Search results for: data driven decision making
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30485

Search results for: data driven decision making

28145 Towards an Environmental Knowledge System in Water Management

Authors: Mareike Dornhoefer, Madjid Fathi

Abstract:

Water supply and water quality are key problems of mankind at the moment and - due to increasing population - in the future. Management disciplines like water, environment and quality management therefore need to closely interact, to establish a high level of water quality and to guarantee water supply in all parts of the world. Groundwater remediation is one aspect in this process. From a knowledge management perspective it is only possible to solve complex ecological or environmental problems if different factors, expert knowledge of various stakeholders and formal regulations regarding water, waste or chemical management are interconnected in form of a knowledge base. In general knowledge management focuses the processes of gathering and representing existing and new knowledge in a way, which allows for inference or deduction of knowledge for e.g. a situation where a problem solution or decision support are required. A knowledge base is no sole data repository, but a key element in a knowledge based system, thus providing or allowing for inference mechanisms to deduct further knowledge from existing facts. In consequence this knowledge provides decision support. The given paper introduces an environmental knowledge system in water management. The proposed environmental knowledge system is part of a research concept called Green Knowledge Management. It applies semantic technologies or concepts such as ontology or linked open data to interconnect different data and information sources about environmental aspects, in this case, water quality, as well as background material enriching an established knowledge base. Examples for the aforementioned ecological or environmental factors threatening water quality are among others industrial pollution (e.g. leakage of chemicals), environmental changes (e.g. rise in temperature) or floods, where all kinds of waste are merged and transferred into natural water environments. Water quality is usually determined with the help of measuring different indicators (e.g. chemical or biological), which are gathered with the help of laboratory testing, continuous monitoring equipment or other measuring processes. During all of these processes data are gathered and stored in different databases. Meanwhile the knowledge base needs to be established through interconnecting data of these different data sources and enriching its semantics. Experts may add their knowledge or experiences of previous incidents or influencing factors. In consequence querying or inference mechanisms are applied for the deduction of coherence between indicators, predictive developments or environmental threats. Relevant processes or steps of action may be modeled in form of a rule based approach. Overall the environmental knowledge system supports the interconnection of information and adding semantics to create environmental knowledge about water environment, supply chain as well as quality. The proposed concept itself is a holistic approach, which links to associated disciplines like environmental and quality management. Quality indicators and quality management steps need to be considered e.g. for the process and inference layers of the environmental knowledge system, thus integrating the aforementioned management disciplines in one water management application.

Keywords: water quality, environmental knowledge system, green knowledge management, semantic technologies, quality management

Procedia PDF Downloads 222
28144 Integrating Cyber-Physical System toward Advance Intelligent Industry: Features, Requirements and Challenges

Authors: V. Reyes, P. Ferreira

Abstract:

In response to high levels of competitiveness, industrial systems have evolved to improve productivity. As a consequence, a rapid increase in volume production and simultaneously, a customization process require lower costs, more variety, and accurate quality of products. Reducing time-cycle production, enabling customizability, and ensure continuous quality improvement are key features in advance intelligent industry. In this scenario, customers and producers will be able to participate in the ongoing production life cycle through real-time interaction. To achieve this vision, transparency, predictability, and adaptability are key features that provide the industrial systems the capability to adapt to customer demands modifying the manufacturing process through an autonomous response and acting preventively to avoid errors. The industrial system incorporates a diversified number of components that in advanced industry are expected to be decentralized, end to end communicating, and with the capability to make own decisions through feedback. The evolving process towards advanced intelligent industry defines a set of stages to empower components of intelligence and enhancing efficiency to achieve the decision-making stage. The integrated system follows an industrial cyber-physical system (CPS) architecture whose real-time integration, based on a set of enabler technologies, links the physical and virtual world generating the digital twin (DT). This instance allows incorporating sensor data from real to virtual world and the required transparency for real-time monitoring and control, contributing to address important features of the advanced intelligent industry and simultaneously improve sustainability. Assuming the industrial CPS as the core technology toward the latest advanced intelligent industry stage, this paper reviews and highlights the correlation and contributions of the enabler technologies for the operationalization of each stage in the path toward advanced intelligent industry. From this research, a real-time integration architecture for a cyber-physical system with applications to collaborative robotics is proposed. The required functionalities and issues to endow the industrial system of adaptability are identified.

Keywords: cyber-physical systems, digital twin, sensor data, system integration, virtual model

Procedia PDF Downloads 119
28143 Implementation of a Lattice Boltzmann Method for Pulsatile Flow with Moment Based Boundary Condition

Authors: Zainab A. Bu Sinnah, David I. Graham

Abstract:

The Lattice Boltzmann Method has been developed and used to simulate both steady and unsteady fluid flow problems such as turbulent flows, multiphase flow and flows in the vascular system. As an example, the study of blood flow and its properties can give a greater understanding of atherosclerosis and the flow parameters which influence this phenomenon. The blood flow in the vascular system is driven by a pulsating pressure gradient which is produced by the heart. As a very simple model of this, we simulate plane channel flow under periodic forcing. This pulsatile flow is essentially the standard Poiseuille flow except that the flow is driven by the periodic forcing term. Moment boundary conditions, where various moments of the particle distribution function are specified, are applied at solid walls. We used a second-order single relaxation time model and investigated grid convergence using two distinct approaches. In the first approach, we fixed both Reynolds and Womersley numbers and varied relaxation time with grid size. In the second approach, we fixed the Womersley number and relaxation time. The expected second-order convergence was obtained for the second approach. For the first approach, however, the numerical method converged, but not necessarily to the appropriate analytical result. An explanation is given for these observations.

Keywords: Lattice Boltzmann method, single relaxation time, pulsatile flow, moment based boundary condition

Procedia PDF Downloads 233
28142 Modeling Local Warming Trend: An Application of Remote Sensing Technique

Authors: Khan R. Rahaman, Quazi K. Hassan

Abstract:

Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).

Keywords: local warming, climate change, urban area, Alberta, Canada

Procedia PDF Downloads 349
28141 Patient Progression at Discharge: A Communication, Coordination, and Accountability Gap among Hospital Teams

Authors: Nana Benma Osei

Abstract:

Patient discharge can be a hectic process. Patients are sometimes sent to the wrong location or forgotten in lounges in the waiting room. This ends up compromising patient care because the delay in picking the patients can affect how they adhere to medication. Patients may fail to take their medication, and this will lead to negative outcomes. The situation highlights the demands of modern-day healthcare, and the use of technology can help in reducing such challenges and in enhancing the patient’s experience, leading to greater satisfaction with the care provided. The paper contains the proposed changes to a healthcare facility by introducing the clinical decision support system, which will be needed to improve coordination and communication during patient discharge. This will be done under Kurt Lewin’s Change Management Model, which recognizes the different phases in the change process. A pilot program is proposed initially before the program can be implemented in the entire organization. This allows for the identification of challenges and ways of managing them. The paper anticipates some of the possible challenges that may arise during implementation, and a multi-disciplinary approach is considered the most effective. Opposition to the change is likely to arise because staff members may lack information on how the changes will affect them and the skills they will need to learn to use the new system. Training will occur before the technology can be implemented. Every member will go for training, and adequate time is allocated for training purposes. A comparison of data will determine whether the project has succeeded.

Keywords: patient discharge, clinical decision support system, communication, collaboration

Procedia PDF Downloads 104
28140 Trajectory Planning Algorithms for Autonomous Agricultural Vehicles

Authors: Caner Koc, Dilara Gerdan Koc, Mustafa Vatandas

Abstract:

The fundamental components of autonomous agricultural robot design, such as having a working understanding of coordinates, correctly constructing the desired route, and sensing environmental elements, are the most important. A variety of sensors, hardware, and software are employed by agricultural robots to find these systems.These enable the fully automated driving system of an autonomous vehicle to simulate how a human-driven vehicle would respond to changing environmental conditions. To calculate the vehicle's motion trajectory using data from the sensors, this automation system typically consists of a sophisticated software architecture based on object detection and driving decisions. In this study, the software architecture of an autonomous agricultural vehicle is compared to the trajectory planning techniques.

Keywords: agriculture 5.0, computational intelligence, motion planning, trajectory planning

Procedia PDF Downloads 80
28139 A Multi-Criteria Decision Making Approach for Disassembly-To-Order Systems under Uncertainty

Authors: Ammar Y. Alqahtani

Abstract:

In order to minimize the negative impact on the environment, it is essential to manage the waste that generated from the premature disposal of end-of-life (EOL) products properly. Consequently, government and international organizations introduced new policies and regulations to minimize the amount of waste being sent to landfills. Moreover, the consumers’ awareness regards environment has forced original equipment manufacturers to consider being more environmentally conscious. Therefore, manufacturers have thought of different ways to deal with waste generated from EOL products viz., remanufacturing, reusing, recycling, or disposing of EOL products. The rate of depletion of virgin natural resources and their dependency on the natural resources can be reduced by manufacturers when EOL products are treated as remanufactured, reused, or recycled, as well as this will cut on the amount of harmful waste sent to landfills. However, disposal of EOL products contributes to the problem and therefore is used as a last option. Number of EOL need to be estimated in order to fulfill the components demand. Then, disassembly process needs to be performed to extract individual components and subassemblies. Smart products, built with sensors embedded and network connectivity to enable the collection and exchange of data, utilize sensors that are implanted into products during production. These sensors are used for remanufacturers to predict an optimal warranty policy and time period that should be offered to customers who purchase remanufactured components and products. Sensor-provided data can help to evaluate the overall condition of a product, as well as the remaining lives of product components, prior to perform a disassembly process. In this paper, a multi-period disassembly-to-order (DTO) model is developed that takes into consideration the different system uncertainties. The DTO model is solved using Nonlinear Programming (NLP) in multiple periods. A DTO system is considered where a variety of EOL products are purchased for disassembly. The model’s main objective is to determine the best combination of EOL products to be purchased from every supplier in each period which maximized the total profit of the system while satisfying the demand. This paper also addressed the impact of sensor embedded products on the cost of warranties. Lastly, this paper presented and analyzed a case study involving various simulation conditions to illustrate the applicability of the model.

Keywords: closed-loop supply chains, environmentally conscious manufacturing, product recovery, reverse logistics

Procedia PDF Downloads 139
28138 JavaScript Object Notation Data against eXtensible Markup Language Data in Software Applications a Software Testing Approach

Authors: Theertha Chandroth

Abstract:

This paper presents a comparative study on how to check JSON (JavaScript Object Notation) data against XML (eXtensible Markup Language) data from a software testing point of view. JSON and XML are widely used data interchange formats, each with its unique syntax and structure. The objective is to explore various techniques and methodologies for validating comparison and integration between JSON data to XML and vice versa. By understanding the process of checking JSON data against XML data, testers, developers and data practitioners can ensure accurate data representation, seamless data interchange, and effective data validation.

Keywords: XML, JSON, data comparison, integration testing, Python, SQL

Procedia PDF Downloads 142
28137 Using Machine Learning Techniques to Extract Useful Information from Dark Data

Authors: Nigar Hussain

Abstract:

It is a subset of big data. Dark data means those data in which we fail to use for future decisions. There are many issues in existing work, but some need powerful tools for utilizing dark data. It needs sufficient techniques to deal with dark data. That enables users to exploit their excellence, adaptability, speed, less time utilization, execution, and accessibility. Another issue is the way to utilize dark data to extract helpful information to settle on better choices. In this paper, we proposed upgrade strategies to remove the dark side from dark data. Using a supervised model and machine learning techniques, we utilized dark data and achieved an F1 score of 89.48%.

Keywords: big data, dark data, machine learning, heatmap, random forest

Procedia PDF Downloads 31
28136 Assessing the Adoption of Health Information Systems in a Resource-Constrained Country: A Case of Uganda

Authors: Lubowa Samuel

Abstract:

Health information systems, often known as HIS, are critical components of the healthcare system to improve health policies and promote global health development. In a broader sense, HIS as a system integrates data collecting, processing, reporting, and making use of various types of data to improve healthcare efficacy and efficiency through better management at all levels of healthcare delivery. The aim of this study is to assess the adoption of health information systems (HIS) in a resource-constrained country drawing from the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model. The results indicate that the user's perception of the technology and the poor information technology infrastructures contribute a lot to the low adoption of HIS in resource-constrained countries.

Keywords: health information systems, resource-constrained countries, health information systems

Procedia PDF Downloads 122
28135 Optimization of the Measure of Compromise as a Version of Sorites Paradox

Authors: Aleksandar Hatzivelkos

Abstract:

The term ”compromise” is mostly used casually within the social choice theory. It is usually used as a mere result of the social choice function, and this omits its deeper meaning and ramifications. This paper is based on a mathematical model for the description of a compromise as a version of the Sorites paradox. It introduces a formal definition of d-measure of divergence from a compromise and models a notion of compromise that is often used only colloquially. Such a model for vagueness phenomenon, which lies at the core of the notion of compromise enables the introduction of new mathematical structures. In order to maximize compromise, different methods can be used. In this paper, we explore properties of a social welfare function TdM (from Total d-Measure), which is defined as a function which minimizes the total sum of d-measures of divergence over all possible linear orderings. We prove that TdM satisfy strict Pareto principle and behaves well asymptotically. Furthermore, we show that for certain domain restrictions, TdM satisfy positive responsiveness and IIIA (intense independence of irrelevant alternatives) thus being equivalent to Borda count on such domain restriction. This result gives new opportunities in social choice, especially when there is an emphasis on compromise in the decision-making process.

Keywords: borda count, compromise, measure of divergence, minimization

Procedia PDF Downloads 135
28134 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis

Authors: Mehrnaz Mostafavi

Abstract:

The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.

Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans

Procedia PDF Downloads 104
28133 The Implementation of the Human Right of Self-Determination: the Example of Nagorno-Karabakh Republic

Authors: S. Vlasyan

Abstract:

The article deals with the implementation of the right to self-determination of peoples on the example of Nagorno-Karabakh Republic. The problem of correlation of two fundamental principles of international law i. e. territorial integrity and the right to self-determination of peoples is considered to be one of the vital issues in the field of international law for several decades. So, in this article, the author analyzes the decision of the Supreme Court of Canada regarding specific issues of secession of Quebec from Canada, as well as the decision of the International Court of Justice in the case concerning East Timor (Portugal v. Australia), and in the case of Western Sahara. The author formulates legal conditions of Nagorno-Karabakh secession.

Keywords: right of self-determination, territorial integrity, the principles of International Law, Nagorno-Karabakh Republic

Procedia PDF Downloads 411
28132 Argentine Immigrant Policy: A Qualitative Analysis of Changes and Trends from 2016 on

Authors: Romeu Bonk Mesquita

Abstract:

Argentina is the South American number 1 country of destiny to intraregional migration flows. This research aims to shed light on the main trends of the Argentine immigrant policy from 2016 on, when Mauricio Marci was elected President, taking the approval of the current and fairly protective of human rights Ley de Migraciones (2003) as an analytical starting point. Foreign Policy Analysis (FPA) serves as the theoretical background, highlighting decision-making processes and institutional designs that encourage or constraint political and social actors. The analysis goes through domestic and international levels, observing how immigration policy is formulated as a public policy and is simultaneously connected to Mercosur and other international organizations, such as the International Organization for Migration (IOM) and the United Nations High Commissioner for Refugees (UNHCR). Thus, the study revolves around the Direccion Nacional de Migraciones, which is the state agency in charge of executing the country’s immigrant policy, as to comprehend how its internal processes and the connections it has with both domestic and international institutions shape Argentina’s immigrant policy formulation and execution. Also, it aims to locate the migration agenda within the country’s contemporary social and political context. The methodology is qualitative, case-based and oriented by process-tracing techniques. Empirical evidence gathered includes official documents and data, media coverage and interviews to key-informants. Recent events, such as the Decreto de Necesidad y Urgencia 70/2017 issued by President Macri, and the return of discursive association between migration and criminality, indicate a trend of nationalization and securitization of the immigration policy in contemporary Argentina.

Keywords: Argentine foreign policy, human rights, immigrant policy, Mercosur

Procedia PDF Downloads 168
28131 Requirement Engineering and Software Product Line Scoping Paradigm

Authors: Ahmed Mateen, Zhu Qingsheng, Faisal Shahzad

Abstract:

Requirement Engineering (RE) is a part being created for programming structure during the software development lifecycle. Software product line development is a new topic area within the domain of software engineering. It also plays important role in decision making and it is ultimately helpful in rising business environment for productive programming headway. Decisions are central to engineering processes and they hold them together. It is argued that better decisions will lead to better engineering. To achieve better decisions requires that they are understood in detail. In order to address the issues, companies are moving towards Software Product Line Engineering (SPLE) which helps in providing large varieties of products with minimum development effort and cost. This paper proposed a new framework for software product line and compared with other models. The results can help to understand the needs in SPL testing, by identifying points that still require additional investigation. In our future scenario, we will combine this model in a controlled environment with industrial SPL projects which will be the new horizon for SPL process management testing strategies.

Keywords: requirements engineering, software product lines, scoping, process structure, domain specific language

Procedia PDF Downloads 226
28130 A Condition-Based Maintenance Policy for Multi-Unit Systems Subject to Deterioration

Authors: Nooshin Salari, Viliam Makis

Abstract:

In this paper, we propose a condition-based maintenance policy for multi-unit systems considering the existence of economic dependency among units. We consider a system composed of N identical units, where each unit deteriorates independently. Deterioration process of each unit is modeled as a three-state continuous time homogeneous Markov chain with two working states and a failure state. The average production rate of units varies in different working states and demand rate of the system is constant. Units are inspected at equidistant time epochs, and decision regarding performing maintenance is determined by the number of units in the failure state. If the total number of units in the failure state exceeds a critical level, maintenance is initiated, where units in failed state are replaced correctively and deteriorated state units are maintained preventively. Our objective is to determine the optimal number of failed units to initiate maintenance minimizing the long run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision process (SMDP) framework. A numerical example is developed to demonstrate the proposed policy and the comparison with the corrective maintenance policy is presented.

Keywords: reliability, maintenance optimization, semi-Markov decision process, production

Procedia PDF Downloads 166
28129 The Impact of Governance Criteria in the Supplier Selection Process of Large German Companies

Authors: Christoph Köster

Abstract:

Supplier selection is one of the key challenges in supply chain management and can be considered a multi-criteria decision-making (MCDM) problem. In the 1960s, it evolved from considering only economic criteria, such as price, quality, and performance, to including environmental and social criteria nowadays. Although receiving considerable attention from scholars and practitioners over the past decades, existing research has not considered governance criteria so far. This is, however, surprising, as ESG (environmental, social, and governance) criteria have gained considerable attention. In order to complement ESG criteria in the supplier selection process, this study investigates German DAX and MDAX companies and evaluates the impact of governance criteria along their supplier selection process. Moreover, it proposes a set of criteria for the respective process steps. Specifically, eleven criteria for the first process step and five criteria for the second process step are identified. This paper contributes to a better understanding of the supplier selection process by elucidating the relevance of governance criteria in the supplier selection process and providing a set of empirically developed governance criteria. These results can be applied by practitioners to complement the criteria set in the supplier selection process and thus balance economic, environmental, social, and governance targets.

Keywords: ESG, governance, sustainable supplier selection, sustainability

Procedia PDF Downloads 121
28128 ePAM: Advancing Sustainable Mobility through Digital Parking, AI-Driven Vehicle Recognition, and CO₂ Reporting

Authors: Robert Monsberger

Abstract:

The increasing scarcity of resources and the pressing challenge of climate change demand transformative technological, economic, and societal approaches. In alignment with the European Green Deal's goal to achieve net-zero greenhouse gas emissions by 2050, this paper presents the development and implementation of an electronic parking and mobility system (ePAM). This system offers a distinct, integrated solution aimed at promoting climate-positive mobility, reducing individual vehicle use, and advancing the digital transformation of off-street parking. The core objectives include the accurate recognition of electric vehicles and occupant counts using advanced camera-based systems, achieving a very high accuracy. This capability enables the dynamic categorization and classification of vehicles to provide fair and automated tariff adjustments. The study also seeks to replace physical barriers with virtual ‘digital gates’ using augmented reality, significantly improving user acceptance as shown in studies conducted. The system is designed to operate as an end-to-end software solution, enabling a fully digital and paperless parking management system by leveraging license plate recognition (LPR) and metadata processing. By eliminating physical infrastructure like gates and terminals, the system significantly reduces resource consumption, maintenance complexity, and operational costs while enhancing energy efficiency. The platform also integrates CO₂ reporting tools to support compliance with upcoming EU emission trading schemes and to incentivize eco-friendly transportation behaviors. By fostering the adoption of electric vehicles and ride-sharing models, the system contributes to the optimization of traffic flows and the minimization of search traffic in urban centers. The platform's open data interfaces enable seamless integration into multimodal transport systems, facilitating a transition from individual to public transportation modes. This study emphasizes sustainability, data privacy, and compliance with the AI Act, aiming to achieve a market share of at least 4.5% in the DACH region by 2030. ePAM sets a benchmark for innovative mobility solutions, driving significant progress toward climate-neutral urban mobility.

Keywords: sustainable mobility, digital parking, AI-driven vehicle recognition, license plate recognition, virtual gates, multimodal transport integration

Procedia PDF Downloads 5
28127 Parkinson’s Disease Detection Analysis through Machine Learning Approaches

Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee

Abstract:

Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.

Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier

Procedia PDF Downloads 131
28126 A Hybrid Traffic Model for Smoothing Traffic Near Merges

Authors: Shiri Elisheva Decktor, Sharon Hornstein

Abstract:

Highway merges and unmarked junctions are key components in any urban road network, which can act as bottlenecks and create traffic disruption. Inefficient highway merges may trigger traffic instabilities such as stop-and-go waves, pose safety conditions and lead to longer journey times. These phenomena occur spontaneously if the average vehicle density exceeds a certain critical value. This study focuses on modeling the traffic using a microscopic traffic flow model. A hybrid traffic model, which combines human-driven and controlled vehicles is assumed. The controlled vehicles obey different driving policies when approaching the merge, or in the vicinity of other vehicles. We developed a co-simulation model in SUMO (Simulation of Urban Mobility), in which the human-driven cars are modeled using the IDM model, and the controlled cars are modeled using a dedicated controller. The scenario chosen for this study is a closed track with one merge and one exit, which could be later implemented using a scaled infrastructure on our lab setup. This will enable us to benchmark the results of this study obtained in simulation, to comparable results in similar conditions in the lab. The metrics chosen for the comparison of the performance of our algorithm on the overall traffic conditions include the average speed, wait time near the merge, and throughput after the merge, measured under different travel demand conditions (low, medium, and heavy traffic).

Keywords: highway merges, traffic modeling, SUMO, driving policy

Procedia PDF Downloads 108
28125 Multi-Source Data Fusion for Urban Comprehensive Management

Authors: Bolin Hua

Abstract:

In city governance, various data are involved, including city component data, demographic data, housing data and all kinds of business data. These data reflects different aspects of people, events and activities. Data generated from various systems are different in form and data source are different because they may come from different sectors. In order to reflect one or several facets of an event or rule, data from multiple sources need fusion together. Data from different sources using different ways of collection raised several issues which need to be resolved. Problem of data fusion include data update and synchronization, data exchange and sharing, file parsing and entry, duplicate data and its comparison, resource catalogue construction. Governments adopt statistical analysis, time series analysis, extrapolation, monitoring analysis, value mining, scenario prediction in order to achieve pattern discovery, law verification, root cause analysis and public opinion monitoring. The result of Multi-source data fusion is to form a uniform central database, which includes people data, location data, object data, and institution data, business data and space data. We need to use meta data to be referred to and read when application needs to access, manipulate and display the data. A uniform meta data management ensures effectiveness and consistency of data in the process of data exchange, data modeling, data cleansing, data loading, data storing, data analysis, data search and data delivery.

Keywords: multi-source data fusion, urban comprehensive management, information fusion, government data

Procedia PDF Downloads 395
28124 Decision Location and Resource Requirement for Relief Goods Assembly

Authors: Glenda B. Minguito, Jenith L. Banluta

Abstract:

One of the critical aspects of humanitarian operations is the distribution of relief goods to the affected community. The common assumption is that relief goods are prepositioned during disasters which are not applicable in developing countries like the Philippines. During disasters, the on-the-ground government agencies and responders have to procure, sort, weigh and pack the relief goods. There is a need to review the relief goods preparation as it seriously affects the delivery of necessary aid for human survival. This study also identifies the ideal location of the assembly hub to minimize the distance to the affected community. This paper reveals that location and resources are dependent on the type of disasters encountered at the local level. The Center-of-Gravity method and Multiple Activity Chart were applied in the analysis.

Keywords: humanitarian supply chain, location decision, resource allocation, local level

Procedia PDF Downloads 152
28123 An Argument for Agile, Lean, and Hybrid Project Management in Museum Conservation Practice: A Qualitative Evaluation of the Morris Collection Conservation Project at the Sainsbury Centre for Visual Arts

Authors: Maria Ledinskaya

Abstract:

This paper is part case study and part literature review. It seeks to introduce Agile, Lean, and Hybrid project management concepts from business, software development, and manufacturing fields to museum conservation by looking at their practical application on a recent conservation project at the Sainsbury Centre for Visual Arts. The author outlines the advantages of leaner and more agile conservation practices in today’s faster, less certain, and more budget-conscious museum climate where traditional project structures are no longer as relevant or effective. The Morris Collection Conservation Project was carried out in 2019-2021 in Norwich, UK, and concerned the remedial conservation of around 150 Abstract Constructivist artworks bequeathed to the Sainsbury Centre by private collectors Michael and Joyce Morris. It was a medium-sized conservation project of moderate complexity, planned and delivered in an environment with multiple known unknowns – unresearched collection, unknown conditions and materials, unconfirmed budget. The project was later impacted by the COVID-19 pandemic, introducing indeterminate lockdowns, budget cuts, staff changes, and the need to accommodate social distancing and remote communications. The author, then a staff conservator at the Sainsbury Centre who acted as project manager on the Morris Project, presents an incremental, iterative, and value-based approach to managing a conservation project in an uncertain environment. The paper examines the project from the point of view of Traditional, Agile, Lean, and Hybrid project management. The author argues that most academic writing on project management in conservation has focussed on a Traditional plan-driven approach – also known as Waterfall project management – which has significant drawbacks in today’s museum environment due to its over-reliance on prediction-based planning and its low tolerance to change. In the last 20 years, alternative Agile, Lean and Hybrid approaches to project management have been widely adopted in software development, manufacturing, and other industries, although their recognition in the museum sector has been slow. Using examples from the Morris Project, the author introduces key principles and tools of Agile, Lean, and Hybrid project management and presents a series of arguments on the effectiveness of these alternative methodologies in museum conservation, including the ethical and practical challenges to their implementation. These project management approaches are discussed in the context of consequentialist, relativist, and utilitarian developments in contemporary conservation ethics. Although not intentionally planned as such, the Morris Project had a number of Agile and Lean features which were instrumental to its successful delivery. These key features are identified as distributed decision-making, a co-located cross-disciplinary team, servant leadership, focus on value-added work, flexible planning done in shorter sprint cycles, light documentation, and emphasis on reducing procedural, financial, and logistical waste. Overall, the author’s findings point in favour of a hybrid model, which combines traditional and alternative project processes and tools to suit the specific needs of the project.

Keywords: agile project management, conservation, hybrid project management, lean project management, waterfall project management

Procedia PDF Downloads 72
28122 Evidence Based Medicine: Going beyond Improving Physicians Viewpoints, Usage and Challenges Upcoming

Authors: Peyman Rezaei Hachesu, Vahideh Zareh Gavgani, Zahra Salahzadeh

Abstract:

To survey the attitudes, awareness, and practice of Evidence Based Medicine (EBM), and to determine the barriers that influence apply’ EBM in therapeutic process among clinical residents in Iran.We conducted a cross sectional survey during September to December 2012 at the teaching hospitals of Tehran University of Medical Sciences among 79 clinical residents from different medical specialties. A valid and reliable questionnaire consisted of five sections and 27 statements were used in this research. We applied Spearman and Mann Whitney test for correlation between variables. Findings showed that the knowledge of residents about EBM is low. Their attitude towards EBM was positive but their knowledge and skills in regard with the evidence based medical information resources were mostly limited to PubMed and Google scholar. The main barrier was the lack of enough time to practicing EBM. There was no significant correlation between residency grade and familiarity and use of electronic EBM resources (Spearman, P = 0.138). Integration of training approaches like journal clubs or workshops with clinical practice is suggested.

Keywords: evidence-based medicine, clinical residents, decision-making, attitude, questionnaire

Procedia PDF Downloads 379
28121 Reviewing Privacy Preserving Distributed Data Mining

Authors: Sajjad Baghernezhad, Saeideh Baghernezhad

Abstract:

Nowadays considering human involved in increasing data development some methods such as data mining to extract science are unavoidable. One of the discussions of data mining is inherent distribution of the data usually the bases creating or receiving such data belong to corporate or non-corporate persons and do not give their information freely to others. Yet there is no guarantee to enable someone to mine special data without entering in the owner’s privacy. Sending data and then gathering them by each vertical or horizontal software depends on the type of their preserving type and also executed to improve data privacy. In this study it was attempted to compare comprehensively preserving data methods; also general methods such as random data, coding and strong and weak points of each one are examined.

Keywords: data mining, distributed data mining, privacy protection, privacy preserving

Procedia PDF Downloads 526
28120 Regenerating Historic Buildings: Policy Gaps

Authors: Joseph Falzon, Margaret Nelson

Abstract:

Background: Policy makers at European Union (EU) and national levels address the re-use of historic buildings calling for sustainable practices and approaches. Implementation stages of policy are crucial so that EU and national strategic objectives for historic building sustainability are achieved. Governance remains one of the key objectives to ensure resource sustainability. Objective: The aim of the research was to critically examine policies for the regeneration and adaptive re-use of historic buildings in the EU and national level, and to analyse gaps between EU and national legislation and policies, taking Malta as a case study. The impact of policies on regeneration and re-use of historic buildings was also studied. Research Design: Six semi-structured interviews with stakeholders including architects, investors and community representatives informed the research. All interviews were audio recorded and transcribed in the English language. Thematic analysis utilising Atlas.ti was conducted for the semi-structured interviews. All phases of the study were governed by research ethics. Findings: Findings were grouped in main themes: resources, experiences and governance. Other key issues included identification of gaps in policies, key lessons and quality of regeneration. Abandonment of heritage buildings was discussed, for which main reasons had been attributed to governance related issues both from the policy making perspective as well as the attitudes of certain officials representing the authorities. The role of authorities, co-ordination between government entities, fairness in decision making, enforcement and management brought high criticism from stakeholders along with time factors due to the lengthy procedures taken by authorities. Policies presented an array from different perspectives of same stakeholder groups. Rather than policy, it is the interpretation of policy that presented certain gaps. Interpretations depend highly on the stakeholders putting forward certain arguments. All stakeholders acknowledged the value of heritage in regeneration. Conclusion: Active stakeholder involvement is essential in policy framework development. Research informed policies and streamlining of policies are necessary. National authorities need to shift from a segmented approach to a holistic approach.

Keywords: adaptive re-use, historic buildings, policy, sustainable

Procedia PDF Downloads 395
28119 Feasibility Study of a Solar Farm Project with an Executive Approach

Authors: Amir Reza Talaghat

Abstract:

Since 2015, a new approach and policy regarding energy resources protection and using renewable energies has been started in Iran which was developing new projects. Investigating about the feasibility study of these new projects helped to figure out five steps to prepare an executive feasibility study of the concerned projects, which are proper site selections, authorizations, design and simulation, economic study and programming, respectively. The results were interesting and essential for decision makers and investors to start implementing of these projects in reliable condition. The research is obtained through collection and study of the project's documents as well as recalculation to review conformity of the results with GIS data and the technical information of the bidders. In this paper, it is attempted to describe the result of the performed research by describing the five steps as an executive methodology, for preparing a feasible study of installing a 10 MW – solar farm project. The corresponding results of the research also help decision makers to start similar projects is explained in this paper as follows: selecting the best location for the concerned PV plant, reliable and safe conditions for investment and the required authorizations to start implementing the solar farm project in the concerned region, selecting suitable component to achieve the best possible performance for the plant, economic profit of the investment, proper programming to implement the project on time.

Keywords: solar farm, solar energy, execution of PV power plant PV power plant

Procedia PDF Downloads 182
28118 An Evolutionary Multi-Objective Optimization for Airport Gate Assignment Problem

Authors: Seyedmirsajad Mokhtarimousavi, Danial Talebi, Hamidreza Asgari

Abstract:

Gate Assignment Problem (GAP) is one of the most substantial issues in airport operation. In principle, GAP intends to maintain the maximum capacity of the airport through the best possible allocation of the resources (gates) in order to reach the optimum outcome. The problem involves a wide range of dependent and independent resources and their limitations, which add to the complexity of GAP from both theoretical and practical perspective. In this study, GAP was mathematically formulated as a three-objective problem. The preliminary goal of multi-objective formulation was to address a higher number of objectives that can be simultaneously optimized and therefore increase the practical efficiency of the final solution. The problem is solved by applying the second version of Non-dominated Sorting Genetic Algorithm (NSGA-II). Results showed that the proposed mathematical model could address most of major criteria in the decision-making process in airport management in terms of minimizing both airport/airline cost and passenger walking distance time. Moreover, the proposed approach could properly find acceptable possible answers.

Keywords: airport management, gate assignment problem, mathematical modeling, genetic algorithm, NSGA-II

Procedia PDF Downloads 301
28117 Re-Imagining and De-Constructing the Global Security Architecture

Authors: Smita Singh

Abstract:

The paper develops a critical framework to the hegemonic discourses resorted to by the dominant powers in the global security architecture. Within this framework, security is viewed as a discourse through which identities and threats are represented and produced to legitimize the security concerns of few at the cost of others. International security have long been driven and dominated by power relations. Since the end of the Cold War, the global transformations have triggered contestations to the idea of security at both theoretical and practical level. These widening and deepening of the concept of security have challenged the existing power hierarchies at the theoretical level but not altered the substance and actors defining it. When discourses are introduced into security studies, several critical questions erupt: how has power shaped security policies of the globe through language? How does one understand the meanings and impact of those discourses? Who decides the agenda, rules, players and outliers of the security? Language as a symbolic system and form of power is fluid and not fixed. Over the years the dominant Western powers, led by the United States of America have employed various discursive practices such as humanitarian intervention, responsibility to protect, non proliferation, human rights, war on terror and so on to reorient the constitution of identities and interests and hence the policies that need to be adopted for its actualization. These power relations are illustrated in this paper through the narratives used in the nonproliferation regime. The hierarchical security dynamics is a manifestation of the global power relations driven by many factors including discourses.

Keywords: hegemonic discourse, global security, non-proliferation regime, power politics

Procedia PDF Downloads 319
28116 Application of GIS Techniques for Analysing Urban Built-Up Growth of Class-I Indian Cities: A Case Study of Surat

Authors: Purba Biswas, Priyanka Dey

Abstract:

Worldwide rapid urbanisation has accelerated city expansion in both developed and developing nations. This unprecedented urbanisation trend due to the increasing population and economic growth has caused challenges for the decision-makers in city planning and urban management. Metropolitan cities, class-I towns, and major urban centres undergo a continuous process of evolution due to interaction between socio-cultural and economic attributes. This constant evolution leads to urban expansion in all directions. Understanding the patterns and dynamics of urban built-up growth is crucial for policymakers, urban planners, and researchers, as it aids in resource management, decision-making, and the development of sustainable strategies to address the complexities associated with rapid urbanisation. Identifying spatio-temporal patterns of urban growth has emerged as a crucial challenge in monitoring and assessing present and future trends in urban development. Analysing urban growth patterns and tracking changes in land use is an important aspect of urban studies. This study analyses spatio-temporal urban transformations and land-use and land cover changes using remote sensing and GIS techniques. Built-up growth analysis has been done for the city of Surat as a case example, using the GIS tools of NDBI and GIS models of the Built-up Urban Density Index and Shannon Entropy Index to identify trends and the geographical direction of transformation from 2005 to 2020. Surat is one of the fastest-growing urban centres in both the state and the nation, ranking as the 4th fastest-growing city globally. This study analyses the dynamics of urban built-up area transformations both zone-wise and geographical direction-wise, in which their trend, rate, and magnitude were calculated for the period of 15 years. This study also highlights the need for analysing and monitoring the urban growth pattern of class-I cities in India using spatio-temporal and quantitative techniques like GIS for improved urban management.

Keywords: urban expansion, built-up, geographic information system, remote sensing, Shannon’s entropy

Procedia PDF Downloads 75