Search results for: font distribution algorithm
8153 Upon One Smoothing Problem in Project Management
Authors: Dimitri Golenko-Ginzburg
Abstract:
A CPM network project with deterministic activity durations, in which activities require homogenous resources with fixed capacities, is considered. The problem is to determine the optimal schedule of starting times for all network activities within their maximal allowable limits (in order not to exceed the network's critical time) to minimize the maximum required resources for the project at any point in time. In case when a non-critical activity may start only at discrete moments with the pregiven time span, the problem becomes NP-complete and an optimal solution may be obtained via a look-over algorithm. For the case when a look-over requires much computational time an approximate algorithm is suggested. The algorithm's performance ratio, i.e., the relative accuracy error, is determined. Experimentation has been undertaken to verify the suggested algorithm.Keywords: resource smoothing problem, CPM network, lookover algorithm, lexicographical order, approximate algorithm, accuracy estimate
Procedia PDF Downloads 3028152 Implementation of CNV-CH Algorithm Using Map-Reduce Approach
Authors: Aishik Deb, Rituparna Sinha
Abstract:
We have developed an algorithm to detect the abnormal segment/"structural variation in the genome across a number of samples. We have worked on simulated as well as real data from the BAM Files and have designed a segmentation algorithm where abnormal segments are detected. This algorithm aims to improve the accuracy and performance of the existing CNV-CH algorithm. The next-generation sequencing (NGS) approach is very fast and can generate large sequences in a reasonable time. So the huge volume of sequence information gives rise to the need for Big Data and parallel approaches of segmentation. Therefore, we have designed a map-reduce approach for the existing CNV-CH algorithm where a large amount of sequence data can be segmented and structural variations in the human genome can be detected. We have compared the efficiency of the traditional and map-reduce algorithms with respect to precision, sensitivity, and F-Score. The advantages of using our algorithm are that it is fast and has better accuracy. This algorithm can be applied to detect structural variations within a genome, which in turn can be used to detect various genetic disorders such as cancer, etc. The defects may be caused by new mutations or changes to the DNA and generally result in abnormally high or low base coverage and quantification values.Keywords: cancer detection, convex hull segmentation, map reduce, next generation sequencing
Procedia PDF Downloads 1368151 Pre-Shared Key Distribution Algorithms' Attacks for Body Area Networks: A Survey
Authors: Priti Kumari, Tricha Anjali
Abstract:
Body Area Networks (BANs) have emerged as the most promising technology for pervasive health care applications. Since they facilitate communication of very sensitive health data, information leakage in such networks can put human life at risk, and hence security inside BANs is a critical issue. Safe distribution and periodic refreshment of cryptographic keys are needed to ensure the highest level of security. In this paper, we focus on the key distribution techniques and how they are categorized for BAN. The state-of-art pre-shared key distribution algorithms are surveyed. Possible attacks on algorithms are demonstrated with examples.Keywords: attacks, body area network, key distribution, key refreshment, pre-shared keys
Procedia PDF Downloads 3628150 Multimodal Optimization of Density-Based Clustering Using Collective Animal Behavior Algorithm
Authors: Kristian Bautista, Ruben A. Idoy
Abstract:
A bio-inspired metaheuristic algorithm inspired by the theory of collective animal behavior (CAB) was integrated to density-based clustering modeled as multimodal optimization problem. The algorithm was tested on synthetic, Iris, Glass, Pima and Thyroid data sets in order to measure its effectiveness relative to CDE-based Clustering algorithm. Upon preliminary testing, it was found out that one of the parameter settings used was ineffective in performing clustering when applied to the algorithm prompting the researcher to do an investigation. It was revealed that fine tuning distance δ3 that determines the extent to which a given data point will be clustered helped improve the quality of cluster output. Even though the modification of distance δ3 significantly improved the solution quality and cluster output of the algorithm, results suggest that there is no difference between the population mean of the solutions obtained using the original and modified parameter setting for all data sets. This implies that using either the original or modified parameter setting will not have any effect towards obtaining the best global and local animal positions. Results also suggest that CDE-based clustering algorithm is better than CAB-density clustering algorithm for all data sets. Nevertheless, CAB-density clustering algorithm is still a good clustering algorithm because it has correctly identified the number of classes of some data sets more frequently in a thirty trial run with a much smaller standard deviation, a potential in clustering high dimensional data sets. Thus, the researcher recommends further investigation in the post-processing stage of the algorithm.Keywords: clustering, metaheuristics, collective animal behavior algorithm, density-based clustering, multimodal optimization
Procedia PDF Downloads 2308149 Hardware for Genetic Algorithm
Authors: Fariborz Ahmadi, Reza Tati
Abstract:
Genetic algorithm is a soft computing method that works on set of solutions. These solutions are called chromosome and the best one is the absolute solution of the problem. The main problem of this algorithm is that after passing through some generations, it may be produced some chromosomes that had been produced in some generations ago that causes reducing the convergence speed. From another respective, most of the genetic algorithms are implemented in software and less works have been done on hardware implementation. Our work implements genetic algorithm in hardware that doesn’t produce chromosome that have been produced in previous generations. In this work, most of genetic operators are implemented without producing iterative chromosomes and genetic diversity is preserved. Genetic diversity causes that not only do not this algorithm converge to local optimum but also reaching to global optimum. Without any doubts, proposed approach is so faster than software implementations. Evaluation results also show the proposed approach is faster than hardware ones.Keywords: hardware, genetic algorithm, computer science, engineering
Procedia PDF Downloads 5068148 A Kruskal Based Heuxistic for the Application of Spanning Tree
Authors: Anjan Naidu
Abstract:
In this paper we first discuss the minimum spanning tree, then we use the Kruskal algorithm to obtain minimum spanning tree. Based on Kruskal algorithm we propose Kruskal algorithm to apply an application to find minimum cost applying the concept of spanning tree.Keywords: Minimum Spanning tree, algorithm, Heuxistic, application, classification of Sub 97K90
Procedia PDF Downloads 4448147 Application of Imperialist Competitive Algorithm for Optimal Location and Sizing of Static Compensator Considering Voltage Profile
Authors: Vahid Rashtchi, Ashkan Pirooz
Abstract:
This paper applies the Imperialist Competitive Algorithm (ICA) to find the optimal place and size of Static Compensator (STATCOM) in power systems. The output of the algorithm is a two dimensional array which indicates the best bus number and STATCOM's optimal size that minimizes all bus voltage deviations from their nominal value. Simulations are performed on IEEE 5, 14, and 30 bus test systems. Also some comparisons have been done between ICA and the famous Particle Swarm Optimization (PSO) algorithm. Results show that how this method can be considered as one of the most precise evolutionary methods for the use of optimum compensator placement in electrical grids.Keywords: evolutionary computation, imperialist competitive algorithm, power systems compensation, static compensators, voltage profile
Procedia PDF Downloads 6058146 Evaluation of Best-Fit Probability Distribution for Prediction of Extreme Hydrologic Phenomena
Authors: Karim Hamidi Machekposhti, Hossein Sedghi
Abstract:
The probability distributions are the best method for forecasting of extreme hydrologic phenomena such as rainfall and flood flows. In this research, in order to determine suitable probability distribution for estimating of annual extreme rainfall and flood flows (discharge) series with different return periods, precipitation with 40 and discharge with 58 years time period had been collected from Karkheh River at Iran. After homogeneity and adequacy tests, data have been analyzed by Stormwater Management and Design Aid (SMADA) software and residual sum of squares (R.S.S). The best probability distribution was Log Pearson Type III with R.S.S value (145.91) and value (13.67) for peak discharge and Log Pearson Type III with R.S.S values (141.08) and (8.95) for maximum discharge in Jelogir Majin and Pole Zal stations, respectively. The best distribution for maximum precipitation in Jelogir Majin and Pole Zal stations was Log Pearson Type III distribution with R.S.S values (1.74&1.90) and then Pearson Type III distribution with R.S.S values (1.53&1.69). Overall, the Log Pearson Type III distributions are acceptable distribution types for representing statistics of extreme hydrologic phenomena in Karkheh River at Iran with the Pearson Type III distribution as a potential alternative.Keywords: Karkheh River, Log Pearson Type III, probability distribution, residual sum of squares
Procedia PDF Downloads 1978145 Nonlinear Power Measurement Algorithm of the Input Mix Components of the Noise Signal and Pulse Interference
Authors: Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev, Andrey V. Klyuev
Abstract:
A power measurement algorithm of the input mix components of the noise signal and pulse interference is considered. The algorithm efficiency analysis has been carried out for different interference to signal ratio. Algorithm performance features have been explored by numerical experiment results.Keywords: noise signal, pulse interference, signal power, spectrum width, detection
Procedia PDF Downloads 3378144 A Tagging Algorithm in Augmented Reality for Mobile Device Screens
Authors: Doga Erisik, Ahmet Karaman, Gulfem Alptekin, Ozlem Durmaz Incel
Abstract:
Augmented reality (AR) is a type of virtual reality aiming to duplicate real world’s environment on a computer’s video feed. The mobile application, which is built for this project (called SARAS), enables annotating real world point of interests (POIs) that are located near mobile user. In this paper, we aim at introducing a robust and simple algorithm for placing labels in an augmented reality system. The system places labels of the POIs on the mobile device screen whose GPS coordinates are given. The proposed algorithm is compared to an existing one in terms of energy consumption and accuracy. The results show that the proposed algorithm gives better results in energy consumption and accuracy while standing still, and acceptably accurate results when driving. The technique provides benefits to AR browsers with its open access algorithm. Going forward, the algorithm will be improved to more rapidly react to position changes while driving.Keywords: accurate tagging algorithm, augmented reality, localization, location-based AR
Procedia PDF Downloads 3738143 A Firefly Based Optimization Technique for Optimal Planning of Voltage Controlled Distributed Generators
Authors: M. M. Othman, Walid El-Khattam, Y. G. Hegazy, A. Y. Abdelaziz
Abstract:
This paper presents a method for finding the optimal location and capacity of dispatchable DGs connected to the distribution feeders for optimal planning for a specified power loss without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37-nodes feeder. The results that are validated by comparing it with results obtained from other competing methods show the effectiveness, accuracy and speed of the proposed method.Keywords: distributed generators, firefly technique, optimization, power loss
Procedia PDF Downloads 5338142 An Authentic Algorithm for Ciphering and Deciphering Called Latin Djokovic
Authors: Diogen Babuc
Abstract:
The question that is a motivation of writing is how many devote themselves to discovering something in the world of science where much is discerned and revealed, but at the same time, much is unknown. Methods: The insightful elements of this algorithm are the ciphering and deciphering algorithms of Playfair, Caesar, and Vigenère. Only a few of their main properties are taken and modified, with the aim of forming a specific functionality of the algorithm called Latin Djokovic. Specifically, a string is entered as input data. A key k is given, with a random value between the values a and b = a+3. The obtained value is stored in a variable with the aim of being constant during the run of the algorithm. In correlation to the given key, the string is divided into several groups of substrings, and each substring has a length of k characters. The next step involves encoding each substring from the list of existing substrings. Encoding is performed using the basis of Caesar algorithm, i.e., shifting with k characters. However, that k is incremented by 1 when moving to the next substring in that list. When the value of k becomes greater than b+1, it’ll return to its initial value. The algorithm is executed, following the same procedure, until the last substring in the list is traversed. Results: Using this polyalphabetic method, ciphering and deciphering of strings are achieved. The algorithm also works for a 100-character string. The x character isn’t used when the number of characters in a substring is incompatible with the expected length. The algorithm is simple to implement, but it’s questionable if it works better than the other methods from the point of view of execution time and storage space.Keywords: ciphering, deciphering, authentic, algorithm, polyalphabetic cipher, random key, methods comparison
Procedia PDF Downloads 1038141 Applying Sequential Pattern Mining to Generate Block for Scheduling Problems
Authors: Meng-Hui Chen, Chen-Yu Kao, Chia-Yu Hsu, Pei-Chann Chang
Abstract:
The main idea in this paper is using sequential pattern mining to find the information which is helpful for finding high performance solutions. By combining this information, it is defined as blocks. Using the blocks to generate artificial chromosomes (ACs) could improve the structure of solutions. Estimation of Distribution Algorithms (EDAs) is adapted to solve the combinatorial problems. Nevertheless many of these approaches are advantageous for this application, but only some of them are used to enhance the efficiency of application. Generating ACs uses patterns and EDAs could increase the diversity. According to the experimental result, the algorithm which we proposed has a better performance to solve the permutation flow-shop problems.Keywords: combinatorial problems, sequential pattern mining, estimationof distribution algorithms, artificial chromosomes
Procedia PDF Downloads 6118140 Multiple Fault Diagnosis in Digital Circuits using Critical Path Tracing and Enhanced Deduction Algorithm
Authors: Mohamed Mahmoud
Abstract:
This paper has developed an effect-cause analysis technique for fault diagnosis in digital circuits. The main algorithm of our technique is based on the Enhanced Deduction Algorithm, which processes the real response of the CUT to the applied test T to deduce the values of the internal lines. An experimental version of the algorithm has been implemented in C++. The code takes about 7592 lines. The internal values are determined based on the logic values under the permanent stuck-fault model. Using a backtracking strategy guarantees that the actual values are covered by at least one solution, or no solution is found.Keywords: enhanced deduction algorithm, backtracking strategy, automatic test equipment, verfication
Procedia PDF Downloads 1208139 Generating Arabic Fonts Using Rational Cubic Ball Functions
Authors: Fakharuddin Ibrahim, Jamaludin Md. Ali, Ahmad Ramli
Abstract:
In this paper, we will discuss about the data interpolation by using the rational cubic Ball curve. To generate a curve with a better and satisfactory smoothness, the curve segments must be connected with a certain amount of continuity. The continuity that we will consider is of type G1 continuity. The conditions considered are known as the G1 Hermite condition. A simple application of the proposed method is to generate an Arabic font satisfying the required continuity.Keywords: data interpolation, rational ball curve, hermite condition, continuity
Procedia PDF Downloads 4298138 The Use of Graphic Design Elements for Design of Newspaper for Women
Authors: Pibool Waijittragum
Abstract:
This paper has its objectives to reveal contents and personality suitable to women’s newspapers. The research methodology employed in this study is the questionnaire which is derived from a literature review related to newspapers, graphic elements method for print media design and 12 sample sizes of different daily newspapers. In order to acquire an in-depth understanding and comprehensible view of desirable for a women’s newspaper design, graphic elements that related to that personality as well as other preferable elements for a women’s newspaper, including seven editorial Many Thai newspapers were offer a women’s documentary and column space. With its feminine looks, most of them appeared with warm tones and friendly mood through their headlines, contents, illustrations and graphics. The study found that most desirable personalities for a women’s newspaper design in Thailand are: Modern, Chic and Natural. Each personality has significant graphic elements as follows: 1. Modern: significant elements of modern personality comprises of the composition with graduation pattern which creates attractiveness by using an anomalous alignment layout grid and outstanding structure to create focal points and dynamic movement. Dark to black color that has narrowed, limited hue coupled with bright color tones. The round shape of the Thai font style was suitable for this concept. Such Thai fonts have harmonious proportion and consistent stroke with the urban-polite look. 2. Chic: significant elements of chic personality comprises of the proper composition with distinctive scale, using rhythmic repetition and a contrast of scale to draw in reader attention. Vivid and bright color tones with extensive hues coupled with similar color tones and round shape of the Thai font style with a light stroke and consistent line. 3. Natural: significant elements of natural personality comprises of the proper composition using rhythmic repetition that creates a focal point through striking images and harmonious perspective. Warm color tones with restricted hues that appear to look natural. Duo tone color was suitable through the gradually increasing gradient. The Thai style with hand writing font was suitable through the inconsistent stroke. There are 10 types of daily content that were revealed to be the most desirable for Thai women readers, these are: Daily News, Economics News, Education News, Entertainment News, International news, Political News, Public Health News, Scientific News, Social News and Sports News. As well, there are 16 topics identified as very desirable for Thai women readers, such as: Art and Culture, Automobile, Classified, Special Scoop, Editorial, Advertisement, Entertainment, Health and Quality of Life, History, Horoscope, Lifestyle and Fashion, Literature, Nature - Environment and Tourism, Night Life, Stars and Jet Set Gossip, Women’s Issue.Keywords: women behaviors, feminine looks, newspaper design, news content
Procedia PDF Downloads 1728137 Two-stage Robust Optimization for Collaborative Distribution Network Design Under Uncertainty
Authors: Reza Alikhani
Abstract:
This research focuses on the establishment of horizontal cooperation among companies to enhance their operational efficiency and competitiveness. The study proposes an approach to horizontal collaboration, called coalition configuration, which involves partnering companies sharing distribution centers in a network design problem. The paper investigates which coalition should be formed in each distribution center to minimize the total cost of the network. Moreover, potential uncertainties, such as operational and disruption risks, are considered during the collaborative design phase. To address this problem, a two-stage robust optimization model for collaborative distribution network design under surging demand and facility disruptions is presented, along with a column-and-constraint generation algorithm to obtain exact solutions tailored to the proposed formulation. Extensive numerical experiments are conducted to analyze solutions obtained by the model in various scenarios, including decisions ranging from fully centralized to fully decentralized settings, collaborative versus non-collaborative approaches, and different amounts of uncertainty budgets. The results show that the coalition formation mechanism proposes some solutions that are competitive with the savings of the grand coalition. The research also highlights that collaboration increases network flexibility and resilience while reducing costs associated with demand and capacity uncertainties.Keywords: logistics, warehouse sharing, robust facility location, collaboration for resilience
Procedia PDF Downloads 698136 Performance of the New Laboratory-Based Algorithm for HIV Diagnosis in Southwestern China
Authors: Yanhua Zhao, Chenli Rao, Dongdong Li, Chuanmin Tao
Abstract:
The Chinese Centers for Disease Control and Prevention (CCDC) issued a new laboratory-based algorithm for HIV diagnosis on April 2016, which initially screens with a combination HIV-1/HIV-2 antigen/antibody fourth-generation immunoassay (IA) followed, when reactive, an HIV-1/HIV-2 undifferentiated antibody IA in duplicate. Reactive specimens with concordant results undergo supplemental tests with western blots, or HIV-1 nucleic acid tests (NATs) and non-reactive specimens with discordant results receive HIV-1 NATs or p24 antigen tests or 2-4 weeks follow-up tests. However, little data evaluating the application of the new algorithm have been reported to date. The study was to evaluate the performance of new laboratory-based HIV diagnostic algorithm in an inpatient population of Southwest China over the initial 6 months by compared with the old algorithm. Plasma specimens collected from inpatients from May 1, 2016, to October 31, 2016, are submitted to the laboratory for screening HIV infection performed by both the new HIV testing algorithm and the old version. The sensitivity and specificity of the algorithms and the difference of the categorized numbers of plasmas were calculated. Under the new algorithm for HIV diagnosis, 170 of the total 52 749 plasma specimens were confirmed as positively HIV-infected (0.32%). The sensitivity and specificity of the new algorithm were 100% (170/170) and 100% (52 579/52 579), respectively; while 167 HIV-1 positive specimens were identified by the old algorithm with sensitivity 98.24% (167/170) and 100% (52 579/52 579), respectively. Three acute HIV-1 infections (AHIs) and two early HIV-1 infections (EHIs) were identified by the new algorithm; the former was missed by old procedure. Compared with the old version, the new algorithm produced fewer WB-indeterminate results (2 vs. 16, p = 0.001), which led to fewer follow-up tests. Therefore, the new HIV testing algorithm is more sensitive for detecting acute HIV-1 infections with maintaining the ability to verify the established HIV-1 infections and can dramatically decrease the greater number of WB-indeterminate specimens.Keywords: algorithm, diagnosis, HIV, laboratory
Procedia PDF Downloads 4018135 Application of Universal Distribution Factors for Real-Time Complex Power Flow Calculation
Authors: Abdullah M. Alodhaiani, Yasir A. Alturki, Mohamed A. Elkady
Abstract:
Complex power flow distribution factors, which relate line complex power flows to the bus injected complex powers, have been widely used in various power system planning and analysis studies. In particular, AC distribution factors have been used extensively in the recent power and energy pricing studies in free electricity market field. As was demonstrated in the existing literature, many of the electricity market related costing studies rely on the use of the distribution factors. These known distribution factors, whether the injection shift factors (ISF’s) or power transfer distribution factors (PTDF’s), are linear approximations of the first order sensitivities of the active power flows with respect to various variables. This paper presents a novel model for evaluating the universal distribution factors (UDF’s), which are appropriate for an extensive range of power systems analysis and free electricity market studies. These distribution factors are used for the calculations of lines complex power flows and its independent of bus power injections, they are compact matrix-form expressions with total flexibility in determining the position on the line at which line flows are measured. The proposed approach was tested on IEEE 9-Bus system. Numerical results demonstrate that the proposed approach is very accurate compared with exact method.Keywords: distribution factors, power system, sensitivity factors, electricity market
Procedia PDF Downloads 4738134 Approximately Similarity Measurement of Web Sites Using Genetic Algorithms and Binary Trees
Authors: Doru Anastasiu Popescu, Dan Rădulescu
Abstract:
In this paper, we determine the similarity of two HTML web applications. We are going to use a genetic algorithm in order to determine the most significant web pages of each application (we are not going to use every web page of a site). Using these significant web pages, we will find the similarity value between the two applications. The algorithm is going to be efficient because we are going to use a reduced number of web pages for comparisons but it will return an approximate value of the similarity. The binary trees are used to keep the tags from the significant pages. The algorithm was implemented in Java language.Keywords: Tag, HTML, web page, genetic algorithm, similarity value, binary tree
Procedia PDF Downloads 3558133 Optimal Sizing and Placement of Distributed Generators for Profit Maximization Using Firefly Algorithm
Authors: Engy Adel Mohamed, Yasser Gamal-Eldin Hegazy
Abstract:
This paper presents a firefly based algorithm for optimal sizing and allocation of distributed generators for profit maximization. Distributed generators in the proposed algorithm are of photovoltaic and combined heat and power technologies. Combined heat and power distributed generators are modeled as voltage controlled nodes while photovoltaic distributed generators are modeled as constant power nodes. The proposed algorithm is implemented in MATLAB environment and tested the unbalanced IEEE 37-node feeder. The results show the effectiveness of the proposed algorithm in optimal selection of distributed generators size and site in order to maximize the total system profit.Keywords: distributed generators, firefly algorithm, IEEE 37-node feeder, profit maximization
Procedia PDF Downloads 4428132 A Parallel Implementation of Artificial Bee Colony Algorithm within CUDA Architecture
Authors: Selcuk Aslan, Dervis Karaboga, Celal Ozturk
Abstract:
Artificial Bee Colony (ABC) algorithm is one of the most successful swarm intelligence based metaheuristics. It has been applied to a number of constrained or unconstrained numerical and combinatorial optimization problems. In this paper, we presented a parallelized version of ABC algorithm by adapting employed and onlooker bee phases to the Compute Unified Device Architecture (CUDA) platform which is a graphical processing unit (GPU) programming environment by NVIDIA. The execution speed and obtained results of the proposed approach and sequential version of ABC algorithm are compared on functions that are typically used as benchmarks for optimization algorithms. Tests on standard benchmark functions with different colony size and number of parameters showed that proposed parallelization approach for ABC algorithm decreases the execution time consumed by the employed and onlooker bee phases in total and achieved similar or better quality of the results compared to the standard sequential implementation of the ABC algorithm.Keywords: Artificial Bee Colony algorithm, GPU computing, swarm intelligence, parallelization
Procedia PDF Downloads 3788131 A Distribution Free Test for Censored Matched Pairs
Authors: Ayman Baklizi
Abstract:
This paper discusses the problem of testing hypotheses about the lifetime distributions of a matched pair based on censored data. A distribution free test based on a runs statistic is proposed. Its null distribution and power function are found in a simple convenient form. Some properties of the test statistic and its power function are studied.Keywords: censored data, distribution free, matched pair, runs statistics
Procedia PDF Downloads 2878130 Fast Prediction Unit Partition Decision and Accelerating the Algorithm Using Cudafor Intra and Inter Prediction of HEVC
Authors: Qiang Zhang, Chun Yuan
Abstract:
Since the PU (Prediction Unit) decision process is the most time consuming part of the emerging HEVC (High Efficient Video Coding) standardin intra and inter frame coding, this paper proposes the fast PU decision algorithm and speed up the algorithm using CUDA (Compute Unified Device Architecture). In intra frame coding, the fast PU decision algorithm uses the texture features to skip intra-frame prediction or terminal the intra-frame prediction for smaller PU size. In inter frame coding of HEVC, the fast PU decision algorithm takes use of the similarity of its own two Nx2N size PU's motion vectors and the hierarchical structure of CU (Coding Unit) partition to skip some modes of PU partition, so as to reduce the motion estimation times. The accelerate algorithm using CUDA is based on the fast PU decision algorithm which uses the GPU to make the motion search and the gradient computation could be parallel computed. The proposed algorithm achieves up to 57% time saving compared to the HM 10.0 with little rate-distortion losses (0.043dB drop and 1.82% bitrate increase on average).Keywords: HEVC, PU decision, inter prediction, intra prediction, CUDA, parallel
Procedia PDF Downloads 3998129 Design of Geochemical Maps of Industrial City Using Gradient Boosting and Geographic Information System
Authors: Ruslan Safarov, Zhanat Shomanova, Yuri Nossenko, Zhandos Mussayev, Ayana Baltabek
Abstract:
Geochemical maps of distribution of polluting elements V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Pb on the territory of the Pavlodar city (Kazakhstan), which is an industrial hub were designed. The samples of soil were taken from 100 locations. Elemental analysis has been performed using XRF. The obtained data was used for training of the computational model with gradient boosting algorithm. The optimal parameters of model as well as the loss function were selected. The computational model was used for prediction of polluting elements concentration for 1000 evenly distributed points. Based on predicted data geochemical maps were created. Additionally, the total pollution index Zc was calculated for every from 1000 point. The spatial distribution of the Zc index was visualized using GIS (QGIS). It was calculated that the maximum coverage area of the territory of the Pavlodar city belongs to the moderately hazardous category (89.7%). The visualization of the obtained data allowed us to conclude that the main source of contamination goes from the industrial zones where the strategic metallurgical and refining plants are placed.Keywords: Pavlodar, geochemical map, gradient boosting, CatBoost, QGIS, spatial distribution, heavy metals
Procedia PDF Downloads 828128 Off-Grid Sparse Inverse Synthetic Aperture Imaging by Basis Shift Algorithm
Authors: Mengjun Yang, Zhulin Zong, Jie Gao
Abstract:
In this paper, a new and robust algorithm is proposed to achieve high resolution for inverse synthetic aperture radar (ISAR) imaging in the compressive sensing (CS) framework. Traditional CS based methods have to assume that unknown scatters exactly lie on the pre-divided grids; otherwise, their reconstruction performance dropped significantly. In this processing algorithm, several basis shifts are utilized to achieve the same effect as grid refinement does. The detailed implementation of the basis shift algorithm is presented in this paper. From the simulation we can see that using the basis shift algorithm, imaging precision can be improved. The effectiveness and feasibility of the proposed method are investigated by the simulation results.Keywords: ISAR imaging, sparse reconstruction, off-grid, basis shift
Procedia PDF Downloads 2658127 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm
Authors: Mohammadhosein Hasanbeig, Lacra Pavel
Abstract:
In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.Keywords: distributed control, game theory, multi-agent learning, reinforcement learning
Procedia PDF Downloads 4578126 Impact of Combined Heat and Power (CHP) Generation Technology on Distribution Network Development
Authors: Sreto Boljevic
Abstract:
In the absence of considerable investment in electricity generation, transmission and distribution network (DN) capacity, the demand for electrical energy will quickly strain the capacity of the existing electrical power network. With anticipated growth and proliferation of Electric vehicles (EVs) and Heat pump (HPs) identified the likelihood that the additional load from EV changing and the HPs operation will require capital investment in the DN. While an area-wide implementation of EVs and HPs will contribute to the decarbonization of the energy system, they represent new challenges for the existing low-voltage (LV) network. Distributed energy resources (DER), operating both as part of the DN and in the off-network mode, have been offered as a means to meet growing electricity demand while maintaining and ever-improving DN reliability, resiliency and power quality. DN planning has traditionally been done by forecasting future growth in demand and estimating peak load that the network should meet. However, new problems are arising. These problems are associated with a high degree of proliferation of EVs and HPs as load imposes on DN. In addition to that, the promotion of electricity generation from renewable energy sources (RES). High distributed generation (DG) penetration and a large increase in load proliferation at low-voltage DNs may have numerous impacts on DNs that create issues that include energy losses, voltage control, fault levels, reliability, resiliency and power quality. To mitigate negative impacts and at a same time enhance positive impacts regarding the new operational state of DN, CHP system integration can be seen as best action to postpone/reduce capital investment needed to facilitate promotion and maximize benefits of EVs, HPs and RES integration in low-voltage DN. The aim of this paper is to generate an algorithm by using an analytical approach. Algorithm implementation will provide a way for optimal placement of the CHP system in the DN in order to maximize the integration of RES and increase in proliferation of EVs and HPs.Keywords: combined heat & power (CHP), distribution networks, EVs, HPs, RES
Procedia PDF Downloads 2028125 Evaluation and Analysis of Light Emitting Diode Distribution in an Indoor Visible Light Communication
Authors: Olawale J. Olaluyi, Ayodele S. Oluwole, O. Akinsanmi, Johnson O. Adeogo
Abstract:
Communication using visible light VLC is considered a cutting-edge technology used for data transmission and illumination since it uses less energy than radio frequency (RF) technology and has a large bandwidth, extended lifespan, and high security. The room's irregular distribution of small base stations, or LED array distribution, is the cause of the obscured area, minimum signal-to-noise ratio (SNR), and received power. In order to maximize the received power distribution and SNR at the center of the room for an indoor VLC system, the researchers offer an innovative model for the placement of eight LED array distributions in this work. We have investigated the arrangement of the LED array distribution with regard to receiving power to fill the open space in the center of the room. The suggested LED array distribution saved 36.2% of the transmitted power, according to the simulation findings. Aside from that, the entire room was equally covered. This leads to an increase in both received power and SNR.Keywords: visible light communication (VLC), light emitted diodes (LED), optical power distribution, signal-to-noise ratio (SNR).
Procedia PDF Downloads 888124 Supplier Selection and Order Allocation Using a Stochastic Multi-Objective Programming Model and Genetic Algorithm
Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh
Abstract:
In this paper, we develop a supplier selection and order allocation multi-objective model in stochastic environment in which purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. To do so, we use dependent chance programming (DCP) that maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. After transforming the above mentioned stochastic multi-objective programming problem into a stochastic single objective problem using minimum deviation method, we apply a genetic algorithm to get the later single objective problem solved. The employed genetic algorithm performs a simulation process in order to calculate the stochastic objective function as its fitness function. At the end, we explore the impact of stochastic parameters on the given solution via a sensitivity analysis exploiting coefficient of variation. The results show that as stochastic parameters have greater coefficients of variation, the value of objective function in the stochastic single objective programming problem is worsened.Keywords: dependent chance programming, genetic algorithm, minimum deviation method, order allocation, supplier selection
Procedia PDF Downloads 256