Search results for: network resources
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9325

Search results for: network resources

7015 Long-Term Mechanical and Structural Properties of Metakaolin-Based Geopolymers

Authors: Lenka Matulova

Abstract:

Geopolymers are alumosilicate materials that have long been studied. Despite this fact, little is known about the long-term stability of geopolymer mechanical and structural properties, so crucial for their successful industrial application. To improve understanding, we investigated the effect of four different types of environments on the mechanical and structural properties of a metakaolin-based geopolymer (MK GP). The MK GP samples were stored in laboratory conditions (control samples), in water at 20 °C, in water at 80 °C, and outside exposed to the weather. Compressive and tensile strengths were measured after 28, 56, 90, and 360 days. In parallel, structural properties were analyzed using XRD, SEM, and mercury intrusion porosimetry. Whereas the mechanical properties of the samples in laboratory conditions and in 20 °C water were stable, the mechanical properties of the outdoor samples and the samples 80 °C water decreased noticeably after 360 days. Structural analyses were focused on changes in sample microstructure (developing microcrack network, porosity) and identifying zeolites, the presence of which would indicate detrimental processes in the structure that can change it from amorphous to crystalline. No zeolites were found during the 360-day period in MK GP samples, but the reduction in mechanical properties coincided with a developing network of microcracks and changes in pore size distribution.

Keywords: geopolymer, long-term properties, mechanical properties, metakaolin, structural properties

Procedia PDF Downloads 219
7014 Food Sovereignty as Local Resistance to Unequal Access to Food and Natural Resources in Latin America: A Gender Perspective

Authors: Ana Alvarenga De Castro

Abstract:

Food sovereignty has been brought by the international peasants’ movement, La Via Campesina, as a precondition to food security, speaking about the right of each nation to keep its own supply of foods respecting cultural, sustainable practices and productive diversity. The political conceptualization nowadays goes beyond saying that this term is about achieving the rights of farmers to control the food systems according to local specificities, and about equality in the access to natural resources and quality food. The current feminization of agroecosystems and of food insecurity identified by researchers and recognized by international agencies like the UN and FAO has enhanced the feminist discourse into the food sovereignty movement, considering the historical inequalities that place women farmers in subaltern positions inside the families and rural communities. The current tendency in many rural areas of more women taking responsibility for food production and still facing the lack of access to natural resources meets particular aspects in Latin America due to the global economic logic which places the Global South in the position of raw material supplier for the industrialized North, combined with regional characteristics. In this context, Latin American countries play the role of commodities exporters in the international labor division, including among exported items grains, soybean paste, and ores, to the expense of local food chains which provide domestic quality food supply under more sustainable practices. The connections between gender inequalities and global territorial inequalities related to the access and control of food and natural resources are pointed out by feminist political ecology - FPE - authors, and are linked in this article to the potentialities and limitations of women farmers to reproduce diversified agroecosystems in the tropical environments. The work brings the importance of local practices held by women farmers which are crucial to maintaining sustainable agricultural systems and their results on seeds, soil, biodiversity and water conservation. This work presents an analysis of documents, releases, videos and other publicized experiences launched by some peasants’ organizations in Latin America which evidence the different technical and political answers that meet food sovereignty from peasants’ groups that are attributed to women farmers. They are associated with articles presenting the empirical analysis of women farmers' practices in Latin America. The combination drove to discuss the benefits of peasants' conceptions about food systems and their connections with local realities and the gender issues linked to the food sovereignty conceptualization. Conclusion meets that reality on the field cannot reach food sovereignty's ideal homogeneously and that agricultural sustainable practices are dependent on rights' achievement and social inequalities' eradication.

Keywords: food sovereignty, gender, diversified agricultural systems, access to natural resources

Procedia PDF Downloads 231
7013 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors

Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin

Abstract:

IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).

Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)

Procedia PDF Downloads 124
7012 Image Classification with Localization Using Convolutional Neural Networks

Authors: Bhuyain Mobarok Hossain

Abstract:

Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).

Keywords: image classification, object detection, localization, particle filter

Procedia PDF Downloads 285
7011 The Construction of the Residential Landscape in the Mountain Environment: Taking the Eling Peak, 'Mirror of the Sky', in Chongqing, China as an Example

Authors: Yuhang Zou, Zhu Wang

Abstract:

Most of the western part of China is mountainous and hilly region, with abundant resources of mountainous space. However, the resources are complex, and the ecological factors are diverse. As urbanization expands rapidly today, the landscape of the mountain residence needs to be changed. This paper, starting with the ecological environment and visual landscape of the mountain living space, analyzes the basic conditions of the Eling Peak, ‘Mirror of the Sky’, in Chongqing, China before its landscape renovation. Then, it analyzes some parts of the project, including the overall planning, ecological coordination, space expansion and local conditions in mountain environment. After that, this paper concludes the intention of designer and 4 methods, appropriate demolition, space reconstruction, landscape modeling and reasonable road system, to transform the master’s mountain residential works. Finally, through the analysis and understanding of the project, it sums up that the most beautiful landscape is not only the outdoor space, but also borrowing scene from the city and the sky, making them a part of the mountainous residential buildings. Only in this way can people, landscape, building, sky, and city become integrated and coexist harmoniously.

Keywords: landscape design, mountainous architecture, renovation, residence

Procedia PDF Downloads 142
7010 Impacts of Hydrologic and Topographic Changes on Water Regime Evolution of Poyang Lake, China

Authors: Feng Huang, Carlos G. Ochoa, Haitao Zhao

Abstract:

Poyang Lake, the largest freshwater lake in China, is located at the middle-lower reaches of the Yangtze River basin. It has great value in socioeconomic development and is internationally recognized as an important lacustrine and wetland ecosystem with abundant biodiversity. Impacted by ongoing climate change and anthropogenic activities, especially the regulation of the Three Gorges Reservoir since 2003, Poyang Lake has experienced significant water regime evolution, resulting in challenges for the management of water resources and the environment. Quantifying the contribution of hydrologic and topographic changes to water regime alteration is necessary for policymakers to design effective adaption strategies. Long term hydrologic data were collected and the back-propagation neural networks were constructed to simulate the lake water level. The impacts of hydrologic and topographic changes were differentiated through scenario analysis that considered pre-impact and post-impact hydrologic and topographic scenarios. The lake water regime was characterized by hydrologic indicators that describe monthly water level fluctuations, hydrologic features during flood and drought seasons, and frequency and rate of hydrologic variations. The results revealed different contributions of hydrologic and topographic changes to different features of the lake water regime.Noticeable changes were that the water level declined dramatically during the period of reservoir impoundment, and the drought was enhanced during the dry season. The hydrologic and topographic changes exerted a synergistic effect or antagonistic effect on different lake water regime features. The findings provide scientific reference for lacustrine and wetland ecological protection associated with water regime alterations.

Keywords: back-propagation neural network, scenario analysis, water regime, Poyang Lake

Procedia PDF Downloads 119
7009 The Convolution Recurrent Network of Using Residual LSTM to Process the Output of the Downsampling for Monaural Speech Enhancement

Authors: Shibo Wei, Ting Jiang

Abstract:

Convolutional-recurrent neural networks (CRN) have achieved much success recently in the speech enhancement field. The common processing method is to use the convolution layer to compress the feature space by multiple upsampling and then model the compressed features with the LSTM layer. At last, the enhanced speech is obtained by deconvolution operation to integrate the global information of the speech sequence. However, the feature space compression process may cause the loss of information, so we propose to model the upsampling result of each step with the residual LSTM layer, then join it with the output of the deconvolution layer and input them to the next deconvolution layer, by this way, we want to integrate the global information of speech sequence better. The experimental results show the network model (RES-CRN) we introduce can achieve better performance than LSTM without residual and overlaying LSTM simply in the original CRN in terms of scale-invariant signal-to-distortion ratio (SI-SNR), speech quality (PESQ), and intelligibility (STOI).

Keywords: convolutional-recurrent neural networks, speech enhancement, residual LSTM, SI-SNR

Procedia PDF Downloads 182
7008 Seismological Studies in Some Areas in Egypt

Authors: Gamal Seliem, Hassan Seliem

Abstract:

Aswan area is one of the important areas in Egypt and because it encompasses the vital engineering structure of the High dam, so it has been selected for the present study. The study of the crustal deformation and gravity associated with earthquake activity in the High Dam area of great importance for the safety of the High Dam and its economic resources. This paper deals with using micro-gravity, precise leveling and GPS data for geophysical and geodetically studies. For carrying out the detailed gravity survey in the area, were established for studying the subsurface structures. To study the recent vertical movements, a profile of 10 km length joins the High Dam and Aswan old dam were established along the road connecting the two dams. This profile consists of 35 GPS/leveling stations extending along the two sides of the road and on the High Dam body. Precise leveling was carried out with GPS and repeated micro-gravity survey in the same time. GPS network consisting of nine stations was established for studying the recent crustal movements. Many campaigns from December 2001 to December 2014 were performed for collecting the gravity, leveling and GPS data. The main aim of this work is to study the structural features and the behavior of the area, as depicted from repeated micro-gravity, precise leveling and GPS measurements. The present work focuses on the analysis of the gravity, leveling and GPS data. The gravity results of the present study investigate and analyze the subsurface geologic structures and reveal to there be minor structures; features and anomalies are taking W-E and N-S directions. The geodetic results indicated lower rates of the vertical and horizontal displacements and strain values. This may be related to the stability of the area.

Keywords: repeated micro-gravity changes, precise leveling, GPS data, Aswan High Dam

Procedia PDF Downloads 432
7007 Investigation of Film and Mechanical Properties of Poly(Lactic Acid)

Authors: Reyhan Özdoğan, Özgür Ceylan, Mehmet Arif Kaya, Mithat Çelebi

Abstract:

Food packaging is important for the food industry. Bioplastics have been used as food packaging materials. According to the European Bioplastics organization, bioplastics can be defined as plastics based on renewable resources (bio-based) or as plastics which are biodegradable and/or compostable. Poly(lactic acid) (PLA) has an industrially importance of bioplastic polymers. PLA is a family of biodegradable thermoplastic polyester made from renewable resources. It is produced by conversion of corn, or other carbohydrate sources, into dextrose, followed by fermentation into lactic acid through direct polycondensation of lactic acid monomers or through ring-opening polymerization of lactide. The processing possibilities of this transparent material are very wide, ranging from injection molding and extrusion over cast film extrusion to blow molding and thermoforming. In this study, PLA films were prepared by solution casting method. PLAs which are different molecular weights were plasticized with glycerol and the morphology of films was monitored by optical microscopy. Properties of mechanical and film of PLA were researched with the mechanical testing machine.

Keywords: biodegradable, bioplastics, morphology, solution casting, poly(lactic acid)

Procedia PDF Downloads 362
7006 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture

Authors: Venkat S. Somayajula

Abstract:

Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical features

Keywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle

Procedia PDF Downloads 114
7005 Comparison of Agree Method and Shortest Path Method for Determining the Flow Direction in Basin Morphometric Analysis: Case Study of Lower Tapi Basin, Western India

Authors: Jaypalsinh Parmar, Pintu Nakrani, Bhaumik Shah

Abstract:

Digital Elevation Model (DEM) is elevation data of the virtual grid on the ground. DEM can be used in application in GIS such as hydrological modelling, flood forecasting, morphometrical analysis and surveying etc.. For morphometrical analysis the stream flow network plays a very important role. DEM lacks accuracy and cannot match field data as it should for accurate results of morphometrical analysis. The present study focuses on comparing the Agree method and the conventional Shortest path method for finding out morphometric parameters in the flat region of the Lower Tapi Basin which is located in the western India. For the present study, open source SRTM (Shuttle Radar Topography Mission with 1 arc resolution) and toposheets issued by Survey of India (SOI) were used to determine the morphometric linear aspect such as stream order, number of stream, stream length, bifurcation ratio, mean stream length, mean bifurcation ratio, stream length ratio, length of overland flow, constant of channel maintenance and aerial aspect such as drainage density, stream frequency, drainage texture, form factor, circularity ratio, elongation ratio, shape factor and relief aspect such as relief ratio, gradient ratio and basin relief for 53 catchments of Lower Tapi Basin. Stream network was digitized from the available toposheets. Agree DEM was created by using the SRTM and stream network from the toposheets. The results obtained were used to demonstrate a comparison between the two methods in the flat areas.

Keywords: agree method, morphometric analysis, lower Tapi basin, shortest path method

Procedia PDF Downloads 223
7004 Aspects of Environmental Sustainability in the Operation of Onshore Hydrocarbon Pipelines

Authors: Emil Aliyev

Abstract:

The main focus of this conference paper is on the aspects of the environmental sustainability of onshore hydrocarbon pipelines. The latter is notorious for being a source of major environmental contamination and a consumer of vast amounts of natural resources such as water, land, steel, etc. Therefore, the environmentally sustainable operation of pipelines is a concern that requires attention and research. The geographical scope of the paper is confined to onshore hydrocarbon pipelines operated in the Middle East region. The research contains elements of originality as it draws on the author’s field experience and practical implementation of environmental and sustainability solutions in a major Middle East-based pipeline organization. The authors describe some of the most common significant environmental aspects of pipeline operations and provide examples of various approaches and technologies that can be successfully utilized to make pipelines more environmentally sustainable. The author concludes that the operation of onshore hydrocarbon pipelines can be made environmentally sustainable. This can be achieved by adopting a systematic framework, focusing limited resources on significant aspects, integrating a circular economy into day-to-day activities, and having strong management support.

Keywords: pipelines, onshore hydrocarbon pipelines, environmental sustainability, significant environmental aspects

Procedia PDF Downloads 67
7003 Rethinking Pathways to Shared Prosperity for Forest Communities: A Case Study of Nigerian REDD+ Readiness Project

Authors: U. Isyaku, C. Upton, J. Dickinson

Abstract:

Critical institutional approach for understanding pathways to shared prosperity among forest communities enabled questioning the underlying rational choice assumptions that have dominated traditional institutional thinking in natural resources management. Common pool resources framing assumes that communities as social groups share collective interests and values towards achieving greater development. Hence, policies related to natural resources management in the global South prioritise economic prosperity by focusing on how to maximise material benefits and improve the livelihood options of resource dependent communities. Recent trends in commodification and marketization of ecosystem goods and services into tradable natural capital and incentivising conservation are structured in this paradigm. Several researchers however, have problematized this emerging market-based model because it undermines cultural basis for protecting natural ecosystems. By exploring how forest people’s motivations for conservation differ within the context of reducing emissions from deforestation and forest degradation (REDD+) project in Nigeria, we aim to provide an alternative approach to conceptualising prosperity beyond the traditional economic thinking. Through in depth empirical work over seven months with five communities in Nigeria’s Cross River State, Q methodology was used to uncover communities’ perspectives and meanings of forest values that underpin contemporary and historic conservation practices, expected benefits, and willingness to participate in the REDD+ process. Our study finds six discourses about forest and conservation values that transcend wealth creation, poverty reduction and livelihoods. We argue that communities’ decisions about forest conservation consist of a complex mixture of economic, emotional, moral, and ecological justice concerns that constitute new meanings and dimensions of prosperity. Prosperity is thus reconfigured as having socio-cultural and psychological pathways that could be derived through place identity and attachment, connectedness to nature, family ties, and ability to participate in everyday social life. We therefore suggest that natural resources policy making and development interventions should consider institutional arrangements that also include the psycho-cultural dimensions of prosperity among diverse community groups.

Keywords: critical institutionalism, Q methodology, REDD+, shared prosperity

Procedia PDF Downloads 324
7002 Machine Learning Methods for Flood Hazard Mapping

Authors: Stefano Zappacosta, Cristiano Bove, Maria Carmela Marinelli, Paola di Lauro, Katarina Spasenovic, Lorenzo Ostano, Giuseppe Aiello, Marco Pietrosanto

Abstract:

This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.

Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment

Procedia PDF Downloads 159
7001 A Decision Support System for the Detection of Illicit Substance Production Sites

Authors: Krystian Chachula, Robert Nowak

Abstract:

Manufacturing home-made explosives and synthetic drugs is an increasing problem in Europe. To combat that, a data fusion system is proposed for the detection and localization of production sites in urban environments. The data consists of measurements of properties of wastewater performed by various sensors installed in a sewage network. A four-stage fusion strategy allows detecting sources of waste products from known chemical reactions. First, suspicious measurements are used to compute the amount and position of discharged compounds. Then, this information is propagated through the sewage network to account for missing sensors. The next step is clustering and the formation of tracks. Eventually, tracks are used to reconstruct discharge events. Sensor measurements are simulated by a subsystem based on real-world data. In this paper, different discharge scenarios are considered to show how the parameters of used algorithms affect the effectiveness of the proposed system. This research is a part of the SYSTEM project (SYnergy of integrated Sensors and Technologies for urban sEcured environMent).

Keywords: continuous monitoring, information fusion and sensors, internet of things, multisensor fusion

Procedia PDF Downloads 101
7000 Collective Potential: A Network of Acupuncture Interventions for Flood Resilience

Authors: Sachini Wickramanayaka

Abstract:

The occurrence of natural disasters has increased in an alarming rate in recent times due to escalating effects of climate change. One such natural disaster that has continued to grow in frequency and intensity is ‘flooding’, adversely affecting communities around the globe. This is an exploration on how architecture can intervene and facilitate in preserving communities in the face of disaster, specifically in battling floods. ‘Resilience’ is one of the concepts that have been brought forward to be instilled in vulnerable communities to lower the impact from such disasters as a preventative and coping mechanism. While there are number of ways to achieve resilience in the built environment, this paper aims to create a synthesis between resilience and ‘urban acupuncture’. It will consider strengthening communities from within, by layering a network of relatively small-scale, fast phased interventions on pre-existing conventional flood preventative large-scale engineering infrastructure.By investigating ‘The Woodlands’, a planned neighborhood as a case study, this paper will argue that large-scale water management solutions while extremely important will not suffice as a single solution particularly during a time of frequent and extreme weather events. The different projects will try to synthesize non-architectural aspects such as neighborhood aspirations, requirements, potential and awareness into a network of architectural forms that would collectively increase neighborhood resiliency to floods. A mapping study of the selected study area will identify the problematic areas that flood in the neighborhood while the empirical data from previously implemented case studies will assess the success of each solution.If successful the different solutions for each of the identified problem areas will exhibithow flooding and water management can be integrated as part and parcel of daily life.

Keywords: acupuncture, architecture, resiliency, micro-interventions, neighborhood

Procedia PDF Downloads 151
6999 Market Acceptance of a Murabaha-Based Finance Structure within a Social Network of Non-Islamic Small and Medium Enterprise Owners in African Procurement

Authors: Craig M. Allen

Abstract:

Twenty two African entrepreneurs with Small and Medium Enterprises (SMEs) in a single social network centered around a non-Muslim population in a smaller African country, selected an Islamic financing structure, a form of Murabaha, based solely on market rationale. These entrepreneurs had all won procurement contracts from major purchasers of goods within their country and faced difficulty arranging traditional bank financing to support their supply-chain needs. The Murabaha-based structure satisfied their market-driven demand and provided an attractive alternative to the traditional bank-offered lending products. The Murabaha-styled trade-financing structure was not promoted with any religious implications, but solely as a market solution to the existing problems associated with bank-related financing. This indicates the strong market forces that draw SMEs to financing structures that are traditionally considered within the framework of Islamic finance.

Keywords: Africa, entrepreneurs, Islamic finance, market acceptance, Murabaha, SMEs

Procedia PDF Downloads 166
6998 Passengers’ Behavior Analysis under the Public Transport Disruption: An Agent-Based Simulation

Authors: M. Rahimi, F. Corman

Abstract:

This paper study the travel behavior of passengers in a public transport disruption under information provision strategies. We develop a within-day approach for multi-agent simulation to evaluate the behavior of the agents, under comprehensive scenarios through various information exposure, equilibrium, and non-equilibrium scenarios. In particular, we quantify the effects of information strategies in disruption situation on passengers’ satisfaction, number of involved agents, and the caused delay. An agent-based micro-simulation model (MATSim) is applied for the city of Zürich, Switzerland, for the purpose of activity-based simulation in a multimodal network. Statistic outcome is analysed for all the agents who may be involved in the disruption. Agents’ movement in the public transport network illustrates agents’ adaptations to available information about the disruption. Agents’ delays and utility reveal that information significantly affects agents’ satisfaction and delay in public transport disruption. Besides, while the earlier availability of the information causes the fewer consequent delay for the involved agents, however, it also leads to more amount of affected agents.

Keywords: agent-based simulation, disruption management, passengers’ behavior simulation, public transport

Procedia PDF Downloads 124
6997 A Framework for Analyzing Public Interaction of Saudi Universities on Twitter

Authors: Sahar Al-Qahtani, Rabeeh Ayaz Abbasi, Naif Radi Aljohani

Abstract:

Many universities use social media platforms as new communication channels to disseminate information and promptly communicate with their audience. As Twitter is one of the widely used social media platforms, this research aims to explore the adaption and utilization of Twitter by universities. We propose a framework called 'Social Network Analysis for Universities on Twitter' (SNAUT) to analyze the usage of Twitter by universities and to measure their interaction with public. The study includes a sample of around 110,000 tweets from 36 Saudi universities, including both public and private universities. Using SNAUT, we can (1) investigate the purpose of using Twitter by universities, (2) determine the broad topics discussed by them, and (3) identify the groups closely associated with the universities. The results show that most of the Saudi universities (whether public or private) actively use Twitter. Results also reveal that public universities respond to public queries more frequently, but private universities stand out more in terms of information dissemination using retweets and diverse hashtags. Finally, we develop a ranking mechanism in SNAUT for ranking universities based on their social interaction with the public on Twitter.

Keywords: social media, twitter, social network analysis, universities, higher education, Saudi Arabia

Procedia PDF Downloads 117
6996 Direct Current Electric Field Stimulation against PC12 Cells in 3D Bio-Reactor to Enhance Axonal Extension

Authors: E. Nakamachi, S. Tanaka, K. Yamamoto, Y. Morita

Abstract:

In this study, we developed a three-dimensional (3D) direct current electric field (DCEF) stimulation bio-reactor for axonal outgrowth enhancement to generate the neural network of the central nervous system (CNS). By using our newly developed 3D DCEF stimulation bio-reactor, we cultured the rat pheochromocytoma cells (PC12) and investigated the effects on the axonal extension enhancement and network generation. Firstly, we designed and fabricated a 3D bio-reactor, which can load DCEF stimulation on PC12 cells embedded in the collagen gel as extracellular environment. The connection between the electrolyte and the medium using salt bridges for DCEF stimulation was introduced to avoid the cell death by the toxicity of metal ion. The distance between the salt bridges was adopted as the design variable to optimize a structure for uniform DCEF stimulation, where the finite element (FE) analyses results were used. Uniform DCEF strength and electric flux vector direction in the PC12 cells embedded in collagen gel were examined through measurements of the fabricated 3D bio-reactor chamber. Measurement results of DCEF strength in the bio-reactor showed a good agreement with FE results. In addition, the perfusion system was attached to maintain pH 7.2 ~ 7.6 of the medium because pH change was caused by DCEF stimulation loading. Secondly, we disseminated PC12 cells in collagen gel and carried out 3D culture. Finally, we measured the morphology of PC12 cell bodies and neurites by the multiphoton excitation fluorescence microscope (MPM). The effectiveness of DCEF stimulation to enhance the axonal outgrowth and the neural network generation was investigated. We confirmed that both an increase of mean axonal length and axogenesis rate of PC12, which have been exposed 5 mV/mm for 6 hours a day for 4 days in the bioreactor. We found following conclusions in our study. 1) Design and fabrication of DCEF stimulation bio-reactor capable of 3D culture nerve cell were completed. A uniform electric field strength of average value of 17 mV/mm within the 1.2% error range was confirmed by using FE analyses, after the structure determination through the optimization process. In addition, we attached a perfusion system capable of suppressing the pH change of the culture solution due to DCEF stimulation loading. 2) Evaluation of DCEF stimulation effects on PC12 cell activity was executed. The 3D culture of PC 12 was carried out adopting the embedding culture method using collagen gel as a scaffold for four days under the condition of 5.0 mV/mm and 10mV/mm. There was a significant effect on the enhancement of axonal extension, as 11.3% increase in an average length, and the increase of axogenesis rate. On the other hand, no effects on the orientation of axon against the DCEF flux direction was observed. Further, the network generation was enhanced to connect longer distance between the target neighbor cells by DCEF stimulation.

Keywords: PC12, DCEF stimulation, 3D bio-reactor, axonal extension, neural network generation

Procedia PDF Downloads 175
6995 Road Maintenance Management Decision System Using Multi-Criteria and Geographical Information System for Takoradi Roads, Ghana

Authors: Eric Mensah, Carlos Mensah

Abstract:

The road maintenance backlogs created as a result of deferred maintenance especially in developing countries has caused considerable deterioration of many road assets. This is usually due to difficulties encountered in selecting and prioritising maintainable roads based on objective criteria rather than some political or other less important criteria. In order to ensure judicious use of limited resources for road maintenance, five factors were identified as the most important criteria for road management within the study area. This was based on the judgements of 40 experts. The results were further used to develop weightings using the Multi-Criteria Decision Process (MCDP) to analyse and select road alternatives according to maintenance goal. Using Geographical Information Systems (GIS), maintainable roads were grouped using the Jenk’s natural breaks to allow for further prioritised in order of importance for display on a dashboard of maps, charts, and tables. This reduces the problems of subjective maintenance and road selections, thereby reducing wastage of resources and easing the maintenance process through an object organised spatial decision support system.

Keywords: decision support, geographical information systems, multi-criteria decision process, weighted sum

Procedia PDF Downloads 360
6994 Examples of Techniques and Algorithms Used in Wlan Security

Authors: Vahid Bairami Rad

Abstract:

Wireless communications offer organizations and users many benefits such as portability and flexibility, increased productivity, and lower installation costs. Wireless networks serve as the transport mechanism between devices and among devices and the traditional wired networks (enterprise networks and the internet). Wireless networks are many and diverse but are frequently categorized into three groups based on their coverage range: WWAN, WLAN, and WPAN. WWAN, representing wireless wide area networks, includes wide coverage area technologies such as 2G cellular, Cellular Digital Packet Data (CDPD), Global System for Mobile Communications (GSM), and Mobitex. WLAN, representing wireless local area networks, includes 802.11, Hyper lan, and several others. WPAN, represents wireless personal area network technologies such as Bluetooth and Infrared. The security services are provided largely by the WEP (Wired Equivalent Privacy) protocol to protect link-level data during wireless transmission between clients and access points. That is, WEP does not provide end-to-end security but only for the wireless portion of the connection.

Keywords: wireless lan, wired equivalent privacy, wireless network security, wlan security

Procedia PDF Downloads 552
6993 Easy Way of Optimal Process-Storage Network Design

Authors: Gyeongbeom Yi

Abstract:

The purpose of this study is to introduce the analytic solution for determining the optimal capacity (lot-size) of a multiproduct, multistage production and inventory system to meet the finished product demand. Reasonable decision-making about the capacity of processes and storage units is an important subject for industry. The industrial solution for this subject is to use the classical economic lot sizing method, EOQ/EPQ (Economic Order Quantity/Economic Production Quantity) model, incorporated with practical experience. However, the unrealistic material flow assumption of the EOQ/EPQ model is not suitable for chemical plant design with highly interlinked processes and storage units. This study overcomes the limitation of the classical lot sizing method developed on the basis of the single product and single stage assumption. The superstructure of the plant considered consists of a network of serially and/or parallelly interlinked processes and storage units. The processes involve chemical reactions with multiple feedstock materials and multiple products as well as mixing, splitting or transportation of materials. The objective function for optimization is minimizing the total cost composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units. A novel production and inventory analysis method, PSW (Periodic Square Wave) model, is applied. The advantage of the PSW model comes from the fact that the model provides a set of simple analytic solutions in spite of a realistic description of the material flow between processes and storage units. The resulting simple analytic solution can greatly enhance the proper and quick investment decision for plant design and operation problem confronted in diverse economic situations.

Keywords: analytic solution, optimal design, process-storage network

Procedia PDF Downloads 317
6992 A Bi-Objective Stochastic Mathematical Model for Agricultural Supply Chain Network

Authors: Mohammad Mahdi Paydar, Armin Cheraghalipour, Mostafa Hajiaghaei-Keshteli

Abstract:

Nowadays, in advanced countries, agriculture as one of the most significant sectors of the economy, plays an important role in its political and economic independence. Due to farmers' lack of information about products' demand and lack of proper planning for harvest time, annually the considerable amount of products is corrupted. Besides, in this paper, we attempt to improve these unfavorable conditions via designing an effective supply chain network that tries to minimize total costs of agricultural products along with minimizing shortage in demand points. To validate the proposed model, a stochastic optimization approach by using a branch and bound solver of the LINGO software is utilized. Furthermore, to accumulate the data of parameters, a case study in Mazandaran province placed in the north of Iran has been applied. Finally, using ɛ-constraint approach, a Pareto front is obtained and one of its Pareto solutions as best solution is selected. Then, related results of this solution are explained. Finally, conclusions and suggestions for the future research are presented.

Keywords: perishable products, stochastic optimization, agricultural supply chain, ɛ-constraint

Procedia PDF Downloads 348
6991 The Transformation of Hot Spring Destinations in Taiwan in a Post-pandemic Future: Exploring the COVID-19 Impacts on Hot Spring Experiences, Individual, and Community Resilience of Residents From a Posttraumatic Growth Perspective

Authors: Hsin-Hung Lin, Janet Chang, Te-Yi Chang, You-Sheng Huang

Abstract:

The natural and men-made disasters have become huge challenges for tourism destinations as well as emphasizing the fragility of the industry. Hot springs, among all destinations, are prone to disasters due to their dependence on natural resources and locations. After the COVID-19 outbreak, hot spring destinations have experienced not only the loss of businesses but also the psychological trauma. However, evidence has also shown that the impacts may not necessarily reduce the resilience for people but may be converted into posttraumatic growth. In Taiwan, a large proportion of hot springs are located in rural or indigenous areas. As a result, hot spring resources are associated with community cohesion for local residents. Yet prior research on hot spring destinations has mainly focused on visitors, whereas residents have been overlooked. More specifically, the relationship between hot springs resources and resident resilience in the face of the COVID-19 impacts remains unclear. To fulfill this knowledge gap, this paper aims to explore the COVID-19 impacts on residents’ hot spring experiences as well as individual and community resilience from the perspective of posttraumatic growth. A total of 315 residents of 13 hot spring destinations that are most popular in Taiwan were recruited. Online questionnaires were distributed over travel forums and social networks after the COVID-19. This paper subsequently used Partial Least Squares Structural Equation Modeling for data analysis as the technique offers significant advantages in addressing nonnormal data and small sample sizes. A preliminary test was conducted, and the results showed acceptable internal consistency and no serious common method variance. The path analysis demonstrated that the COVID-19 impacts strengthened residents’ perceptions of hot spring resources and experiences, implying that the pandemic had propelled the residents to visit hot springs for the healing benefits. In addition, the COVID-19 impacts significantly enhanced residents’ individual and community resilience, which indicates that the residents at hot springs are more resilient thanks to their awareness of external risks. Thirdly, residents’ individual resilience was positively associated with hot spring experiences, while community resilience was not affected by hot spring experiences. Such findings may suggest that hot spring experiences are more related to individual-level experiences and, consequently, have insignificant influence on community resilience. Finally, individual resilience was proved to be the most relevant factor that help foster community resilience. To conclude, the authorities may consider exploiting the hot spring resources so as to increase individual resilience for local residents. Such implications can be used as a reference for other post-disaster tourist destinations as well. As for future research, longitudinal studies with qualitative methods are suggested to better understand how the hot spring experiences have changed individuals and communities over the long term. It should be noted that the main subjects of this paper were focused on the hot spring communities in Taiwan. Therefore, the results cannot be generalized for all types of tourism destinations. That is, more diverse tourism destinations may be investigated to provide a broader perspective of post-disaster recovery.

Keywords: community resilience, hot spring destinations, individual resilience, posttraumatic growth

Procedia PDF Downloads 62
6990 Deep Learning Based Road Crack Detection on an Embedded Platform

Authors: Nurhak Altın, Ayhan Kucukmanisa, Oguzhan Urhan

Abstract:

It is important that highways are in good condition for traffic safety. Road crashes (road cracks, erosion of lane markings, etc.) can cause accidents by affecting driving. Image processing based methods for detecting road cracks are available in the literature. In this paper, a deep learning based road crack detection approach is proposed. YOLO (You Look Only Once) is adopted as core component of the road crack detection approach presented. The YOLO network structure, which is developed for object detection, is trained with road crack images as a new class that is not previously used in YOLO. The performance of the proposed method is compared using different training methods: using randomly generated weights and training their own pre-trained weights (transfer learning). A similar training approach is applied to the simplified version of the YOLO network model (tiny yolo) and the results of the performance are examined. The developed system is able to process 8 fps on NVIDIA Jetson TX1 development kit.

Keywords: deep learning, embedded platform, real-time processing, road crack detection

Procedia PDF Downloads 326
6989 A Study on the Pressure Void Ratio Relationship for Waste Material

Authors: Aktan Ozsoy, Ali Fırat Cabalar, Eyyub Karakan

Abstract:

Climate change is one of the biggest issues facing communities. Increasing population, growing economies, rapid industrialization are the main factors triggering it. On the other hand, the millions of tons of waste have generated by the period of rapid global growth not only harm to the environment but also lead to the use of valuable lands around the world as landfill sites. Moreover, it is rapidly consuming our resources and this forcing the human population and wildlife to share increasingly shrinking space. In this direction, it is vital to reuse waste materials with a sustainability philosophy. This study was carried out to contribute to the combat against climate change, conserve our natural resources and the environment. An oedometer (consolidation) test was performed on two waste materials combined in certain proportions to evaluate their sustainable usage. Crushed brick (BD) was mixed with rock powder (RP) in 0, 5, 10, 20, 30, 40, and 50% (dry weight of soil). The results obtained revealed the importance of the gradation of the material used in the consolidation test. It was found that there was a negligible difference between the initial and final void ratio of mixtures with brick dust added.

Keywords: waste material, oedometer test, environmental geotechnics, sustainability

Procedia PDF Downloads 54
6988 Monthly River Flow Prediction Using a Nonlinear Prediction Method

Authors: N. H. Adenan, M. S. M. Noorani

Abstract:

River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to developed an efficient water management system to optimize the allocation water resources.

Keywords: river flow, nonlinear prediction method, phase space, local linear approximation

Procedia PDF Downloads 398
6987 Application of Artificial Neural Network for Single Horizontal Bare Tube and Bare Tube Bundles (Staggered) of Large Particles: Heat Transfer Prediction

Authors: G. Ravindranath, S. Savitha

Abstract:

This paper presents heat transfer analysis of single horizontal bare tube and heat transfer analysis of staggered arrangement of bare tube bundles bare tube bundles in gas-solid (air-solid) fluidized bed and predictions are done by using Artificial Neural Network (ANN) based on experimental data. Fluidized bed provide nearly isothermal environment with high heat transfer rate to submerged objects i.e. due to through mixing and large contact area between the gas and the particle, a fully fluidized bed has little temperature variation and gas leaves at a temperature which is close to that of the bed. Measurement of average heat transfer coefficient was made by local thermal simulation technique in a cold bubbling air-fluidized bed of size 0.305 m. x 0.305 m. Studies were conducted for single horizontal Bare Tube of length 305mm and 28.6mm outer diameter and for bare tube bundles of staggered arrangement using beds of large (average particle diameter greater than 1 mm) particle (raagi and mustard). Within the range of experimental conditions influence of bed particle diameter ( Dp), Fluidizing Velocity (U) were studied, which are significant parameters affecting heat transfer. Artificial Neural Networks (ANNs) have been receiving an increasing attention for simulating engineering systems due to some interesting characteristics such as learning capability, fault tolerance, and non-linearity. Here, feed-forward architecture and trained by back-propagation technique is adopted to predict heat transfer analysis found from experimental results. The ANN is designed to suit the present system which has 3 inputs and 2 out puts. The network predictions are found to be in very good agreement with the experimental observed values of bare heat transfer coefficient (hb) and nusselt number of bare tube (Nub).

Keywords: fluidized bed, large particles, particle diameter, ANN

Procedia PDF Downloads 351
6986 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach

Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib

Abstract:

A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.

Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation

Procedia PDF Downloads 69