Search results for: automatic built-in-stabilizers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 896

Search results for: automatic built-in-stabilizers

686 Deep Learning-Based Automated Structure Deterioration Detection for Building Structures: A Technological Advancement for Ensuring Structural Integrity

Authors: Kavita Bodke

Abstract:

Structural health monitoring (SHM) is experiencing growth, necessitating the development of distinct methodologies to address its expanding scope effectively. In this study, we developed automatic structure damage identification, which incorporates three unique types of a building’s structural integrity. The first pertains to the presence of fractures within the structure, the second relates to the issue of dampness within the structure, and the third involves corrosion inside the structure. This study employs image classification techniques to discern between intact and impaired structures within structural data. The aim of this research is to find automatic damage detection with the probability of each damage class being present in one image. Based on this probability, we know which class has a higher probability or is more affected than the other classes. Utilizing photographs captured by a mobile camera serves as the input for an image classification system. Image classification was employed in our study to perform multi-class and multi-label classification. The objective was to categorize structural data based on the presence of cracks, moisture, and corrosion. In the context of multi-class image classification, our study employed three distinct methodologies: Random Forest, Multilayer Perceptron, and CNN. For the task of multi-label image classification, the models employed were Rasnet, Xceptionet, and Inception.

Keywords: SHM, CNN, deep learning, multi-class classification, multi-label classification

Procedia PDF Downloads 39
685 In-Context Meta Learning for Automatic Designing Pretext Tasks for Self-Supervised Image Analysis

Authors: Toktam Khatibi

Abstract:

Self-supervised learning (SSL) includes machine learning models that are trained on one aspect and/or one part of the input to learn other aspects and/or part of it. SSL models are divided into two different categories, including pre-text task-based models and contrastive learning ones. Pre-text tasks are some auxiliary tasks learning pseudo-labels, and the trained models are further fine-tuned for downstream tasks. However, one important disadvantage of SSL using pre-text task solving is defining an appropriate pre-text task for each image dataset with a variety of image modalities. Therefore, it is required to design an appropriate pretext task automatically for each dataset and each downstream task. To the best of our knowledge, the automatic designing of pretext tasks for image analysis has not been considered yet. In this paper, we present a framework based on In-context learning that describes each task based on its input and output data using a pre-trained image transformer. Our proposed method combines the input image and its learned description for optimizing the pre-text task design and its hyper-parameters using Meta-learning models. The representations learned from the pre-text tasks are fine-tuned for solving the downstream tasks. We demonstrate that our proposed framework outperforms the compared ones on unseen tasks and image modalities in addition to its superior performance for previously known tasks and datasets.

Keywords: in-context learning (ICL), meta learning, self-supervised learning (SSL), vision-language domain, transformers

Procedia PDF Downloads 81
684 Tool for Maxillary Sinus Quantification in Computed Tomography Exams

Authors: Guilherme Giacomini, Ana Luiza Menegatti Pavan, Allan Felipe Fattori Alves, Marcela de Oliveira, Fernando Antonio Bacchim Neto, José Ricardo de Arruda Miranda, Seizo Yamashita, Diana Rodrigues de Pina

Abstract:

The maxillary sinus (MS), part of the paranasal sinus complex, is one of the most enigmatic structures in modern humans. The literature has suggested that MSs function as olfaction accessories, to heat or humidify inspired air, for thermoregulation, to impart resonance to the voice and others. Thus, the real function of the MS is still uncertain. Furthermore, the MS anatomy is complex and varies from person to person. Many diseases may affect the development process of sinuses. The incidence of rhinosinusitis and other pathoses in the MS is comparatively high, so, volume analysis has clinical value. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure, which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust, and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression, and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to quantify MS volume proved to be robust, fast, and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to automatically quantify MS volume proved to be robust, fast and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases.

Keywords: maxillary sinus, support vector machine, region growing, volume quantification

Procedia PDF Downloads 504
683 HPTLC Fingerprint Profiling of Protorhus longifolia Methanolic Leaf Extract and Qualitative Analysis of Common Biomarkers

Authors: P. S. Seboletswe, Z. Mkhize, L. M. Katata-Seru

Abstract:

Protorhus longifolia is known as a medicinal plant that has been used traditionally to treat various ailments such as hemiplegic paralysis, blood clotting related diseases, diarrhoea, heartburn, etc. The study reports a High-Performance Thin Layer Chromatography (HPTLC) fingerprint profile of Protorhus longifolia methanolic extract and its qualitative analysis of gallic acid, rutin, and quercetin. HPTLC analysis was achieved using CAMAG HPTLC system equipped with CAMAG automatic TLC sampler 4, CAMAG Automatic Developing Chamber 2 (ADC2), CAMAG visualizer 2, CAMAG Thin Layer Chromatography (TLC) scanner and visionCATS CAMAG HPTLC software. Mobile phase comprising toluene, ethyl acetate, formic acid (21:15:3) was used for qualitative analysis of gallic acid and revealed eight peaks while the mobile phase containing ethyl acetate, water, glacial acetic acid, formic acid (100:26:11:11) for qualitative analysis of rutin and quercetin revealed six peaks. HPTLC sillica gel 60 F254 glass plates (10 × 10) were used as the stationary phase. Gallic acid was detected at the Rf = 0.35; while rutin and quercetin were not evident in the extract. Further studies will be performed to quantify gallic acid in Protorhus longifolia leaves and also identify other biomarkers.

Keywords: biomarkers, fingerprint profiling, gallic acid, HPTLC, Protorhus longifolia

Procedia PDF Downloads 145
682 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification

Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro

Abstract:

Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.

Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification

Procedia PDF Downloads 118
681 Impacts of Applying Automated Vehicle Location Systems to Public Bus Transport Management

Authors: Vani Chintapally

Abstract:

The expansion of modest and minimized Global Positioning System (GPS) beneficiaries has prompted most Automatic Vehicle Location (AVL) frameworks today depending solely on satellite-based finding frameworks, as GPS is the most stable usage of these. This paper shows the attributes of a proposed framework for following and dissecting open transport in a run of the mill medium-sized city and complexities the qualities of such a framework to those of broadly useful AVL frameworks. Particular properties of the courses broke down by the AVL framework utilized for the examination of open transport in our study incorporate cyclic vehicle courses, the requirement for particular execution reports, and so forth. This paper particularly manages vehicle movement forecasts and the estimation of station landing time, combined with consequently produced reports on timetable conformance and other execution measures. Another side of the watched issue is proficient exchange of information from the vehicles to the control focus. The pervasiveness of GSM bundle information exchange advancements combined with decreased information exchange expenses have brought on today's AVL frameworks to depend predominantly on parcel information exchange administrations from portable administrators as the correspondences channel in the middle of vehicles and the control focus. This methodology brings numerous security issues up in this conceivably touchy application field.

Keywords: automatic vehicle location (AVL), expectation of landing times, AVL security, data administrations, wise transport frameworks (ITS), guide coordinating

Procedia PDF Downloads 384
680 The Automatisation of Dictionary-Based Annotation in a Parallel Corpus of Old English

Authors: Ana Elvira Ojanguren Lopez, Javier Martin Arista

Abstract:

The aims of this paper are to present the automatisation procedure adopted in the implementation of a parallel corpus of Old English, as well as, to assess the progress of automatisation with respect to tagging, annotation, and lemmatisation. The corpus consists of an aligned parallel text with word-for-word comparison Old English-English that provides the Old English segment with inflectional form tagging (gloss, lemma, category, and inflection) and lemma annotation (spelling, meaning, inflectional class, paradigm, word-formation and secondary sources). This parallel corpus is intended to fill a gap in the field of Old English, in which no parallel and/or lemmatised corpora are available, while the average amount of corpus annotation is low. With this background, this presentation has two main parts. The first part, which focuses on tagging and annotation, selects the layouts and fields of lexical databases that are relevant for these tasks. Most information used for the annotation of the corpus can be retrieved from the lexical and morphological database Nerthus and the database of secondary sources Freya. These are the sources of linguistic and metalinguistic information that will be used for the annotation of the lemmas of the corpus, including morphological and semantic aspects as well as the references to the secondary sources that deal with the lemmas in question. Although substantially adapted and re-interpreted, the lemmatised part of these databases draws on the standard dictionaries of Old English, including The Student's Dictionary of Anglo-Saxon, An Anglo-Saxon Dictionary, and A Concise Anglo-Saxon Dictionary. The second part of this paper deals with lemmatisation. It presents the lemmatiser Norna, which has been implemented on Filemaker software. It is based on a concordance and an index to the Dictionary of Old English Corpus, which comprises around three thousand texts and three million words. In its present state, the lemmatiser Norna can assign lemma to around 80% of textual forms on an automatic basis, by searching the index and the concordance for prefixes, stems and inflectional endings. The conclusions of this presentation insist on the limits of the automatisation of dictionary-based annotation in a parallel corpus. While the tagging and annotation are largely automatic even at the present stage, the automatisation of alignment is pending for future research. Lemmatisation and morphological tagging are expected to be fully automatic in the near future, once the database of secondary sources Freya and the lemmatiser Norna have been completed.

Keywords: corpus linguistics, historical linguistics, old English, parallel corpus

Procedia PDF Downloads 213
679 Effect of Automatic Self Transcending Meditation on Perceived Stress and Sleep Quality in Adults

Authors: Divya Kanchibhotla, Shashank Kulkarni, Shweta Singh

Abstract:

Chronic stress and sleep quality reduces mental health and increases the risk of developing depression and anxiety as well. There is increasing evidence for the utility of meditation as an adjunct clinical intervention for conditions like depression and anxiety. The present study is an attempt to explore the impact of Sahaj Samadhi Meditation (SSM), a category of Automatic Self Transcending Meditation (ASTM), on perceived stress and sleep quality in adults. The study design was a single group pre-post assessment. Perceived Stress Scale (PSS) and the Pittsburgh Sleep Quality Index (PSQI) were used in this study. Fifty-two participants filled PSS, and 60 participants filled PSQI at the beginning of the program (day 0), after two weeks (day 16) and at two months (day 60). Significant pre-post differences for the perceived stress level on Day 0 - Day 16 (p < 0.01; Cohen's d = 0.46) and Day 0 - Day 60 (p < 0.01; Cohen's d = 0.76) clearly demonstrated that by practicing SSM, participants experienced reduction in the perceived stress. The effect size of the intervention observed on the 16th day of assessment was small to medium, but on the 60th day, a medium to large effect size of the intervention was observed. In addition to this, significant pre-post differences for the sleep quality on Day 0 - Day 16 and Day 0 - Day 60 (p < 0.05) clearly demonstrated that by practicing SSM, participants experienced improvement in the sleep quality. Compared with Day 0 assessment, participants demonstrated significant improvement in the quality of sleep on Day 16 and Day 60. The effect size of the intervention observed on the 16th day of assessment was small, but on the 60th day, a small to medium effect size of the intervention was observed. In the current study we found out that after practicing SSM for two months, participants reported a reduction in the perceived stress, they felt that they are more confident about their ability to handle personal problems, were able to cope with all the things that they had to do, felt that they were on top of the things, and felt less angered. Participants also reported that their overall sleep quality improved; they took less time to fall asleep; they had less disturbances in sleep and less daytime dysfunction due to sleep deprivation. The present study provides clear evidence of the efficacy and safety of non-pharmacological interventions such as SSM in reducing stress and improving sleep quality. Thus, ASTM may be considered a useful intervention to reduce psychological distress in healthy, non-clinical populations, and it can be an alternative remedy for treating poor sleep among individuals and decreasing the use of harmful sedatives.

Keywords: automatic self transcending meditation, Sahaj Samadhi meditation, sleep, stress

Procedia PDF Downloads 136
678 The Role of Situational Attribution Training in Reducing Automatic In-Group Stereotyping in Females

Authors: Olga Mironiuk, Małgorzata Kossowska

Abstract:

The aim of the present study was to investigate the influence of Situational Attribution Training on reducing automatic in-group stereotyping in females. The experiment was conducted with the control of age and level of prejudice. 90 female participants were randomly assigned to two conditions: experimental and control group (each group was also divided into younger- and older-aged condition). Participants from the experimental condition were subjected to more extensive training. In the first part of the experiment, the experimental group took part in the first session of Situational Attribution Training while the control group participated in the Grammatical Training Control. In the second part of the research both groups took part in the Situational Attribution Training (which was considered as the second training session for the experimental group and the first one for the control condition). The training procedure was based on the descriptions of ambiguous situations which could be explained using situational or dispositional attributions. The participant’s task was to choose the situational explanation from two alternatives, out of which the second one presented the explanation based on neutral or stereotypically associated with women traits. Moreover, the experimental group took part in the third training session after two- day time delay, in order to check the persistence of the training effect. The main hypothesis stated that among participants taking part in the more extensive training, the automatic in-group stereotyping would be less frequent after having finished training sessions. The effectiveness of the training was tested by measuring the response time and the correctness of answers: the longer response time for the examples where one of two possible answers was based on the stereotype trait and higher correctness of answers was considered to be a proof of the training effectiveness. As the participants’ level of prejudice was controlled (using the Ambivalent Sexism Inventory), it was also assumed that the training effect would be weaker for participants revealing a higher level of prejudice. The obtained results did not confirm the hypothesis based on the response time: participants from the experimental group responded faster in case of situations where one of the possible explanations was based on stereotype trait. However, an interesting observation was made during the analysis of the answers’ correctness: regardless the condition and age group affiliation, participants made more mistakes while choosing the situational explanations when the alternative was based on stereotypical trait associated with the dimension of warmth. What is more, the correctness of answers was higher in the third training session for the experimental group in case when the alternative of situational explanation was based on the stereotype trait associated with the dimension of competence. The obtained results partially confirm the effectiveness of the training.

Keywords: female, in-group stereotyping, prejudice, situational attribution training

Procedia PDF Downloads 190
677 A First Step towards Automatic Evolutionary for Gas Lifts Allocation Optimization

Authors: Younis Elhaddad, Alfonso Ortega

Abstract:

Oil production by means of gas lift is a standard technique in oil production industry. To optimize the total amount of oil production in terms of the amount of gas injected is a key question in this domain. Different methods have been tested to propose a general methodology. Many of them apply well-known numerical methods. Some of them have taken into account the power of evolutionary approaches. Our goal is to provide the experts of the domain with a powerful automatic searching engine into which they can introduce their knowledge in a format close to the one used in their domain, and get solutions comprehensible in the same terms, as well. These proposals introduced in the genetic engine the most expressive formal models to represent the solutions to the problem. These algorithms have proven to be as effective as other genetic systems but more flexible and comfortable for the researcher although they usually require huge search spaces to justify their use due to the computational resources involved in the formal models. The first step to evaluate the viability of applying our approaches to this realm is to fully understand the domain and to select an instance of the problem (gas lift optimization) in which applying genetic approaches could seem promising. After analyzing the state of the art of this topic, we have decided to choose a previous work from the literature that faces the problem by means of numerical methods. This contribution includes details enough to be reproduced and complete data to be carefully analyzed. We have designed a classical, simple genetic algorithm just to try to get the same results and to understand the problem in depth. We could easily incorporate the well mathematical model, and the well data used by the authors and easily translate their mathematical model, to be numerically optimized, into a proper fitness function. We have analyzed the 100 curves they use in their experiment, similar results were observed, in addition, our system has automatically inferred an optimum total amount of injected gas for the field compatible with the addition of the optimum gas injected in each well by them. We have identified several constraints that could be interesting to incorporate to the optimization process but that could be difficult to numerically express. It could be interesting to automatically propose other mathematical models to fit both, individual well curves and also the behaviour of the complete field. All these facts and conclusions justify continuing exploring the viability of applying the approaches more sophisticated previously proposed by our research group.

Keywords: evolutionary automatic programming, gas lift, genetic algorithms, oil production

Procedia PDF Downloads 162
676 Analysis of Urban Rail Transit Station's Accessibility Reliability: A Case Study of Hangzhou Metro, China

Authors: Jin-Qu Chen, Jie Liu, Yong Yin, Zi-Qi Ju, Yu-Yao Wu

Abstract:

Increase in travel fare and station’s failure will have huge impact on passengers’ travel. The Urban Rail Transit (URT) station’s accessibility reliability under increasing travel fare and station failure are analyzed in this paper. Firstly, the passenger’s travel path is resumed based on stochastic user equilibrium and Automatic Fare Collection (AFC) data. Secondly, calculating station’s importance by combining LeaderRank algorithm and Ratio of Station Affected Passenger Volume (RSAPV), and then the station’s accessibility evaluation indicators are proposed based on the analysis of passenger’s travel characteristic. Thirdly, station’s accessibility under different scenarios are measured and rate of accessibility change is proposed as station’s accessibility reliability indicator. Finally, the accessibility of Hangzhou metro stations is analyzed by the formulated models. The result shows that Jinjiang station and Liangzhu station are the most important and convenient station in the Hangzhou metro, respectively. Station failure and increase in travel fare and station failure have huge impact on station’s accessibility, except for increase in travel fare. Stations in Hangzhou metro Line 1 have relatively worse accessibility reliability and Fengqi Road station’s accessibility reliability is weakest. For Hangzhou metro operational department, constructing new metro line around Line 1 and protecting Line 1’s station preferentially can effective improve the accessibility reliability of Hangzhou metro.

Keywords: automatic fare collection data, AFC, station’s accessibility reliability, stochastic user equilibrium, urban rail transit, URT

Procedia PDF Downloads 136
675 Population Dynamics and Land Use/Land Cover Change on the Chilalo-Galama Mountain Range, Ethiopia

Authors: Yusuf Jundi Sado

Abstract:

Changes in land use are mostly credited to human actions that result in negative impacts on biodiversity and ecosystem functions. This study aims to analyze the dynamics of land use and land cover changes for sustainable natural resources planning and management. Chilalo-Galama Mountain Range, Ethiopia. This study used Thematic Mapper 05 (TM) for 1986, 2001 and Landsat 8 (OLI) data 2017. Additionally, data from the Central Statistics Agency on human population growth were analyzed. Semi-Automatic classification plugin (SCP) in QGIS 3.2.3 software was used for image classification. Global positioning system, field observations and focus group discussions were used for ground verification. Land Use Land Cover (LU/LC) change analysis was using maximum likelihood supervised classification and changes were calculated for the 1986–2001 and the 2001–2017 and 1986-2017 periods. The results show that agricultural land increased from 27.85% (1986) to 44.43% and 51.32% in 2001 and 2017, respectively with the overall accuracies of 92% (1986), 90.36% (2001), and 88% (2017). On the other hand, forests decreased from 8.51% (1986) to 7.64 (2001) and 4.46% (2017), and grassland decreased from 37.47% (1986) to 15.22%, and 15.01% in 2001 and 2017, respectively. It indicates for the years 1986–2017 the largest area cover gain of agricultural land was obtained from grassland. The matrix also shows that shrubland gained land from agricultural land, afro-alpine, and forest land. Population dynamics is found to be one of the major driving forces for the LU/LU changes in the study area.

Keywords: Landsat, LU/LC change, Semi-Automatic classification plugin, population dynamics, Ethiopia

Procedia PDF Downloads 87
674 Automatic and High Precise Modeling for System Optimization

Authors: Stephanie Chen, Mitja Echim, Christof Büskens

Abstract:

To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.

Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization

Procedia PDF Downloads 409
673 Statistical Feature Extraction Method for Wood Species Recognition System

Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof

Abstract:

Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.

Keywords: classification, feature extraction, fuzzy, inspection system, image analysis, macroscopic images

Procedia PDF Downloads 427
672 Automatic Differentiation of Ultrasonic Images of Cystic and Solid Breast Lesions

Authors: Dmitry V. Pasynkov, Ivan A. Egoshin, Alexey A. Kolchev, Ivan V. Kliouchkin

Abstract:

In most cases, typical cysts are easily recognized at ultrasonography. The specificity of this method for typical cysts reaches 98%, and it is usually considered as gold standard for typical cyst diagnosis. However, it is necessary to have all the following features to conclude the typical cyst: clear margin, the absence of internal echoes and dorsal acoustic enhancement. At the same time, not every breast cyst is typical. It is especially characteristic for protein-contained cysts that may have significant internal echoes. On the other hand, some solid lesions (predominantly malignant) may have cystic appearance and may be falsely accepted as cysts. Therefore we tried to develop the automatic method of cystic and solid breast lesions differentiation. Materials and methods. The input data were the ultrasonography digital images with the 256-gradations of gray color (Medison SA8000SE, Siemens X150, Esaote MyLab C). Identification of the lesion on these images was performed in two steps. On the first one, the region of interest (or contour of lesion) was searched and selected. Selection of such region is carried out using the sigmoid filter where the threshold is calculated according to the empirical distribution function of the image brightness and, if necessary, it was corrected according to the average brightness of the image points which have the highest gradient of brightness. At the second step, the identification of the selected region to one of lesion groups by its statistical characteristics of brightness distribution was made. The following characteristics were used: entropy, coefficients of the linear and polynomial regression, quantiles of different orders, an average gradient of brightness, etc. For determination of decisive criterion of belonging to one of lesion groups (cystic or solid) the training set of these characteristics of brightness distribution separately for benign and malignant lesions were received. To test our approach we used a set of 217 ultrasonic images of 107 cystic (including 53 atypical, difficult for bare eye differentiation) and 110 solid lesions. All lesions were cytologically and/or histologically confirmed. Visual identification was performed by trained specialist in breast ultrasonography. Results. Our system correctly distinguished all (107, 100%) typical cysts, 107 of 110 (97.3%) solid lesions and 50 of 53 (94.3%) atypical cysts. On the contrary, with the bare eye it was possible to identify correctly all (107, 100%) typical cysts, 96 of 110 (87.3%) solid lesions and 32 of 53 (60.4%) atypical cysts. Conclusion. Automatic approach significantly surpasses the visual assessment performed by trained specialist. The difference is especially large for atypical cysts and hypoechoic solid lesions with the clear margin. This data may have a clinical significance.

Keywords: breast cyst, breast solid lesion, differentiation, ultrasonography

Procedia PDF Downloads 272
671 Automatic Detection of Traffic Stop Locations Using GPS Data

Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell

Abstract:

Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.

Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data

Procedia PDF Downloads 276
670 AgriInnoConnect Pro System Using Iot and Firebase Console

Authors: Amit Barde, Dipali Khatave, Vaishali Savale, Atharva Chavan, Sapna Wagaj, Aditya Jilla

Abstract:

AgriInnoConnect Pro is an advanced agricultural automation system designed to enhance irrigation efficiency and overall farm management through IoT technology. Using MIT App Inventor, Telegram, Arduino IDE, and Firebase Console, it provides a user-friendly interface for farmers. Key hardware includes soil moisture sensors, DHT11 sensors, a 12V motor, a solenoid valve, a stepdown transformer, Smart Fencing, and AC switches. The system operates in automatic and manual modes. In automatic mode, the ESP32 microcontroller monitors soil moisture and autonomously controls irrigation to optimize water usage. In manual mode, users can control the irrigation motor via a mobile app. Telegram bots enable remote operation of the solenoid valve and electric fencing, enhancing farm security. Additionally, the system upgrades conventional devices to smart ones using AC switches, broadening automation capabilities. AgriInnoConnect Pro aims to improve farm productivity and resource management, addressing the critical need for sustainable water conservation and providing a comprehensive solution for modern farm management. The integration of smart technologies in AgriInnoConnect Pro ensures precision farming practices, promoting efficient resource allocation and sustainable agricultural development.

Keywords: agricultural automation, IoT, soil moisture sensor, ESP32, MIT app inventor, telegram bot, smart farming, remote control, firebase console

Procedia PDF Downloads 46
669 Automatic Detection and Filtering of Negative Emotion-Bearing Contents from Social Media in Amharic Using Sentiment Analysis and Deep Learning Methods

Authors: Derejaw Lake Melie, Alemu Kumlachew Tegegne

Abstract:

The increasing prevalence of social media in Ethiopia has exacerbated societal challenges by fostering the proliferation of negative emotional posts and comments. Illicit use of social media has further exacerbated divisions among the population. Addressing these issues through manual identification and aggregation of emotions from millions of users for swift decision-making poses significant challenges, particularly given the rapid growth of Amharic language usage on social platforms. Consequently, there is a critical need to develop an intelligent system capable of automatically detecting and categorizing negative emotional content into social, religious, and political categories while also filtering out toxic online content. This paper aims to leverage sentiment analysis techniques to achieve automatic detection and filtering of negative emotional content from Amharic social media texts, employing a comparative study of deep learning algorithms. The study utilized a dataset comprising 29,962 comments collected from social media platforms using comment exporter software. Data pre-processing techniques were applied to enhance data quality, followed by the implementation of deep learning methods for training, testing, and evaluation. The results showed that CNN, GRU, LSTM, and Bi-LSTM classification models achieved accuracies of 83%, 50%, 84%, and 86%, respectively. Among these models, Bi-LSTM demonstrated the highest accuracy of 86% in the experiment.

Keywords: negative emotion, emotion detection, social media filtering sentiment analysis, deep learning.

Procedia PDF Downloads 32
668 Induced Emotional Empathy and Contextual Factors like Presence of Others Reduce the Negative Stereotypes Towards Persons with Disabilities through Stronger Prosociality

Authors: Shailendra Kumar Mishra

Abstract:

In this paper, we focus on how contextual factors like the physical presence of other perceivers and then developed induced emotional empathy towards a person with disabilities may reduce the automatic negative stereotypes and then response towards that person. We demonstrated in study 1 that negative attitude based on negative stereotypes assessed on ATDP-test questionnaires on five points Linkert-scale are significantly less negative when participants were tested with a group of perceivers and then tested alone separately by applying 3 (positive, indifferent, and negative attitude levels) X 2 (physical presence condition and alone) factorial design of ANOVA test. In the second study, we demonstrate, by applying regression analysis, in the presence of other perceivers, whether in a small group, participants showed more induced emotional empathy through stronger prosociality towards a high distress target like a person with disabilities in comparison of that of other stigmatized persons such as racial biased or gender-biased people. Thus results show that automatic affective response in the form of induced emotional empathy in perceiver and contextual factors like the presence of other perceivers automatically activate stronger prosocial norms and egalitarian goals towards physically challenged persons in comparison to other stigmatized persons like racial or gender-biased people. This leads to less negative attitudes and behaviour towards a person with disabilities.

Keywords: contextual factors, high distress target, induced emotional empathy, stronger prosociality

Procedia PDF Downloads 139
667 Empowering Transformers for Evidence-Based Medicine

Authors: Jinan Fiaidhi, Hashmath Shaik

Abstract:

Breaking the barrier for practicing evidence-based medicine relies on effective methods for rapidly identifying relevant evidence from the body of biomedical literature. An important challenge confronted by medical practitioners is the long time needed to browse, filter, summarize and compile information from different medical resources. Deep learning can help in solving this based on automatic question answering (Q&A) and transformers. However, Q&A and transformer technologies are not trained to answer clinical queries that can be used for evidence-based practice, nor can they respond to structured clinical questioning protocols like PICO (Patient/Problem, Intervention, Comparison and Outcome). This article describes the use of deep learning techniques for Q&A that are based on transformer models like BERT and GPT to answer PICO clinical questions that can be used for evidence-based practice extracted from sound medical research resources like PubMed. We are reporting acceptable clinical answers that are supported by findings from PubMed. Our transformer methods are reaching an acceptable state-of-the-art performance based on two staged bootstrapping processes involving filtering relevant articles followed by identifying articles that support the requested outcome expressed by the PICO question. Moreover, we are also reporting experimentations to empower our bootstrapping techniques with patch attention to the most important keywords in the clinical case and the PICO questions. Our bootstrapped patched with attention is showing relevancy of the evidence collected based on entropy metrics.

Keywords: automatic question answering, PICO questions, evidence-based medicine, generative models, LLM transformers

Procedia PDF Downloads 47
666 Effects of a Simulated Power Cut in Automatic Milking Systems on Dairy Cows Heart Activity

Authors: Anja Gräff, Stefan Holzer, Manfred Höld, Jörn Stumpenhausen, Heinz Bernhardt

Abstract:

In view of the increasing quantity of 'green energy' from renewable raw materials and photovoltaic facilities, it is quite conceivable that power supply variations may occur, so that constantly working machines like automatic milking systems (AMS) may break down temporarily. The usage of farm-made energy is steadily increasing in order to keep energy costs as low as possible. As a result, power cuts are likely to happen more frequently. Current work in the framework of the project 'stable 4.0' focuses on possible stress reactions by simulating power cuts up to four hours in dairy farms. Based on heart activity it should be found out whether stress on dairy cows increases under these circumstances. In order to simulate a power cut, 12 random cows out of 2 herds were not admitted to the AMS for at least two hours on three consecutive days. The heart rates of the cows were measured and the collected data evaluated with HRV Program Kubios Version 2.1 on the basis of eight parameters (HR, RMSSD, pNN50, SD1, SD2, LF, HF and LF/HF). Furthermore, stress reactions were examined closely via video analysis, milk yield, ruminant activity, pedometer and measurements of cortisol metabolites. Concluding it turned out, that during the test only some animals were suffering from minor stress symptoms, when they tried to get into the AMS at their regular milking time, but couldn´t be milked because the system was manipulated. However, the stress level during a regular “time-dependent milking rejection” was just as high. So the study comes to the conclusion, that the low psychological stress level in the case of a 2-4 hours failure of an AMS does not have any impact on animal welfare and health.

Keywords: dairy cow, heart activity, power cut, stable 4.0

Procedia PDF Downloads 311
665 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs

Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare

Abstract:

The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.

Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio

Procedia PDF Downloads 100
664 Geographic Information System and Dynamic Segmentation of Very High Resolution Images for the Semi-Automatic Extraction of Sandy Accumulation

Authors: A. Bensaid, T. Mostephaoui, R. Nedjai

Abstract:

A considerable area of Algerian lands is threatened by the phenomenon of wind erosion. For a long time, wind erosion and its associated harmful effects on the natural environment have posed a serious threat, especially in the arid regions of the country. In recent years, as a result of increases in the irrational exploitation of natural resources (fodder) and extensive land clearing, wind erosion has particularly accentuated. The extent of degradation in the arid region of the Algerian Mecheria department generated a new situation characterized by the reduction of vegetation cover, the decrease of land productivity, as well as sand encroachment on urban development zones. In this study, we attempt to investigate the potential of remote sensing and geographic information systems for detecting the spatial dynamics of the ancient dune cords based on the numerical processing of LANDSAT images (5, 7, and 8) of three scenes 197/37, 198/36 and 198/37 for the year 2020. As a second step, we prospect the use of geospatial techniques to monitor the progression of sand dunes on developed (urban) lands as well as on the formation of sandy accumulations (dune, dunes fields, nebkha, barkhane, etc.). For this purpose, this study made use of the semi-automatic processing method for the dynamic segmentation of images with very high spatial resolution (SENTINEL-2 and Google Earth). This study was able to demonstrate that urban lands under current conditions are located in sand transit zones that are mobilized by the winds from the northwest and southwest directions.

Keywords: land development, GIS, segmentation, remote sensing

Procedia PDF Downloads 155
663 2D Convolutional Networks for Automatic Segmentation of Knee Cartilage in 3D MRI

Authors: Ananya Ananya, Karthik Rao

Abstract:

Accurate segmentation of knee cartilage in 3-D magnetic resonance (MR) images for quantitative assessment of volume is crucial for studying and diagnosing osteoarthritis (OA) of the knee, one of the major causes of disability in elderly people. Radiologists generally perform this task in slice-by-slice manner taking 15-20 minutes per 3D image, and lead to high inter and intra observer variability. Hence automatic methods for knee cartilage segmentation are desirable and are an active field of research. This paper presents design and experimental evaluation of 2D convolutional neural networks based fully automated methods for knee cartilage segmentation in 3D MRI. The architectures are validated based on 40 test images and 60 training images from SKI10 dataset. The proposed methods segment 2D slices one by one, which are then combined to give segmentation for whole 3D images. Proposed methods are modified versions of U-net and dilated convolutions, consisting of a single step that segments the given image to 5 labels: background, femoral cartilage, tibia cartilage, femoral bone and tibia bone; cartilages being the primary components of interest. U-net consists of a contracting path and an expanding path, to capture context and localization respectively. Dilated convolutions lead to an exponential expansion of receptive field with only a linear increase in a number of parameters. A combination of modified U-net and dilated convolutions has also been explored. These architectures segment one 3D image in 8 – 10 seconds giving average volumetric Dice Score Coefficients (DSC) of 0.950 - 0.962 for femoral cartilage and 0.951 - 0.966 for tibia cartilage, reference being the manual segmentation.

Keywords: convolutional neural networks, dilated convolutions, 3 dimensional, fully automated, knee cartilage, MRI, segmentation, U-net

Procedia PDF Downloads 262
662 Deep Learning-Based Approach to Automatic Abstractive Summarization of Patent Documents

Authors: Sakshi V. Tantak, Vishap K. Malik, Neelanjney Pilarisetty

Abstract:

A patent is an exclusive right granted for an invention. It can be a product or a process that provides an innovative method of doing something, or offers a new technical perspective or solution to a problem. A patent can be obtained by making the technical information and details about the invention publicly available. The patent owner has exclusive rights to prevent or stop anyone from using the patented invention for commercial uses. Any commercial usage, distribution, import or export of a patented invention or product requires the patent owner’s consent. It has been observed that the central and important parts of patents are scripted in idiosyncratic and complex linguistic structures that can be difficult to read, comprehend or interpret for the masses. The abstracts of these patents tend to obfuscate the precise nature of the patent instead of clarifying it via direct and simple linguistic constructs. This makes it necessary to have an efficient access to this knowledge via concise and transparent summaries. However, as mentioned above, due to complex and repetitive linguistic constructs and extremely long sentences, common extraction-oriented automatic text summarization methods should not be expected to show a remarkable performance when applied to patent documents. Other, more content-oriented or abstractive summarization techniques are able to perform much better and generate more concise summaries. This paper proposes an efficient summarization system for patents using artificial intelligence, natural language processing and deep learning techniques to condense the knowledge and essential information from a patent document into a single summary that is easier to understand without any redundant formatting and difficult jargon.

Keywords: abstractive summarization, deep learning, natural language Processing, patent document

Procedia PDF Downloads 123
661 Ensuring Safe Operation by Providing an End-To-End Field Monitoring and Incident Management Approach for Autonomous Vehicle Based on ML/Dl SW Stack

Authors: Lucas Bublitz, Michael Herdrich

Abstract:

By achieving the first commercialization approval in San Francisco the Autonomous Driving (AD) industry proves the technology maturity of the SAE L4 AD systems and the corresponding software and hardware stack. This milestone reflects the upcoming phase in the industry, where the focus is now about scaling and supervising larger autonomous vehicle (AV) fleets in different operation areas. This requires an operation framework, which organizes and assigns responsibilities to the relevant AV technology and operation stakeholders from the AV system provider, the Remote Intervention Operator, the MaaS provider and regulatory & approval authority. This holistic operation framework consists of technological, processual, and organizational activities to ensure safe operation for fully automated vehicles. Regarding the supervision of large autonomous vehicle fleets, a major focus is on the continuous field monitoring. The field monitoring approach must reflect the safety and security criticality of incidents in the field during driving operation. This includes an automatic containment approach, with the overall goal to avoid safety critical incidents and reduce downtime by a malfunction of the AD software stack. An End-to-end (E2E) field monitoring approach detects critical faults in the field, uses a knowledge-based approach for evaluating the safety criticality and supports the automatic containment of these E/E faults. Applying such an approach will ensure the scalability of AV fleets, which is determined by the handling of incidents in the field and the continuous regulatory compliance of the technology after enhancing the Operational Design Domain (ODD) or the function scope by Functions on Demand (FoD) over the entire digital product lifecycle.

Keywords: field monitoring, incident management, multicompliance management for AI in AD, root cause analysis, database approach

Procedia PDF Downloads 77
660 Automatic Near-Infrared Image Colorization Using Synthetic Images

Authors: Yoganathan Karthik, Guhanathan Poravi

Abstract:

Colorizing near-infrared (NIR) images poses unique challenges due to the absence of color information and the nuances in light absorption. In this paper, we present an approach to NIR image colorization utilizing a synthetic dataset generated from visible light images. Our method addresses two major challenges encountered in NIR image colorization: accurately colorizing objects with color variations and avoiding over/under saturation in dimly lit scenes. To tackle these challenges, we propose a Generative Adversarial Network (GAN)-based framework that learns to map NIR images to their corresponding colorized versions. The synthetic dataset ensures diverse color representations, enabling the model to effectively handle objects with varying hues and shades. Furthermore, the GAN architecture facilitates the generation of realistic colorizations while preserving the integrity of dimly lit scenes, thus mitigating issues related to over/under saturation. Experimental results on benchmark NIR image datasets demonstrate the efficacy of our approach in producing high-quality colorizations with improved color accuracy and naturalness. Quantitative evaluations and comparative studies validate the superiority of our method over existing techniques, showcasing its robustness and generalization capability across diverse NIR image scenarios. Our research not only contributes to advancing NIR image colorization but also underscores the importance of synthetic datasets and GANs in addressing domain-specific challenges in image processing tasks. The proposed framework holds promise for various applications in remote sensing, medical imaging, and surveillance where accurate color representation of NIR imagery is crucial for analysis and interpretation.

Keywords: computer vision, near-infrared images, automatic image colorization, generative adversarial networks, synthetic data

Procedia PDF Downloads 46
659 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation

Authors: Miguel Contreras, David Long, Will Bachman

Abstract:

Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.

Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models

Procedia PDF Downloads 205
658 A Convenient Part Library Based on SolidWorks Platform

Authors: Wei Liu, Xionghui Zhou, Qiang Niu, Yunhao Ni

Abstract:

3D part library is an ideal approach to reuse the existing design and thus facilitates the modeling process, which will enhance the efficiency. In this paper, we implemented the thought on the SolidWorks platform. The system supports the functions of type and parameter selection, 3D template driving and part assembly. Finally, BOM is exported in Excel format. Experiment shows that our method can satisfy the requirement of die and mold designers.

Keywords: part library, SolidWorks, automatic assembly, intelligent

Procedia PDF Downloads 394
657 Environment Management Practices at Oil and Natural Gas Corporation Hazira Gas Processing Complex

Authors: Ashish Agarwal, Vaibhav Singh

Abstract:

Harmful emissions from oil and gas processing facilities have long remained a matter of concern for governments and environmentalists throughout the world. This paper analyses Oil and Natural Gas Corporation (ONGC) gas processing plant in Hazira, Gujarat, India. It is the largest gas-processing complex in the country designed to process 41MMSCMD sour natural gas & associated sour condensate. The complex, sprawling over an area of approximate 705 hectares is the mother plant for almost all industries at Hazira and enroute Hazira Bijapur Jagdishpur pipeline. Various sources of pollution from each unit starting from Gas Terminal to Dew Point Depression unit and Caustic Wash unit along the processing chain were examined with the help of different emission data obtained from ONGC. Pollution discharged to the environment was classified into Water, Air, Hazardous Waste and Solid (Non-Hazardous) Waste so as to analyze each one of them efficiently. To protect air environment, Sulphur recovery unit along with automatic ambient air quality monitoring stations, automatic stack monitoring stations among numerous practices were adopted. To protect water environment different effluent treatment plants were used with due emphasis on aquaculture of the nearby area. Hazira plant has obtained the authorization for handling and disposal of five types of hazardous waste. Most of the hazardous waste were sold to authorized recyclers and the rest was given to Gujarat Pollution Control Board authorized vendors. Non-Hazardous waste was also handled with an overall objective of zero negative impact on the environment. The effect of methods adopted is evident from emission data of the plant which was found to be well under Gujarat Pollution Control Board limits.

Keywords: sulphur recovery unit, effluent treatment plant, hazardous waste, sour gas

Procedia PDF Downloads 226