillus species treated with different carbohydrate sources for chitin production, its chemical conversion to chitosan and the quality of chitin and chitosan produced were determined. Using 5% glucose and 5% cassava starch as carbohydrate sources, pH slightly increased from the initial pH of 6.0 to 6.8 and 7.2, respectively after 24 h and maintained their pH at 6.7 to 7.3 throughout the treatment period. Demineralization (%) in 5 % glucose and 5 % cassava was highest during the first day of treatment which was 82% and 83%, respectively. Deproteination (%) was highest in 5% cassava starch on the 3rd day of treatment at 84.4%. The obtained chitin from 5% cassava and 5% glucose had a residual ash and protein below 1% and solubility of 59% and 44.3%, respectively. Chitosan produced from 5% cassava and 5% glucose had protein content below 0.05%; residual ash was 1.1% and 0.8%, respectively. Chitosan solubility and degree of deacetylation were 56% and 33% in 5% glucose and 48% and 29% in 5% cassava, respectively. The advantage this alternative technology offers over that of chemical extraction is large reduction in chemicals needed thus less effluent production and generation of a protein-rich liquor, although the demineralization process should be improved to achieve greater degree of deacetylation.

Keywords: alternative carbon source, bioprocessing, lactic acid bacteria, waste utilization

Procedia PDF Downloads 461
3240 Nephroprotective Effect of Asparagus falcatus Leaf Extract on Adriamycin Induced Nephrotoxicity in Wistar Rats: A Dose Response Study

Authors: A. M. S. S. Amarasiri, A. P. Attanayake, K. A. P. W. Jayatilaka, L. K. B. Mudduwa

Abstract:

Adriamycin (ADR) is an effective anthracyclin antitumor drug, but its clinical use is limited due to renal toxicity. The leaves of Asparagus falcatus (Family: Liliaceae) have been used in the management of renal diseases since antiquity. In the present investigation, the aqueous leaf extract of A. falcatus was evaluated for acute nephroprotective activity in ADR induced nephrotoxic rats. Nephrotoxicity was induced in healthy male Wistar rats by intraperitoneal administration of ADR 20 mg/kg. The lyophilized powder of the aqueous refluxed (4h) leaf extract of A. falcatus was administered orally at three selected doses; 200, 400 and 600 mg/kg for three consecutive days. Fosinopril sodium (0.09 mg/kg) was used as the standard drug. Administration of the plant extract and the standard drug was commenced 24 hours after the induction of nephrotoxicity to rats. The nephroprotective effect was determined by selected biochemical parameters and by the assessment of histopathology on H and E stained kidney sections. The results were compared to a group of control rats with ADR induced nephrotoxicity. A group of rats administered with the equivalent volume of normal saline served as the healthy control. Administration of ADR 20 mg/kg produced a significant increase in the concentrations of serum creatinine (61%) and urine protein (73%) followed by a significant decrease in serum total protein (21%) and albumin (44%) of the plant extract treated animals compared to the healthy control group (p < 0.05). The aqueous extract of Asparagus falcatus at the three doses; 200, 400 and 600 mg/kg and the standard drug were found to decrease the elevation of concentrations of serum creatinine (33%, 51%, 54% and 42%) and urine protein (8%, 63%, 80% and 86%) respectively. The serum concentrations of total protein (12%, 17%, 29% and 12%) and albumin (3%, 17%, 17% and 16%) were significantly increased compared to the nephrotoxic control group respectively. Assessment of histopathology on H and E stained kidney sections demonstrated that ADR induced renal injury, as evidenced by loss of brush border, cytoplasmic vacuolization, pyknosis in renal tubular epithelial cells, haemorrhages, glomerular congestion and presence of hyaline casts. Treatment with the plant extract and the standard drug resulted in attenuation of the morphological destruction in rats. The results of the present study revealed that the aqueous leaf extract of A. falcatus possesses significant nephroprotective activity against adriamycin induced acute nephrotoxicity. The improved kidney functions were supported with the results of selected biochemical parameters and histological changes observed on H and E stained sections of the kidney tissues in Wistar rats.

Keywords: adriamycin induced nephrotoxicity, asparagus falcatus, biochemical assessment, histopathological assessment, nephroprotective activity

Procedia PDF Downloads 142