Search results for: microbial detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4387

Search results for: microbial detection

4177 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning

Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V

Abstract:

The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.

Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network

Procedia PDF Downloads 142
4176 Hand Detection and Recognition for Malay Sign Language

Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Norhafilah Bara

Abstract:

Developing a software application using an interface with computers and peripheral devices using gestures of human body such as hand movements keeps growing in interest. A review on this hand gesture detection and recognition based on computer vision technique remains a very challenging task. This is to provide more natural, innovative and sophisticated way of non-verbal communication, such as sign language, in human computer interaction. Nevertheless, this paper explores hand detection and hand gesture recognition applying a vision based approach. The hand detection and recognition used skin color spaces such as HSV and YCrCb are applied. However, there are limitations that are needed to be considered. Almost all of skin color space models are sensitive to quickly changing or mixed lighting circumstances. There are certain restrictions in order for the hand recognition to give better results such as the distance of user’s hand to the webcam and the posture and size of the hand.

Keywords: hand detection, hand gesture, hand recognition, sign language

Procedia PDF Downloads 307
4175 Evaluating Gallein Dye as a Beryllium Indicator

Authors: Elise M. Shauf

Abstract:

Beryllium can be found naturally in some fruits and vegetables (carrots, garden peas, kidney beans, pears) at very low concentrations, but is typically not clinically significant due to the low-level exposure and limited absorption of beryllium by the stomach and intestines. However, acute or chronic beryllium exposure can result in harmful toxic and carcinogenic biological effects. Beryllium can be both a workplace hazard and an environmental pollutant, therefore determining the presence of beryllium at trace levels can be essential to protect workers as well as the environment. Analysis of gallein, C₂₀H₁₂O₇, to determine if it is usable as a fluorescent dye for beryllium detection. The primary detection method currently in use includes hydroxybenzoquinoline sulfonates (HBQS), for which alternative indicators are desired. Unfortunately, gallein does not have the desired aspects needed as a dye for beryllium detection due to the peak shift properties.

Keywords: beryllium detection, fluorescent, gallein dye, indicator, spectroscopy

Procedia PDF Downloads 142
4174 A Comprehensive Method of Fault Detection and Isolation based on Testability Modeling Data

Authors: Junyou Shi, Weiwei Cui

Abstract:

Testability modeling is a commonly used method in testability design and analysis of system. A dependency matrix will be obtained from testability modeling, and we will give a quantitative evaluation about fault detection and isolation. Based on the dependency matrix, we can obtain the diagnosis tree. The tree provides the procedures of the fault detection and isolation. But the dependency matrix usually includes built-in test (BIT) and manual test in fact. BIT runs the test automatically and is not limited by the procedures. The method above cannot give a more efficient diagnosis and use the advantages of the BIT. A Comprehensive method of fault detection and isolation is proposed. This method combines the advantages of the BIT and Manual test by splitting the matrix. The result of the case study shows that the method is effective.

Keywords: fault detection, fault isolation, testability modeling, BIT

Procedia PDF Downloads 335
4173 In Vitro Assessment of Anti-microbial Properties of Murraya Koenigii Extract

Authors: Kinza Khan, Dad Muhmmad, Asif Saleem, Nadia Mukhtar, Tahir Yaqub

Abstract:

Ethomedicines are more commonly used in underdeveloped and developing countries. These medicines are sometimes more potent in controlling microbial infections than conventional medicines. Medicinal plants have been common practice to cure many diseases for centuries. Murraya koenigii is one of these plants and is commonly used in South Asian countries as a flavoring agent in food. To evaluate its anti-microbial activity, six different bacterial strains (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhi, Bacillus cereus and Klebsiella pneumonia were used. N-hexane extract of Murraya koenigii leaves shows maximum activity against Bacillus cereus. Acetone extract of Murraya koenigii shoots showed more efficient activity against Pseudomonas aeruginosa Dichloromethane extracts showed maximum activity against Bacillus cereus. Ethanol extract exhibited maximum activity against Pseudomonas aeruginosa and Klebsiella pneumoniae. The methanol extract of Murraya koenigii shoots displayed maximum antibacterial activity against Bacillus cereus. Antifungal activity Ethanol extract was more effective against Candida albicans.

Keywords: ethnomedicines, bacteria, fungi, murraya koenigii, antimicrobial activity

Procedia PDF Downloads 93
4172 Isothermal Solid-Phase Amplification System for Detection of Yersinia pestis

Authors: Olena Mayboroda, Angel Gonzalez Benito, Jonathan Sabate Del Rio, Marketa Svobodova, Sandra Julich, Herbert Tomaso, Ciara K. O'Sullivan, Ioanis Katakis

Abstract:

DNA amplification is required for most molecular diagnostic applications but conventional PCR has disadvantages for field testing. Isothermal amplification techniques are being developed to respond to this problem. One of them is the Recombinase Polymerase Amplification (RPA) that operates at isothermal conditions without sacrificing specificity and sensitivity in easy-to-use formats. In this work RPA was used for the optical detection of solid-phase amplification of the potential biowarfare agent Yersinia pestis. Thiolated forward primers were immobilized on the surface of maleimide-activated microtitre plates for the quantitative detection of synthetic and genomic DNA, with elongation occurring only in the presence of the specific template DNA and solution phase reverse primers. Quantitative detection was achieved via the use of biotinylated reverse primers and post-amplification addition of streptavidin-HRP conjugate. The overall time of amplification and detection was less than 1 hour at a constant temperature of 37oC. Single-stranded and double-stranded DNA sequences were detected achieving detection limits of 4.04*10-13 M and 3.14*10-16 M, respectively. The system demonstrated high specificity with negligible responses to non-specific targets.

Keywords: recombinase polymerase amplification, Yersinia pestis, solid-phase detection, ELONA

Procedia PDF Downloads 303
4171 Error Probability of Multi-User Detection Techniques

Authors: Komal Babbar

Abstract:

Multiuser Detection is the intelligent estimation/demodulation of transmitted bits in the presence of Multiple Access Interference. The authors have presented the Bit-error rate (BER) achieved by linear multi-user detectors: Matched filter (which treats the MAI as AWGN), Decorrelating and MMSE. In this work, authors investigate the bit error probability analysis for Matched filter, decorrelating, and MMSE. This problem arises in several practical CDMA applications where the receiver may not have full knowledge of the number of active users and their signature sequences. In particular, the behavior of MAI at the output of the Multi-user detectors (MUD) is examined under various asymptotic conditions including large signal to noise ratio; large near-far ratios; and a large number of users. In the last section Authors also shows Matlab Simulation results for Multiuser detection techniques i.e., Matched filter, Decorrelating, MMSE for 2 users and 10 users.

Keywords: code division multiple access, decorrelating, matched filter, minimum mean square detection (MMSE) detection, multiple access interference (MAI), multiuser detection (MUD)

Procedia PDF Downloads 528
4170 Saliency Detection Using a Background Probability Model

Authors: Junling Li, Fang Meng, Yichun Zhang

Abstract:

Image saliency detection has been long studied, while several challenging problems are still unsolved, such as detecting saliency inaccurately in complex scenes or suppressing salient objects in the image borders. In this paper, we propose a new saliency detection algorithm in order to solving these problems. We represent the image as a graph with superixels as nodes. By considering appearance similarity between the boundary and the background, the proposed method chooses non-saliency boundary nodes as background priors to construct the background probability model. The probability that each node belongs to the model is computed, which measures its similarity with backgrounds. Thus we can calculate saliency by the transformed probability as a metric. We compare our algorithm with ten-state-of-the-art salient detection methods on the public database. Experimental results show that our simple and effective approach can attack those challenging problems that had been baffling in image saliency detection.

Keywords: visual saliency, background probability, boundary knowledge, background priors

Procedia PDF Downloads 429
4169 An Efficient Fundamental Matrix Estimation for Moving Object Detection

Authors: Yeongyu Choi, Ju H. Park, S. M. Lee, Ho-Youl Jung

Abstract:

In this paper, an improved method for estimating fundamental matrix is proposed. The method is applied effectively to monocular camera based moving object detection. The method consists of corner points detection, moving object’s motion estimation and fundamental matrix calculation. The corner points are obtained by using Harris corner detector, motions of moving objects is calculated from pyramidal Lucas-Kanade optical flow algorithm. Through epipolar geometry analysis using RANSAC, the fundamental matrix is calculated. In this method, we have improved the performances of moving object detection by using two threshold values that determine inlier or outlier. Through the simulations, we compare the performances with varying the two threshold values.

Keywords: corner detection, optical flow, epipolar geometry, RANSAC

Procedia PDF Downloads 409
4168 Long Distance Aspirating Smoke Detection for Large Radioactive Areas

Authors: Michael Dole, Pierre Ninin, Denis Raffourt

Abstract:

Most of the CERN’s facilities hosting particle accelerators are large, underground and radioactive areas. All fire detection systems installed in such areas, shall be carefully studied to cope with the particularities of this stringent environment. The detection equipment usually chosen by CERN to secure these underground facilities are based on air sampling technology. The electronic equipment is located in non-radioactive areas whereas air sampling networks are deployed in radioactive areas where fire detection is required. The air sampling technology provides very good detection performances and prevent the "radiation-to-electronic" effects. In addition, it reduces the exposure to radiations of maintenance workers and is permanently available during accelerator operation. In order to protect the Super Proton Synchrotron and its 7 km tunnels, a specific long distance aspirating smoke detector has been developed to detect smoke at up to 700 meters between electronic equipment and the last air sampling hole. This paper describes the architecture, performances and return of experience of the long distance fire detection system developed and installed to secure the CERN Super Proton Synchrotron tunnels.

Keywords: air sampling, fire detection, long distance, radioactive areas

Procedia PDF Downloads 162
4167 Challenges in Video Based Object Detection in Maritime Scenario Using Computer Vision

Authors: Dilip K. Prasad, C. Krishna Prasath, Deepu Rajan, Lily Rachmawati, Eshan Rajabally, Chai Quek

Abstract:

This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challenging in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here.

Keywords: autonomous maritime vehicle, object detection, situation awareness, tracking

Procedia PDF Downloads 458
4166 Expression Regulation of Membrane Protein by Codon Variation of Amino Acid at N-Terminal Region

Authors: Ahreum Choi, Otgontuya Tsogbadrakh, Kwang-Hwan Jung

Abstract:

Microbial rhodopsins are well-known seven-transmembrane proteins that have been extensively studied. These retinal-binding proteins have divided into two types. The type I is microbial rhodopsin, and type II (visual pigment) is expressed mostly in mammalian eyes. For type I rhodopsin, there are two main functions that are ion pumping activity and sensory transduction. Anabaena sensory rhodopsin (ASR) is one of the microbial rhodopsin with main function as photo-sensory transduction. Although ASR is expressed fairly well in Escherichia coli, the expression level is relatively less compare to Proteorhodopsin. In this study, full length of ASR was used to test for the expression influence by codon usage in E. coli. Eight amino acids of codon at N-terminal part of ASR were changed randomly with designed primers, which allow 8,192 nucleotide different cases. The codon changes were screened for the preferable codons of each residue, which have given higher expression yield. Among those 57 selected mutations, there are 24 color-enhanced E. coli colonies that contain ASR proteins, and it showed better expression level than the wild type ASR codon usage. This strongly suggests that high codon usage of only partial N-terminal of protein can increase the expression level of whole protein.

Keywords: 7-transmembrane, all-trans retinal, rhodopsin, codon-usage, protein expression

Procedia PDF Downloads 180
4165 Use of Soil Microorganisms for the Production of Electricity through Microbial Fuel Cells

Authors: Abhipsa Mohanty, Harit Jha

Abstract:

The world's energy demands are continuing to rise, resulting in a worldwide energy crisis and environmental pollution. Because of finite, declining supply and environmental damage, reliance on fossil fuels is unsustainable. As a result, experts are concentrating on alternative, renewable, and carbon-free energy sources. Energy sources that are both environmentally and economically sustainable are required. Microbial fuel cells (MFCs) have recently received a lot of attention due to their low operating temperatures and ability to use a variety of biodegradable substrates as fuel. There are single-chamber MFCs as well as traditional MFCs with anode and cathode compartments. Bioelectricity is produced when microorganisms actively catabolize substrate. MFCs can be used as a power source in small devices like biosensors. Understanding of its components, microbiological processes, limiting variables, and construction designs in MFC systems must be simplified, and large-scale systems must be developed for them to be cost-effective as well as increase electricity production. The purpose of this research was to review current microbiology knowledge in the field of electricity. The manufacturing process, the materials, and procedures utilized to construct the technology, as well as the applications of MFC technology, are all covered.

Keywords: bio-electricity, exoelectrogenic bacteria, microbial fuel cells, soil microorganisms

Procedia PDF Downloads 93
4164 Effect of Sodium Alginate-based Edible Coating with Natural Essential Oils and Modified Atmosphere Packaging on Quality of Fresh-cut Pineapple

Authors: Muhammad Rafi Ullah Khan, Yaodong Guo, Vanee Chonhenchob, Jinjin Pei, Chongxing Huang

Abstract:

The effect of sodium alginate (1%) based edible coating incorporated natural essential oils; thymol, carvone and carvacrol as antimicrobial agents at different concentrations (0.1, 0.5 and 1.0 %) on the quality changes of fresh-cut pineapple were investigated. Pineapple dipped in distilled water was served as control. After coating, fruit were sealed in a modified atmosphere package (MAP) using high permeable film; and stored at 5 °C. Gas composition in package headspace, color values (L*, a*, b*, C*), TSS, pH, ethanol, browning, and microbial decay were monitored during storage. Oxygen concentration continuously decreased while carbon dioxide concentration inside all packages continuously increased over time. Color parameters (L*, b*, c*) decreased and a* values increased during storage. All essential oils significantly (p ≤ 0.05) prevented microbial growth than control. A significantly higher (p ≤ 0.05) ethanol content was found in the control than in all other treatments. Visible microbial growth, high ethanol, and low color values limited the shelf life to 6 days in control as compared to 9 days in all other treatments. Among all essential oils, thymol at all concentrations maintained the overall quality of the pineapple and could potentially be used commercially in fresh fruit industries for longer storage.

Keywords: essential oils, antibrowning agents, antimicrobial agents, modified atmosphere packaging, microbial decay, pineapple

Procedia PDF Downloads 59
4163 Assessment of Image Databases Used for Human Skin Detection Methods

Authors: Saleh Alshehri

Abstract:

Human skin detection is a vital step in many applications. Some of the applications are critical especially those related to security. This leverages the importance of a high-performance detection algorithm. To validate the accuracy of the algorithm, image databases are usually used. However, the suitability of these image databases is still questionable. It is suggested that the suitability can be measured mainly by the span the database covers of the color space. This research investigates the validity of three famous image databases.

Keywords: image databases, image processing, pattern recognition, neural networks

Procedia PDF Downloads 271
4162 Preparation and Characterization of Nanostructured FeN Electrocatalyst for Air Cathode Microbial Fuel Cell (MFC)

Authors: Md. Maksudur Rahman Khan, Chee Wai Woon, Huei Ruey Ong, Vignes Rasiah, Chin Kui Cheng, Kar Min Chan, E. Baranitharan

Abstract:

The present work represents a preparation of non-precious iron-based electrocatalyst (FeN) for ORR in air-cathode microbial fuel cell by pyrolysis treatment. Iron oxalate which recovered from the industrial wastewater and Phenanthroline (Phen) were used as the iron and nitrogen precursors, respectively in preparing FeN catalyst. The performance of as prepared catalyst (FeN) was investigated in a single chambered air cathode MFC in which anaerobic sludge was used as inoculum and palm oil mill effluent as substrate. The maximum open circuit potential (OCV) and the highest power density recorded were 0.543 V and 4.9 mW/m2, respectively. Physical characterization of FeN was elucidated by using Brunauner Emmett Teller (BET), X-Ray Diffraction (XRD) analysis and Field Emission Scanning Electron Microscopy (FESEM) while the electrochemical properties were characterized by cyclic voltammetry (CV) analysis. The presence of biofilm on anode surface was examined using FESEM and confirmed using Infrared Spectroscopy and Thermogravimetric Analysis. The findings of this study demonstrated that FeN is electrochemically active and further modification is needed to increase the ORR catalytic activity.

Keywords: iron based catalyst, microbial fuel cells, oxygen reduction reaction, palm oil mill effluent

Procedia PDF Downloads 334
4161 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data

Authors: Murat Yazici

Abstract:

Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.

Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data

Procedia PDF Downloads 54
4160 A Research and Application of Feature Selection Based on IWO and Tabu Search

Authors: Laicheng Cao, Xiangqian Su, Youxiao Wu

Abstract:

Feature selection is one of the important problems in network security, pattern recognition, data mining and other fields. In order to remove redundant features, effectively improve the detection speed of intrusion detection system, proposes a new feature selection method, which is based on the invasive weed optimization (IWO) algorithm and tabu search algorithm(TS). Use IWO as a global search, tabu search algorithm for local search, to improve the results of IWO algorithm. The experimental results show that the feature selection method can effectively remove the redundant features of network data information in feature selection, reduction time, and to guarantee accurate detection rate, effectively improve the speed of detection system.

Keywords: intrusion detection, feature selection, iwo, tabu search

Procedia PDF Downloads 530
4159 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection

Authors: Alireza Mirrashid, Mohammad Khoshbin, Ali Atghaei, Hassan Shahbazi

Abstract:

In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.

Keywords: attention, fire detection, smoke detection, spatio-temporal

Procedia PDF Downloads 203
4158 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image

Authors: Abe D. Desta

Abstract:

This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.

Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking

Procedia PDF Downloads 126
4157 Attack Redirection and Detection using Honeypots

Authors: Chowduru Ramachandra Sharma, Shatunjay Rawat

Abstract:

A false positive state is when the IDS/IPS identifies an activity as an attack, but the activity is acceptable behavior in the system. False positives in a Network Intrusion Detection System ( NIDS ) is an issue because they desensitize the administrator. It wastes computational power and valuable resources when rules are not tuned properly, which is the main issue with anomaly NIDS. Furthermore, most false positives reduction techniques are not performed during the real-time of attempted intrusions; instead, they have applied afterward on collected traffic data and generate alerts. Of course, false positives detection in ‘offline mode’ is tremendously valuable. Nevertheless, there is room for improvement here; automated techniques still need to reduce False Positives in real-time. This paper uses the Snort signature detection model to redirect the alerted attacks to Honeypots and verify attacks.

Keywords: honeypot, TPOT, snort, NIDS, honeybird, iptables, netfilter, redirection, attack detection, docker, snare, tanner

Procedia PDF Downloads 156
4156 High-Throughput Mechanized Microfluidic Test Groundwork for Precise Microbial Genomics

Authors: Pouya Karimi, Ramin Gasemi Shayan, Parsa Sheykhzade

Abstract:

Ease shotgun DNA sequencing is changing the microbial sciences. Sequencing instruments are compelling to the point that example planning is currently the key constraining element. Here, we present a microfluidic test readiness stage that incorporates the key strides in cells to grouping library test groundwork for up to 96 examples and decreases DNA input prerequisites 100-overlay while keeping up or improving information quality. The universally useful microarchitecture we show bolsters work processes with subjective quantities of response and tidy up or catch steps. By decreasing the example amount necessities, we empowered low-input (∼10,000 cells) entire genome shotgun (WGS) sequencing of Mycobacterium tuberculosis and soil miniaturized scale settlements with prevalent outcomes. We additionally utilized the upgraded throughput to succession ∼400 clinical Pseudomonas aeruginosa libraries and exhibit magnificent single-nucleotide polymorphism discovery execution that clarified phenotypically watched anti-toxin opposition. Completely coordinated lab-on-chip test arrangement beats specialized boundaries to empower more extensive organization of genomics across numerous fundamental research and translational applications.

Keywords: clinical microbiology, DNA, microbiology, microbial genomics

Procedia PDF Downloads 122
4155 Preliminary Results on a Maximum Mean Discrepancy Approach for Seizure Detection

Authors: Boumediene Hamzi, Turky N. AlOtaiby, Saleh AlShebeili, Arwa AlAnqary

Abstract:

We introduce a data-driven method for seizure detection drawing on recent progress in Machine Learning. The method is based on embedding probability measures in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where the Maximum Mean Discrepancy (MMD) is computed. The MMD is metric between probability measures that are computed as the difference between the means of probability measures after being embedded in an RKHS. Working in RKHS provides a convenient, general functional-analytical framework for theoretical understanding of data. We apply this approach to the problem of seizure detection.

Keywords: kernel methods, maximum mean discrepancy, seizure detection, machine learning

Procedia PDF Downloads 238
4154 Effects of Drought on Microbial Activity in Rhizosphere, Soil Hydrophobicity and Leaching of Mineral Nitrogen from Arable Soil Depending on Method of Fertilization

Authors: Jakub Elbl, Lukáš Plošek, Antonín Kintl, Jaroslav Hynšt, Soňa Javoreková, Jaroslav Záhora, Libor Kalhotka, Olga Urbánková, Ivana Charousová

Abstract:

This work presents the first results from the long-term laboratory experiment dealing with impact of drought on soil properties. Three groups of the treatment (A, B and C) with different regime of irrigation were prepared. The soil water content was maintained at 70 % of soil water holding capacity in group A, at 40 % in group B. In group C, soil water regime was maintained in the range of wilting point. Each group of the experiment was divided into three variants (A1 = B1, C1; A2 = B2, C2 etc.) with three repetitions: Variants A1 (B1, C1) were controls without addition of another fertilizer. Variants A2 (B2, C2) were fertilized with mineral nitrogen fertilizer DAM 390 (0.140 Mg of N per ha) and variants A3 (B3, C3) contained 45 g of Cp per a pot. The significant differences (ANOVA, P<0.05) in the leaching of mineral nitrogen and values of saturated hydraulic conductivity (Ksat) were found. The highest values of Ksat were found in variants (within each group) with addition of compost (A3, B3, C3). Conversely, the lowest values of Ksat were found in variants with addition of mineral nitrogen. Low values of Ksat indicate an increased level of hydrophobicity in individual groups of the experiment. Moreover, all variants with compost addition showed lower amount of mineral nitrogen leaching and high level of microbial activity than variants without. This decrease of mineral nitrogen leaching was about 200 % in comparison with the control variant and about 300 % with variant, where mineral nitrogen was added. Based on these results, we can conclude that changes of soil water content directly have impact on microbial activity, soil hydrophobicity and loss of mineral nitrogen from the soil.

Keywords: drought, microbial activity, mineral nitrogen, soil hydrophobicity

Procedia PDF Downloads 383
4153 Strabismus Detection Using Eye Alignment Stability

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. Currently, many children with strabismus remain undiagnosed until school entry because current automated screening methods have limited success in the preschool age range. A method for strabismus detection using eye alignment stability (EAS) is proposed. This method starts with face detection, followed by facial landmark detection, eye region segmentation, eye gaze extraction, and eye alignment stability estimation. Binarization and morphological operations are performed for segmenting the pupil region from the eye. After finding the EAS, its absolute value is used to differentiate the strabismic eye from the non-strabismic eye. If the value of the eye alignment stability is greater than a particular threshold, then the eyes are misaligned, and if its value is less than the threshold, the eyes are aligned. The method was tested on 175 strabismic and non-strabismic images obtained from Kaggle and Google Photos. The strabismic eye is taken as a positive class, and the non-strabismic eye is taken as a negative class. The test produced a true positive rate of 100% and a false positive rate of 7.69%.

Keywords: strabismus, face detection, facial landmarks, eye segmentation, eye gaze, binarization

Procedia PDF Downloads 77
4152 Outdoor Anomaly Detection with a Spectroscopic Line Detector

Authors: O. J. G. Somsen

Abstract:

One of the tasks of optical surveillance is to detect anomalies in large amounts of image data. However, if the size of the anomaly is very small, limited information is available to distinguish it from the surrounding environment. Spectral detection provides a useful source of additional information and may help to detect anomalies with a size of a few pixels or less. Unfortunately, spectral cameras are expensive because of the difficulty of separating two spatial in addition to one spectral dimension. We investigate the possibility of modifying a simpler spectral line detector for outdoor detection. This may be especially useful if the area of interest forms a line, such as the horizon. We use a monochrome CCD that also enables detection into the near infrared. A simple camera is attached to the setup to determine which part of the environment is spectrally imaged. Our preliminary results indicate that sensitive detection of very small targets is indeed possible. Spectra could be taken from the various targets by averaging columns in the line image. By imaging a set of lines of various width we found narrow lines that could not be seen in the color image but remained visible in the spectral line image. A simultaneous analysis of the entire spectra can produce better results than visual inspection of the line spectral image. We are presently developing calibration targets for spatial and spectral focusing and alignment with the spatial camera. This will present improved results and more use in outdoor application

Keywords: anomaly detection, spectroscopic line imaging, image analysis, outdoor detection

Procedia PDF Downloads 481
4151 Bayesian Prospective Detection of Small Area Health Anomalies Using Kullback Leibler Divergence

Authors: Chawarat Rotejanaprasert, Andrew Lawson

Abstract:

Early detection of unusual health events depends on the ability to detect rapidly any substantial changes in disease, thus facilitating timely public health interventions. To assist public health practitioners to make decisions, statistical methods are adopted to assess unusual events in real time. We introduce a surveillance Kullback-Leibler (SKL) measure for timely detection of disease outbreaks for small area health data. The detection methods are compared with the surveillance conditional predictive ordinate (SCPO) within the framework of Bayesian hierarchical Poisson modeling and applied to a case study of a group of respiratory system diseases observed weekly in South Carolina counties. Properties of the proposed surveillance techniques including timeliness and detection precision are investigated using a simulation study.

Keywords: Bayesian, spatial, temporal, surveillance, prospective

Procedia PDF Downloads 311
4150 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery

Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi

Abstract:

One of the most important tasks in urban area remote sensing is detection of impervious surface (IS), such as building roof and roads. However, detection of IS in heterogeneous areas still remains as one of the most challenging works. In this study, detection of concrete roof using an object-oriented approach was proposed. A new rule-based classification was developed to detect concrete roof tile. The proposed rule-based classification was applied to WorldView-2 image. Results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images with 85% accuracy.

Keywords: object-based, roof material, concrete tile, WorldView-2

Procedia PDF Downloads 424
4149 Mitigating Ruminal Methanogenesis Through Genomic and Transcriptomic Approaches

Authors: Muhammad Adeel Arshad, Faiz-Ul Hassan, Yanfen Cheng

Abstract:

According to FAO, enteric methane (CH4) production is about 44% of all greenhouse gas emissions from the livestock sector. Ruminants produce CH4 as a result of fermentation of feed in the rumen especially from roughages which yield more CH4 per unit of biomass ingested as compared to concentrates. Efficient ruminal fermentation is not possible without abating CO2 and CH4. Methane abatement strategies are required to curb the predicted rise in emissions associated with greater ruminant production in future to meet ever increasing animal protein requirements. Ecology of ruminal methanogenesis and avenues for its mitigation can be identified through various genomic and transcriptomic techniques. Programs such as Hungate1000 and the Global Rumen Census have been launched to enhance our understanding about global ruminal microbial communities. Through Hungate1000 project, a comprehensive reference set of rumen microbial genome sequences has been developed from cultivated rumen bacteria and methanogenic archaea along with representative rumen anaerobic fungi and ciliate protozoa cultures. But still many species of rumen microbes are underrepresented especially uncultivable microbes. Lack of sequence information specific to the rumen's microbial community has inhibited efforts to use genomic data to identify specific set of species and their target genes involved in methanogenesis. Metagenomic and metatranscriptomic study of entire microbial rumen populations offer new perspectives to understand interaction of methanogens with other rumen microbes and their potential association with total gas and methane production. Deep understanding of methanogenic pathway will help to devise potentially effective strategies to abate methane production while increasing feed efficiency in ruminants.

Keywords: Genome sequences, Hungate1000, methanogens, ruminal fermentation

Procedia PDF Downloads 139
4148 Evaluation of Visco-Elastic Properties and Microbial Quality of Oat-Based Dietetic Food

Authors: Uchegbu Nneka Nkechi, Okoye Ogochukwu Peace

Abstract:

The evaluation of the visco-elastic properties and microbial quality of a formulated oat-based dietetic food were investigated. Oat flour, pumpkin seed flour, carrot flour and skimmed milk powder were blended in varying proportions to formulate a product with codes OCF, which contains 70% oat flour, 10 % carrot flour, 10 % pumpkin seed flour and 10% skimmed milk powder, OCF which contains 65 % oat flour, 10 % carrot flour, 10 % pumpkin seed flour and 15 % skimmed milk powder, OCF which contains 60 % oat flour, 10 % carrot flour, 10 % pumpkin seed flour and 20 % skimmed milk powder, OCF which contains 55 % oat flour, 10 % carrot flour, 10 % pumpkin seed flour and 25 % skimmed milk powder and OF with 95 % oat as the commercial control. All the samples were assessed for their proximate composition, microbial quality and visco-elastic properties. The moisture content was highest at sample OF (10.73%) and lowest at OCF (7.10%) (P<0.05). Crude protein ranged from 13.38%-22.86%, with OCF having the highest (P<0.05) protein content and OF having the lowest. Crude fat was 3.74% for OCF and 6.31% for OF. Crude fiber ranged from 3.58% - 17.39% with OF having the lowest (P<0.05) fiber content and OCF having the highest. Ash content was 1.30% for OCF and 2.75% for OCF. There was no mold growth in the samples. The total viable ml/wl count ranged from 1.5×10³ cfu/g - 2.6×10³ cfu/g, with OCF having the lowest and OF having the highest (P<0.05) total viable count. The peak viscosity of the sample ranged from 75.00 cP-2895.00 cP, with OCF having the lowest and OF having the highest value. The final viscosity was 130.50 cP in OCF and 3572.50 cP in OF. The setback viscosity was 58.00 cP in OCF and 1680.50 cP in OF. The peak time was 6.93 mins in OCF to 5.57 mins in OF. There was no pasting temperature for all samples except the OF, which had 86.43. Sample OF was the highest in terms of overall acceptability. This study showed that the oat-based composite flour produced had a nutritional profile that would be acceptable for the aged population.

Keywords: dietetic, pumpkin, visco-elastic, microbial

Procedia PDF Downloads 197