Search results for: marine energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9104

Search results for: marine energy

6824 Hydrogen Production at the Forecourt from Off-Peak Electricity and Its Role in Balancing the Grid

Authors: Abdulla Rahil, Rupert Gammon, Neil Brown

Abstract:

The rapid growth of renewable energy sources and their integration into the grid have been motivated by the depletion of fossil fuels and environmental issues. Unfortunately, the grid is unable to cope with the predicted growth of renewable energy which would lead to its instability. To solve this problem, energy storage devices could be used. Electrolytic hydrogen production from an electrolyser is considered a promising option since it is a clean energy source (zero emissions). Choosing flexible operation of an electrolyser (producing hydrogen during the off-peak electricity period and stopping at other times) could bring about many benefits like reducing the cost of hydrogen and helping to balance the electric systems. This paper investigates the price of hydrogen during flexible operation compared with continuous operation, while serving the customer (hydrogen filling station) without interruption. The optimization algorithm is applied to investigate the hydrogen station in both cases (flexible and continuous operation). Three different scenarios are tested to see whether the off-peak electricity price could enhance the reduction of the hydrogen cost. These scenarios are: Standard tariff (1 tier system) during the day (assumed 12 p/kWh) while still satisfying the demand for hydrogen; using off-peak electricity at a lower price (assumed 5 p/kWh) and shutting down the electrolyser at other times; using lower price electricity at off-peak times and high price electricity at other times. This study looks at Derna city, which is located on the coast of the Mediterranean Sea (32° 46′ 0 N, 22° 38′ 0 E) with a high potential for wind resource. Hourly wind speed data which were collected over 24½ years from 1990 to 2014 were in addition to data on hourly radiation and hourly electricity demand collected over a one-year period, together with the petrol station data.

Keywords: hydrogen filling station off-peak electricity, renewable energy, off-peak electricity, electrolytic hydrogen

Procedia PDF Downloads 228
6823 Development of a Program for the Evaluation of Thermal Performance Applying the Centre Scientifique et Techniques du Bâtiment Method Case Study: Classroom

Authors: Iara Rezende, Djalma Silva, Alcino Costa Neto

Abstract:

Considering the transformations of the contemporary world linked to globalization and climate changes caused by global warming, the environmental and energy issues have been increasingly present in the decisions of the world scenario. Thus, the aim of reducing the impacts caused by human activities there are the energy efficiency measures, which are also applicable in the scope of Civil Engineering. Considering that a large part of the energy demand from buildings is related to the need to adapt the internal environment to the users comfort and productivity, measures capable of reducing this need can minimize the climate changes impacts and also the energy consumption of the building. However, these important measures are currently little used by civil engineers, either because of the interdisciplinarity of the subject, the time required to apply certain methods or the difficult interpretation of the results obtained by computational programs that often have a complex and little applied approach. Thus, it was proposed the development of a Java application with a simpler and applied approach to evaluate the thermal performance of a building in order to obtain results capable of assisting the civil engineers in the decision making related to the users thermal comfort. The program was built in Java programming language and the method used for the evaluation was the Center Scientifique et Technique du Batiment (CSTB) method. The program was used to evaluate the thermal performance of a university classroom. The analysis was carried out from simulations considering the worst climatic situation of the building occupation. Thus, at the end of the process, the favorable result was obtained regarding the classroom comfort zone and the feasibility of using the program, thus achieving the proposed objectives.

Keywords: building occupation, CSTB method, energy efficiency measures, Java application, thermal comfort

Procedia PDF Downloads 130
6822 Study on Natural Light Distribution Inside the Room by Using Sudare as an Outside Horizontal Blind in Tropical Country of Indonesia

Authors: Agus Hariyadi, Hiroatsu Fukuda

Abstract:

In tropical country like Indonesia, especially in Jakarta, most of the energy consumption on building is for the cooling system, the second one is from lighting electric consumption. One of the passive design strategy that can be done is optimizing the use of natural light from the sun. In this area, natural light is always available almost every day around the year. Natural light have many effect on building. It can reduce the need of electrical lighting but also increase the external load. Another thing that have to be considered in the use of natural light is the visual comfort from occupant inside the room. To optimize the effectiveness of natural light need some modification of façade design. By using external shading device, it can minimize the external load that introduces into the room, especially from direct solar radiation which is the 80 % of the external energy load that introduces into the building. It also can control the distribution of natural light inside the room and minimize glare in the perimeter zone of the room. One of the horizontal blind that can be used for that purpose is Sudare. It is traditional Japanese blind that have been used long time in Japanese traditional house especially in summer. In its original function, Sudare is used to prevent direct solar radiation but still introducing natural ventilation. It has some physical characteristics that can be utilize to optimize the effectiveness of natural light. In this research, different scale of Sudare will be simulated using EnergyPlus and DAYSIM simulation software. EnergyPlus is a whole building energy simulation program to model both energy consumption—for heating, cooling, ventilation, lighting, and plug and process loads—and water use in buildings, while DAYSIM is a validated, RADIANCE-based daylighting analysis software that models the annual amount of daylight in and around buildings. The modelling will be done in Ladybug and Honeybee plugin. These are two open source plugins for Grasshopper and Rhinoceros 3D that help explore and evaluate environmental performance which will directly be connected to EnergyPlus and DAYSIM engines. Using the same model will maintain the consistency of the same geometry used both in EnergyPlus and DAYSIM. The aims of this research is to find the best configuration of façade design which can reduce the external load from the outside of the building to minimize the need of energy for cooling system but maintain the natural light distribution inside the room to maximize the visual comfort for occupant and minimize the need of electrical energy consumption.

Keywords: façade, natural light, blind, energy

Procedia PDF Downloads 344
6821 The Closed Cavity Façade (CCF): Optimization of CCF for Enhancing Energy Efficiency and Indoor Environmental Quality in Office Buildings

Authors: Michalis Michael, Mauro Overend

Abstract:

Buildings, in which we spend 87-90% of our time, act as a shelter protecting us from environmental conditions and weather phenomena. The building's overall performance is significantly dependent on the envelope’s glazing part, which is particularly critical as it is the most vulnerable part to heat gain and heat loss. However, conventional glazing technologies have relatively low-performance thermo-optical characteristics. In this regard, during winter, the heat losses due to the glazing part of a building envelope are significantly increased as well as the heat gains during the summer period. In this study, the contribution of an innovative glazing technology, namely Closed Cavity Façade (CCF) in improving energy efficiency and IEQ in office buildings is examined, aiming to optimize various design configurations of CCF. Using Energy Plus and IDA ICE packages, the performance of several CCF configurations and geometries for various climate types were investigated, aiming to identify the optimum solution. The model used for the simulations and optimization process was MATELab, a recently constructed outdoor test facility at the University of Cambridge (UK). The model was previously experimentally calibrated. The study revealed that the use of CCF technology instead of conventional double or triple glazing leads to important benefits. Particularly, the replacement of the traditional glazing units, used as the baseline, with the optimal configuration of CCF led to a decrease in energy consumption in the range of 18-37% (depending on the location). This mainly occurs due to integrating shading devices in the cavity and applying proper glass coatings and control strategies, which lead to improvement of thermal transmittance and g-value of the glazing. Since the solar gain through the façade is the main contributor to energy consumption during cooling periods, it was observed that a higher energy improvement is achieved in cooling-dominated locations. Furthermore, it was shown that a suitable selection of the constituents of a closed cavity façade, such as the colour and type of shading devices and the type of coatings, leads to an additional improvement of its thermal performance, avoiding overheating phenomena and consequently ensuring temperatures in the glass cavity below the critical value, and reducing the radiant discomfort providing extra benefits in terms of Indoor Environmental Quality (IEQ).

Keywords: building energy efficiency, closed cavity façade, optimization, occupants comfort

Procedia PDF Downloads 64
6820 Kinematic Optimization of Energy Extraction Performances for Flapping Airfoil by Using Radial Basis Function Method and Genetic Algorithm

Authors: M. Maatar, M. Mekadem, M. Medale, B. Hadjed, B. Imine

Abstract:

In this paper, numerical simulations have been carried out to study the performances of a flapping wing used as an energy collector. Metamodeling and genetic algorithms are used to detect the optimal configuration, improving power coefficient and/or efficiency. Radial basis functions and genetic algorithms have been applied to solve this problem. Three optimization factors are controlled, namely dimensionless heave amplitude h₀, pitch amplitude θ₀ and flapping frequency f. ANSYS FLUENT software has been used to solve the principal equations at a Reynolds number of 1100, while the heave and pitch motion of a NACA0015 airfoil has been realized using a developed function (UDF). The results reveal an average power coefficient and efficiency of 0.78 and 0.338 with an inexpensive low-fidelity model and a total relative error of 4.1% versus the simulation. The performances of the simulated optimum RBF-NSGA-II have been improved by 1.2% compared with the validated model.

Keywords: numerical simulation, flapping wing, energy extraction, power coefficient, efficiency, RBF, NSGA-II

Procedia PDF Downloads 41
6819 BiVO₄‑Decorated Graphite Felt as Highly Efficient Negative Electrode for All-Vanadium Redox Flow Batteries

Authors: Daniel Manaye Kabtamu, Anteneh Wodaje Bayeh

Abstract:

With the development and utilization of new energy technology, people’s demand for large-scale energy storage system has become increasingly urgent. Vanadium redox flow battery (VRFB) is one of the most promising technologies for grid-scale energy storage applications because of numerous attractive features, such as long cycle life, high safety, and flexible design. However, the relatively low energy efficiency and high production cost of the VRFB still limit its practical implementations. It is of great attention to enhance its energy efficiency and reduce its cost. One of the main components of VRFB that can impressively impact the efficiency and final cost is the electrode materials, which provide the reactions sites for redox couples (V₂₊/V³⁺ and VO²⁺/VO₂⁺). Graphite felt (GF) is a typical carbon-based material commonly employed as electrode for VRFB due to low-cost, good chemical and mechanical stability. However, pristine GF exhibits insufficient wettability, low specific surface area, and poor kinetics reversibility, leading to low energy efficiency of the battery. Therefore, it is crucial to further modify the GF electrode to improve its electrochemical performance towards VRFB by employing active electrocatalysts, such as less expensive metal oxides. This study successfully fabricates low-cost plate-like bismuth vanadate (BiVO₄) material through a simple one-step hydrothermal route, employed as an electrocatalyst to adorn the GF for use as the negative electrode in VRFB. The experimental results show that BiVO₄-3h exhibits the optimal electrocatalytic activity and reversibility for the vanadium redox couples among all samples. The energy efficiency of the VRFB cell assembled with BiVO₄-decorated GF as the negative electrode is found to be 75.42% at 100 mA cm−2, which is about 10.24% more efficient than that of the cell assembled with heat-treated graphite felt (HT-GF) electrode. The possible reasons for the activity enhancement can be ascribed to the existence of oxygen vacancies in the BiVO₄ lattice structure and the relatively high surface area of BiVO₄, which provide more active sites for facilitating the vanadium redox reactions. Furthermore, the BiVO₄-GF electrode obstructs the competitive irreversible hydrogen evolution reaction on the negative side of the cell, and it also has better wettability. Impressively, BiVO₄-GF as the negative electrode shows good stability over 100 cycles. Thus, BiVO₄-GF is a promising negative electrode candidate for practical VRFB applications.

Keywords: BiVO₄ electrocatalyst, electrochemical energy storage, graphite felt, vanadium redox flow battery

Procedia PDF Downloads 1571
6818 Comparative Effects of Resveratrol and Energy Restriction on Liver Fat Accumulation and Hepatic Fatty Acid Oxidation

Authors: Iñaki Milton-Laskibar, Leixuri Aguirre, Maria P. Portillo

Abstract:

Introduction: Energy restriction is an effective approach in preventing liver steatosis. However, due to social and economic reasons among others, compliance with this treatment protocol is often very poor, especially in the long term. Resveratrol, a natural polyphenolic compound that belongs to stilbene group, has been widely reported to imitate the effects of energy restriction. Objective: To analyze the effects of resveratrol under normoenergetic feeding conditions and under a mild energy restriction on liver fat accumulation and hepatic fatty acid oxidation. Methods: 36 male six-week-old rats were fed a high-fat high-sucrose diet for 6 weeks in order to induce steatosis. Then, rats were divided into four groups and fed a standard diet for 6 additional weeks: control group (C), resveratrol group (RSV, resveratrol 30 mg/kg/d), restricted group (R, 15 % energy restriction) and combined group (RR, 15 % energy restriction and resveratrol 30 mg/kg/d). Liver triacylglycerols (TG) and total cholesterol contents were measured by using commercial kits. Carnitine palmitoyl transferase 1a (CPT 1a) and citrate synthase (CS) activities were measured spectrophotometrically. TFAM (mitochondrial transcription factor A) and peroxisome proliferator-activator receptor alpha (PPARα) protein contents, as well as the ratio acetylated peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)/Total PGC1α were analyzed by Western blot. Statistical analysis was performed by using one way ANOVA and Newman-Keuls as post-hoc test. Results: No differences were observed among the four groups regarding liver weight and cholesterol content, but the three treated groups showed reduced TG when compared to the control group, being the restricted groups the ones showing the lowest values (with no differences between them). Higher CPT 1a and CS activities were observed in the groups supplemented with resveratrol (RSV and RR), with no difference between them. The acetylated PGC1α /total PGC1α ratio was lower in the treated groups (RSV, R and RR) than in the control group, with no differences among them. As far as TFAM protein expression is concerned, only the RR group reached a higher value. Finally, no changes were observed in PPARα protein expression. Conclusions: Resveratrol administration is an effective intervention for liver triacylglycerol content reduction, but a mild energy restriction is even more effective. The mechanisms of action of these two strategies are different. Thus resveratrol, but not energy restriction, seems to act by increasing fatty acid oxidation, although mitochondriogenesis seems not to be induced. When both treatments (resveratrol administration and a mild energy restriction) were combined, no additive or synergic effects were appreciated. Acknowledgements: MINECO-FEDER (AGL2015-65719-R), Basque Government (IT-572-13), University of the Basque Country (ELDUNANOTEK UFI11/32), Institut of Health Carlos III (CIBERobn). Iñaki Milton is a fellowship from the Basque Government.

Keywords: energy restriction, fat, liver, oxidation, resveratrol

Procedia PDF Downloads 210
6817 The Effect of Cooling Tower Fan on the Performance of the Chiller Plant

Authors: Ankitsinh Chauhan, Vimal Patel, A. D. Parekh, Ishant patil

Abstract:

This study delves into the crucial influence of cooling tower fan operation on the performance of a chiller plant, with a specific focus on the Chiller Plant at SVNIT. Continuous operation of the chiller plant led to unexpected damage to the cooling tower's belt drive, rendering the cooling tower fan non-operational. Consequently, the efficiency of heat transfer in the condenser was significantly impaired. In response, we analyzed and calculated several vital parameters, including the Coefficient of Performance (COP), heat rejection in the condenser (Qc), work required for the compressor (Wc), and heat absorbed by the refrigerant in the evaporator (Qe). Our findings revealed that in the absence of the cooling tower fan, relying solely on natural convection, the COP of the chiller plant reached a minimum value of 5.49. However, after implementing a belt drive to facilitate forced convection for the cooling tower fan, the COP of the chiller plant experienced a noteworthy improvement, reaching approximately 6.27. Additionally, the utilization of forced convection resulted in an impressive reduction of 8.9% in compressor work, signifying enhanced energy efficiency. This study underscores the critical role of cooling tower fan operation in optimizing chiller plant performance, with practical implications for energy-efficient HVAC systems. It highlights the potential benefits of employing forced convection mechanisms, such as belt drives, to ensure efficient heat transfer in the condenser, ultimately contributing to improved energy utilization and reduced operational costs in cooling.

Keywords: cooling tower, chiller Plant, cooling tower fan, energy efficiency, VCRS.

Procedia PDF Downloads 39
6816 The Cost of Solar-Centric Renewable Portfolio

Authors: Timothy J. Considine, Edward J. M. Manderson

Abstract:

This paper develops an econometric forecasting system of energy demand coupled with engineering-economic models of energy supply. The framework is used to quantify the impact of state-level renewable portfolio standards (RPSs) achieved predominately with solar generation on electricity rates, electricity consumption, and environmental quality. We perform the analysis using Arizona’s RPS as a case study. We forecast energy demand in Arizona out to 2035, and find by this time the state will require an additional 35 million MWh of electricity generation. If Arizona implements its RPS when supplying this electricity demand, we find there will be a substantial increase in electricity rates (relative to a business-as-usual scenario of reliance on gas-fired generation). Extending the current regime of tax credits can greatly reduce this increase, at the taxpayers’ expense. We find that by 2025 Arizona’s RPS will implicitly abate carbon dioxide emissions at a cost between $101 and $135 per metric ton, and by 2035 abatement costs are between $64 and $112 per metric ton (depending on the future evolution of nature gas prices).

Keywords: electricity demand, renewable portfolio standard, solar, carbon dioxide

Procedia PDF Downloads 483
6815 The Study of Heat and Mass Transfer for Ferrous Materials' Filtration Drying

Authors: Dmytro Symak

Abstract:

Drying is a complex technologic, thermal and energy process. Energy cost of drying processes in many cases is the most costly stage of production, and can be over 50% of total costs. As we know, in Ukraine over 85% of Portland cement is produced moist, and the finished product energy costs make up to almost 60%. During the wet cement production, energy costs make up over 5500 kJ / kg of clinker, while during the dry only 3100 kJ / kg, that is, switching to a dry Portland cement will allow result into double cutting energy costs. Therefore, to study raw materials drying process in the manufacture of Portland cement is very actual task. The fine ferrous materials drying (small pyrites, red mud, clay Kyoko) is recommended to do by filtration method, that is one of the most intense. The essence of filtration method drying lies in heat agent filtering through a stationary layer of wet material, which is located on the perforated partition, in the "layer-dispersed material - perforated partition." For the optimum drying purposes, it is necessary to establish the dependence of pressure loss in the layer of dispersed material, and the values of heat and mass transfer, depending on the speed of the gas flow filtering. In our research, the experimentally determined pressure loss in the layer of dispersed material was generalized based on dimensionless complexes in the form and coefficients of heat exchange. We also determined the relation between the coefficients of mass and heat transfer. As a result of theoretic and experimental investigations, it was possible to develop a methodology for calculating the optimal parameters for the thermal agent and the main parameters for the filtration drying installation. The comparison of calculated by known operating expenses methods for the process of small pyrites drying in a rotating drum and filtration method shows to save up to 618 kWh per 1,000 kg of dry material and 700 kWh during filtration drying clay.

Keywords: drying, cement, heat and mass transfer, filtration method

Procedia PDF Downloads 260
6814 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction

Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic

Abstract:

Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.

Keywords: bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks

Procedia PDF Downloads 385
6813 Identification of Potential Large Scale Floating Solar Sites in Peninsular Malaysia

Authors: Nur Iffika Ruslan, Ahmad Rosly Abbas, Munirah Stapah@Salleh, Nurfaziera Rahim

Abstract:

Increased concerns and awareness of environmental hazards by fossil fuels burning for energy have become the major factor driving the transition toward green energy. It is expected that an additional of 2,000 MW of renewable energy is to be recorded from the renewable sources by 2025 following the implementation of Large Scale Solar projects in Peninsular Malaysia, including Large Scale Floating Solar projects. Floating Solar has better advantages over its landed counterparts such as the requirement for land acquisition is relatively insignificant. As part of the site selection process established by TNB Research Sdn. Bhd., a set of mandatory and rejection criteria has been developed in order to identify only sites that are feasible for the future development of Large Scale Floating Solar power plant. There are a total of 85 lakes and reservoirs identified within Peninsular Malaysia. Only lakes and reservoirs with a minimum surface area of 120 acres will be considered as potential sites for the development of Large Scale Floating Solar power plant. The result indicates a total of 10 potential Large Scale Floating Solar sites identified which are located in Selangor, Johor, Perak, Pulau Pinang, Perlis and Pahang. This paper will elaborate on the various mandatory and rejection criteria, as well as on the various site selection process required to identify potential (suitable) Large Scale Floating Solar sites in Peninsular Malaysia.

Keywords: Large Scale Floating Solar, Peninsular Malaysia, Potential Sites, Renewable Energy

Procedia PDF Downloads 177
6812 Design and Development of Real-Time Optimal Energy Management System for Hybrid Electric Vehicles

Authors: Masood Roohi, Amir Taghavipour

Abstract:

This paper describes a strategy to develop an energy management system (EMS) for a charge-sustaining power-split hybrid electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit from the advantages of both parallel and series architecture. However, it gets relatively more complicated to manage power flow between the battery and the engine optimally. The applied strategy in this paper is based on nonlinear model predictive control approach. First of all, an appropriate control-oriented model which was accurate enough and simple was derived. Towards utilization of this controller in real-time, the problem was solved off-line for a vast area of reference signals and initial conditions and stored the computed manipulated variables inside look-up tables. Look-up tables take a little amount of memory. Also, the computational load dramatically decreased, because to find required manipulated variables the controller just needed a simple interpolation between tables.

Keywords: hybrid electric vehicles, energy management system, nonlinear model predictive control, real-time

Procedia PDF Downloads 351
6811 Carbon Aerogels with Tailored Porosity as Cathode in Li-Ion Capacitors

Authors: María Canal-Rodríguez, María Arnaiz, Natalia Rey-Raap, Ana Arenillas, Jon Ajuria

Abstract:

The constant demand of electrical energy, as well as the increase in environmental concern, lead to the necessity of investing in clean and eco-friendly energy sources that implies the development of enhanced energy storage devices. Li-ion batteries (LIBs) and Electrical double layer capacitors (EDLCs) are the most widespread energy systems. Batteries are able to storage high energy densities contrary to capacitors, which main strength is the high-power density supply and the long cycle life. The combination of both technologies gave rise to Li-ion capacitors (LICs), which offers all these advantages in a single device. This is achieved combining a capacitive, supercapacitor-like positive electrode with a faradaic, battery-like negative electrode. Due to the abundance and affordability, dual carbon-based LICs are nowadays the common technology. Normally, an Active Carbon (AC) is used as the EDLC like electrode, while graphite is the material commonly employed as anode. LICs are potential systems to be used in applications in which high energy and power densities are required, such us kinetic energy recovery systems. Although these devices are already in the market, some drawbacks like the limited power delivered by graphite or the energy limiting nature of AC must be solved to trigger their used. Focusing on the anode, one possibility could be to replace graphite with Hard Carbon (HC). The better rate capability of the latter increases the power performance of the device. Moreover, the disordered carbonaceous structure of HCs enables storage twice the theoretical capacity of graphite. With respect to the cathode, the ACs are characterized for their high volume of micropores, in which the charge is storage. Nevertheless, they normally do not show mesoporous, which are really important mainly at high C-rates as they act as transport channels for the ions to reach the micropores. Usually, the porosity of ACs cannot be tailored, as it strongly depends on the precursor employed to get the final carbon. Moreover, they are not characterized for having a high electrical conductivity, which is an important characteristic to get a good performance in energy storage applications. A possible candidate to substitute ACs are carbon aerogels (CAs). CAs are materials that combine a high porosity with great electrical conductivity, opposite characteristics in carbon materials. Furthermore, its porous properties can be tailored quite accurately according to with the requirements of the application. In the present study, CAs with controlled porosity were obtained from polymerization of resorcinol and formaldehyde by microwave heating. Varying the synthesis conditions, mainly the amount of precursors and pH of the precursor solution, carbons with different textural properties were obtained. The way the porous characteristics affect the performance of the cathode was studied by means of a half-cell configuration. The material with the best performance was evaluated as cathode in a LIC versus a hard carbon as anode. An analogous full LIC made by a high microporous commercial cathode was also assembled for comparison purposes.

Keywords: li-ion capacitors, energy storage, tailored porosity, carbon aerogels

Procedia PDF Downloads 165
6810 Assessing the Feasibility of Italian Hydrogen Targets with the Open-Source Energy System Optimization Model TEMOA - Italy

Authors: Alessandro Balbo, Gianvito Colucci, Matteo Nicoli, Laura Savoldi

Abstract:

Hydrogen is expected to become a game changer in the energy transition, especially enabling sector coupling possibilities and the decarbonization of hard-to-abate end-uses. The Italian National Recovery and Resilience Plan identifies hydrogen as one of the key elements of the ecologic transition to meet international decarbonization objectives, also including it in several pilot projects for the early development in Italy. This matches the European energy strategy, which aims to make hydrogen a leading energy carrier of the future, setting ambitious goals to be accomplished by 2030. The huge efforts needed to achieve the announced targets require to carefully investigate of their feasibility in terms of economic expenditures and technical aspects. In order to quantitatively assess the hydrogen potential within the Italian context and the feasibility of the planned investments and projects, this work uses the TEMOA-Italy energy system model to study pathways to meet the strict objectives above cited. The possible hydrogen development has been studied both in the supply-side and demand-side of the energy system, also including storage options and distribution chains. The assessment comprehends alternative hydrogen production technologies involved in a competition market, reflecting the several possible investments declined by the Italian National Recovery and Resilience Plan to boost the development and spread of this infrastructure, including the sector coupling potential with natural gas through the currently existing infrastructure and CO2 capture for the production of synfuels. On the other hand, the hydrogen end-uses phase covers a wide range of consumption alternatives, from fuel-cell vehicles, for which both road and non-road transport categories are considered, to steel, and chemical industries uses and cogeneration for residential and commercial buildings. The model includes both high and low TRL technologies in order to provide a consistent outcome for the future decades as it does for the present day, and since it is developed through the use of an open-source code instance and database, transparency and accessibility are fully granted.

Keywords: decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA

Procedia PDF Downloads 100
6809 Wind Generator Control in Isolated Site

Authors: Glaoui Hachemi

Abstract:

Wind has been proven as a cost effective and reliable energy source. Technological advancements over the last years have placed wind energy in a firm position to compete with conventional power generation technologies. Algeria has a vast uninhabited land area where the south (desert) represents the greatest part with considerable wind regime. In this paper, an analysis of wind energy utilization as a viable energy substitute in six selected sites widely distributed all over the south of Algeria is presented. In this presentation, wind speed frequency distributions data obtained from the Algerian Meteorological Office are used to calculate the average wind speed and the available wind power. The annual energy produced by the Fuhrlander FL 30 wind machine is obtained using two methods. The analysis shows that in the southern Algeria, at 10 m height, the available wind power was found to vary between 160 and 280 W/m2, except for Tamanrasset. The highest potential wind power was found at Adrar, with 88 % of the time the wind speed is above 3 m/s. Besides, it is found that the annual wind energy generated by that machine lie between 33 and 61 MWh, except for Tamanrasset, with only 17 MWh. Since the wind turbines are usually installed at a height greater than 10 m, an increased output of wind energy can be expected. However, the wind resource appears to be suitable for power production on the south and it could provide a viable substitute to diesel oil for irrigation pumps and electricity generation. In this paper, a model of the wind turbine (WT) with permanent magnet generator (PMSG) and its associated controllers is presented. The increase of wind power penetration in power systems has meant that conventional power plants are gradually being replaced by wind farms. In fact, today wind farms are required to actively participate in power system operation in the same way as conventional power plants. In fact, power system operators have revised the grid connection requirements for wind turbines and wind farms, and now demand that these installations be able to carry out more or less the same control tasks as conventional power plants. For dynamic power system simulations, the PMSG wind turbine model includes an aerodynamic rotor model, a lumped mass representation of the drive train system and generator model. In this paper, we propose a model with an implementation in MATLAB / Simulink, each of the system components off-grid small wind turbines.

Keywords: windgenerator systems, permanent magnet synchronous generator (PMSG), wind turbine (WT) modeling, MATLAB simulink environment

Procedia PDF Downloads 336
6808 A Systematic Review of Business Strategies Which Can Make District Heating a Platform for Sustainable Development of Other Sectors

Authors: Louise Ödlund, Danica Djuric Ilic

Abstract:

Sustainable development includes many challenges related to energy use, such as (1) developing flexibility on the demand side of the electricity systems due to an increased share of intermittent electricity sources (e.g., wind and solar power), (2) overcoming economic challenges related to an increased share of renewable energy in the transport sector, (3) increasing efficiency of the biomass use, (4) increasing utilization of industrial excess heat (e.g., approximately two thirds of the energy currently used in EU is lost in the form of excess and waste heat). The European Commission has been recognized DH technology as of essential importance to reach sustainability. Flexibility in the fuel mix, and possibilities of industrial waste heat utilization, combined heat, and power (CHP) production and energy recovery through waste incineration, are only some of the benefits which characterize DH technology. The aim of this study is to provide an overview of the possible business strategies which would enable DH to have an important role in future sustainable energy systems. The methodology used in this study is a systematic literature review. The study includes a systematic approach where DH is seen as a part of an integrated system that consists of transport , industrial-, and electricity sectors as well. The DH technology can play a decisive role in overcoming the sustainability challenges related to our energy use. The introduction of biofuels in the transport sector can be facilitated by integrating biofuel and DH production in local DH systems. This would enable the development of local biofuel supply chains and reduce biofuel production costs. In this way, DH can also promote the development of biofuel production technologies that are not yet developed. Converting energy for running the industrial processes from fossil fuels and electricity to DH (above all biomass and waste-based DH) and delivering excess heat from industrial processes to the local DH systems would make the industry less dependent on fossil fuels and fossil fuel-based electricity, as well as the increasing energy efficiency of the industrial sector and reduce production costs. The electricity sector would also benefit from these measures. Reducing the electricity use in the industry sector while at the same time increasing the CHP production in the local DH systems would (1) replace fossil-based electricity production with electricity in biomass- or waste-fueled CHP plants and reduce the capacity requirements from the national electricity grid (i.e., it would reduce the pressure on the bottlenecks in the grid). Furthermore, by operating their central controlled heat pumps and CHP plants depending on the intermittent electricity production variation, the DH companies may enable an increased share of intermittent electricity production in the national electricity grid.

Keywords: energy system, district heating, sustainable business strategies, sustainable development

Procedia PDF Downloads 169
6807 Vibration Based Structural Health Monitoring of Connections in Offshore Wind Turbines

Authors: Cristobal García

Abstract:

The visual inspection of bolted joints in wind turbines is dangerous, expensive, and impractical due to the non-possibility to access the platform by workboat in certain sea state conditions, as well as the high costs derived from the transportation of maintenance technicians to offshore platforms located far away from the coast, especially if helicopters are involved. Consequently, the wind turbine operators have the need for simpler and less demanding techniques for the analysis of the bolts tightening. Vibration-based structural health monitoring is one of the oldest and most widely-used means for monitoring the health of onshore and offshore wind turbines. The core of this work is to find out if the modal parameters can be efficiently used as a key performance indicator (KPIs) for the assessment of joint bolts in a 1:50 scale tower of a floating offshore wind turbine (12 MW). A non-destructive vibration test is used to extract the vibration signals of the towers with different damage statuses. The procedure can be summarized in three consecutive steps. First, an artificial excitation is introduced by means of a commercial shaker mounted on the top of the tower. Second, the vibration signals of the towers are recorded for 8 s at a sampling rate of 20 kHz using an array of commercial accelerometers (Endevco, 44A16-1032). Third, the natural frequencies, damping, and overall vibration mode shapes are calculated using the software Siemens LMS 16A. Experiments show that the natural frequencies, damping, and mode shapes of the tower are directly dependent on the fixing conditions of the towers, and therefore, the variations of both parameters are a good indicator for the estimation of the static axial force acting in the bolt. Thus, this vibration-based structural method proposed can be potentially used as a diagnostic tool to evaluate the tightening torques of the bolted joints with the advantages of being an economical, straightforward, and multidisciplinary approach that can be applied for different typologies of connections by operation and maintenance technicians. In conclusion, TSI, in collaboration with the consortium of the FIBREGY project, is conducting innovative research where vibrations are utilized for the estimation of the tightening torque of a 1:50 scale steel-based tower prototype. The findings of this research carried out in the context of FIBREGY possess multiple implications for the assessment of the bolted joint integrity in multiple types of connections such as tower-to-nacelle, modular, tower-to-column, tube-to-tube, etc. This research is contextualized in the framework of the FIBREGY project. The EU-funded FIBREGY project (H2020, grant number 952966) will evaluate the feasibility of the design and construction of a new generation of marine renewable energy platforms using lightweight FRP materials in certain structural elements (e.g., tower, floating platform). The FIBREGY consortium is composed of 11 partners specialized in the offshore renewable energy sector and funded partially by the H2020 program of the European Commission with an overall budget of 8 million Euros.

Keywords: SHM, vibrations, connections, floating offshore platform

Procedia PDF Downloads 124
6806 Sustainable Development Approach for Coastal Erosion Problem in Thailand: Using Bamboo Sticks to Rehabilitate Coastal Erosion

Authors: Sutida Maneeanakekul, Dusit Wechakit, Somsak Piriyayota

Abstract:

Coastal erosion is a major problem in Thailand, in both the Gulf of Thailand and the Andaman Sea coasts. According to the Department of Marine and Coastal Resources, land erosion occurred along the 200 km coastline with an average rate of 5 meters/year. Coastal erosion affects public and government properties, as well as the socio-economy of the country, including emigration in coastal communities, loss of habitats, and decline in fishery production. To combat the problem of coastal erosion, projects utilizing bamboo sticks for coastal defense against erosion were carried out in 5 areas beginning in November, 2010, including: Pak Klong Munharn- Samut Songkhram Province; Ban Khun Samutmaneerat, Pak Klong Pramong and Chao Matchu Shrine-Samut Sakhon Province,and Pak Klong Hongthong – Chachoengsao Province by Marine and Coastal Resources Department. In 2012, an evaluation of the effectiveness of solving the problem of coastal erosion by using bamboo stick was carried out, with a focus on three aspects. Firstly, the change in physical and biological features after using the bamboo stick technique was assessed. Secondly, participation of people in the community in the way of managing the problem of coastal erosion were these aspects evaluated as part of the study. The last aspect that was evaluated is the satisfaction of the community toward this technique. The results of evaluation showed that the amounts of sediment have dramatically changed behind the bamboo sticks lines. The increase of sediment was found to be about 23.50-56.20 centimeters (during 2012-2013). In terms of biological aspect, there has been an increase in mangrove forest areas, especially at Bang Ya Prak, Samut Sakhon Province. Average tree density was found to be about 4,167 trees per square meter. Additionally, an increase in production of fisheries was observed. Presently, the change in the evaluated physical features tends to increase in every aspect, including the satisfaction of people in community toward the process of solving the erosion problem. People in the community are involved in the preparatory, operation, monitoring and evaluation process to resolve the problem in the medium levels.

Keywords: bamboo sticks, coastal erosion, rehabilitate, Thailand sustainable development approach

Procedia PDF Downloads 247
6805 Interaction between NiCl2 and Selenium on Energy Profiles in Wistar albino Preimplanted Rats

Authors: O. Adjroud

Abstract:

The present study was conducted to investigate the interaction between selenium (Se) and chloride nickel (NiCl2) on energy profiles in Wistar albino preimplanted rats. NiCl2 was given on day 3 of pregnancy either in distilled drinking water at a dose of 20 mg/L/day for 16 consecutive days or as a single subcutaneous (s.c.) dose of 25, 50, or 100 mg/kg. Se was given as a s.c. injection (0.3 mg/kg) together with the higher dose (100 mg/kg) of NiCl2. Changes in energy profiles were evaluated in treated and control groups on days 5 and 20 of gestation. NiCl2 s.c. induced a significant increase in plasma glucose on day 20 of pregnancy. NiCl2 s.c. induced on day 5 and 20 of gestation a significant decrease in plasma triglycerides, with the higher dose. This decrease was maintained at day 20 of gestation with doses of 50 mg /kg. In addition, NiCl2 s.c. caused on day 5 of gestation a significant decrease in plasma total cholesterol with the low and medium doses. The pretreatment with Se reversed the effects of NiCl2 on plasma glucose, total cholesterol and triglycerides levels. NiCl2 administered in the drinking water augmented significantly the plasma triglycerides and total cholesterol levels and slighty the plasma glucose on day 20 of gestation, while on day 5 of gestation NiCl2 s.c. Induced a significant decrease in cholesterol. Three doses of NiCl2 (sc) induced severe alterations in liver and architecture which are markedly improved by Selenium. These results suggested that selenium has protective effects on energy profiles against the toxicity induced by NiCl2 administered subcutaneously in preimplanted rats.

Keywords: hepatotoxicity, nickel chloride, preimplanted rat, biochemical parameters

Procedia PDF Downloads 408
6804 Experimental Study of Solar Drying of Verbena in Three Types of Solar Dryers

Authors: Llham Lhoume, Rachid Tadili, Nora Arbaoui

Abstract:

One of the most crucial ways to combat food insecurity is to minimize crop losses, food drying is one of the most organic, effective, low-cost and energy-efficient food preservation methods. In this regard, we undertake in this study an experimental evaluation and analysis of the thermal performance of different natural convection drying systems: a solar greenhouse dryer, an indirect solar dryer with a single compartment and a solar dryer with two compartments. These systems have been implemented at the Solar Energy and Environment Laboratory of Mohammed V University (Morocco). The objective of this work is to study the feasibility of converting a solar greenhouse into a solar dryer for use during the summer. On the other hand, to study the thermal performances of this greenhouse dryer by comparing it with other solar dryers. The experimental study showed that the drying of verbena leaves took 6 hours in the indirect dryer 1, 3 hours in the indirect dryer, 2 and 4 hours in the greenhouse dryer, but the amortization period of the solar greenhouse dryer is lower than the other two solar dryers. The results of this study provide key information on the implementation and performance of these systems for drying a food of great global interest.

Keywords: solar energy, drying, agriculture, biotechnologie

Procedia PDF Downloads 79
6803 Techno Commercial Aspects of Using LPG as an Alternative Energy Solution for Transport and Industrial Sector in Bangladesh: Case Studies in Industrial Sector

Authors: Mahadehe Hassan

Abstract:

Transport system and industries which are the main basis of industrial and socio-economic development of any country. It is mainly dependent on fossil fuels. Bangladesh has fossil fuel reserves of 9.51 TCF as of July 2023, and if no new gas fields are discovered in the next 7-9 years and if the existing gas consumption rate continues, the fossil fuel reserves will be exhausted. The demand for petroleum products in Bangladesh is increasing steadily, with 63% imported by BPC and 37% imported by private companies. 61.61% of BPC imported products are used in the transport sector and 5.49% in the industrial sector, which is expensive and harmful to the environment. Liquefied Petroleum Gas (LPG) should be considered as an alternative energy for Bangladesh based on Sustainable Development Goals (SDGs) criteria for sustainable, clean and affordable energy. This will not only lead to the much desired mitigation of energy famine in the country but also contribute favorably to the macroeconomic indicators. Considering the environmental and economic issues, the government has referred to CNG (compressed natural gas) as the fuel carrier since 2000, but currently due to the decline mode of gas reserves, the government of Bangladesh is thinking of new energy sources for transport and industrial sectors which will be sustainable, environmentally friendly and economically viable. Liquefied Petroleum Gas (LPG) is the best choice for fueling transport and industrial sectors in Bangladesh. At present, a total of 1.54 million metric tons of liquefied petroleum gas (LPG) is marketed in Bangladesh by the public and private sectors. 83% of it is used by households, 12% by industry and commerce and 5% by transportation. Industrial and transport sector consumption is negligible compared to household consumption. So the purpose of the research is to find out the challenges of LPG market development in transport and industrial sectors in Bangladesh and make recommendations to reduce the challenges. Secure supply chain, inadequate infrastructure, insufficient investment, lack of government monitoring and consumer awareness in the transport sector and industrial sector are major challenges for LPG market development in Bangladesh. Bangladesh government as well as private owners should come forward in the development of liquefied petroleum gas (LPG) industry to reduce the challenges of secure energy sector for sustainable development. Furthermore, ensuring adequate Liquefied Petroleum Gas (LPG) supply in Bangladesh requires government regulations, infrastructure improvements in port areas, awareness raising and most importantly proper pricing of Liquefied Petroleum Gas (LPG) to address the energy crisis in Bangladesh.

Keywords: transportand industries fuel, LPG consumption, challenges, economical sustainability

Procedia PDF Downloads 83
6802 Sustainable Connectivity: Power-Line Communications for Home Automation in Ethiopia

Authors: Tsegahun Milkesa

Abstract:

This study investigates the implementation of Power-Line Communications (PLC) as a sustainable solution for home automation in Ethiopia. With the country's growing technological landscape and the quest for efficient energy use, this research explores the potential of PLC to facilitate smart home systems, aiming to enhance connectivity and energy management. The primary objective is to assess the feasibility and effectiveness of PLC in Ethiopian residences, considering factors such as infrastructure compatibility, reliability, and scalability. By analyzing existing PLC technologies and their adaptability to local contexts, this study aims to propose optimized solutions tailored to the Ethiopian environment. The research methodology involves a combination of literature review, field surveys, and experimental setups to evaluate PLC's performance in transmitting data and controlling various home appliances. Additionally, socioeconomic implications, including affordability and accessibility, are examined to ensure the technology's inclusivity in diverse Ethiopian households. The findings will contribute insights into the viability of PLC for sustainable connectivity in Ethiopian homes, shedding light on its potential to revolutionize energy-efficient and interconnected living spaces. Ultimately, this study seeks to pave the way for accessible and eco-friendly smart home solutions in Ethiopia, aligning with the nation's aspirations for technological advancement and sustainability.

Keywords: sustainable connectivity, power-line communications (PLC), home automation, Ethiopia, smart homes, energy efficiency, connectivity solutions, infrastructure development, sustainable living

Procedia PDF Downloads 74
6801 LEED Empirical Evidence in Northern and Southern Europe

Authors: Svetlana Pushkar

Abstract:

The Leadership in Energy and Environmental Design (LEED) green building rating system is recognized in Europe. LEED uses regional priority (RP) points that are adapted to different environmental conditions. However, the appropriateness of the RP points is still a controversial question. To clarify this issue, two different parts of Europe: northern Europe (Finland and Sweden) and southern Europe (Turkey and Spain) were considered. Similarities and differences in the performances of LEED 2009-new construction (LEED-NC 2009) in these four countries were analyzed. It was found that LEED-NC 2009 performances in northern and southern parts of Europe in terms of Sustainable Sites (SS), Water Efficiency (WE), Materials and Resources (MR), and Indoor Environmental Quality (EQ) were similar, whereas in Energy and Atmosphere (EA), their performances were different. WE and SS revealed high performances (70-100%); EA and EQ demonstrated intermediate performance (40-60%); and MR displayed low performance (20-40%). It should be recommended introducing the following new RP points: for Turkey - water-related points and for all four observed countries - green power-related points for improving the LEED adaptation in Europe.

Keywords: green building, Europe, LEED, leadership in energy and environmental design, regional priority points

Procedia PDF Downloads 251
6800 Photocatalytic Hydrogen Production from Butanol over Ag/TiO2

Authors: Thabelo Nelushi, Michael Scurrell, Tumelo Seadira

Abstract:

Global warming is one of the most important environmental issues which arise from occurrence of gases such as carbon dioxide (CO2) and methane (CH4) in the atmosphere. Exposure to these greenhouse gases results in health risk. Hydrogen is regarded as an alternative energy source which is a clean energy carrier for the future. There are different methods to produce hydrogen such as steam reforming, coal gasification etc., however the challenge with these processes is that they emit CO and CO2 gases and are costly. Photocatalytic reforming is a substitute process which is fascinating due to the combination of solar energy and renewable sources and the use of semiconductor materials such as catalysts. TiO2 is regarded as the most promising catalysts. TiO2 nanoparticles prepared by hydrothermal method and Ag/TiO2 are being investigated for photocatalytic production of hydrogen from butanol. The samples were characterized by raman spectroscopy, TEM/SEM, XRD, XPS, EDAX, DRS and BET surface area. 2 wt% Ag-doped TiO2 nanoparticle showed enhanced hydrogen production compared to a non-doped TiO2. The results of characterization and photoactivity shows that TiO2 nanoparticles play a very important role in producing high hydrogen by utilizing solar irradiation.

Keywords: butanol, hydrogen production, silver particles, TiO2 nanoparticles

Procedia PDF Downloads 208
6799 Mapping the Turbulence Intensity and Excess Energy Available to Small Wind Systems over 4 Major UK Cities

Authors: Francis C. Emejeamara, Alison S. Tomlin, James Gooding

Abstract:

Due to the highly turbulent nature of urban air flows, and by virtue of the fact that turbines are likely to be located within the roughness sublayer of the urban boundary layer, proposed urban wind installations are faced with major challenges compared to rural installations. The challenge of operating within turbulent winds can however, be counteracted by the development of suitable gust tracking solutions. In order to assess the cost effectiveness of such controls, a detailed understanding of the urban wind resource, including its turbulent characteristics, is required. Estimating the ambient turbulence and total kinetic energy available at different control response times is essential in evaluating the potential performance of wind systems within the urban environment should effective control solutions be employed. However, high resolution wind measurements within the urban roughness sub-layer are uncommon, and detailed CFD modelling approaches are too computationally expensive to apply routinely on a city wide scale. This paper therefore presents an alternative semi-empirical methodology for estimating the excess energy content (EEC) present in the complex and gusty urban wind. An analytical methodology for predicting the total wind energy available at a potential turbine site is proposed by assessing the relationship between turbulence intensities and EEC, for different control response times. The semi-empirical model is then incorporated with an analytical methodology that was initially developed to predict mean wind speeds at various heights within the built environment based on detailed mapping of its aerodynamic characteristics. Based on the current methodology, additional estimates of turbulence intensities and EEC allow a more complete assessment of the available wind resource. The methodology is applied to 4 UK cities with results showing the potential of mapping turbulence intensities and the total wind energy available at different heights within each city. Considering the effect of ambient turbulence and choice of wind system, the wind resource over neighbourhood regions (of 250 m uniform resolution) and building rooftops within the 4 cities were assessed with results highlighting the promise of mapping potential turbine sites within each city.

Keywords: excess energy content, small-scale wind, turbulence intensity, urban wind energy, wind resource assessment

Procedia PDF Downloads 472
6798 Investigations of Flow Field with Different Turbulence Models on NREL Phase VI Blade

Authors: T. Y. Liu, C. H. Lin, Y. M. Ferng

Abstract:

Wind energy is one of the clean renewable energy. However, the low frequency (20-200HZ) noise generated from the wind turbine blades, which bothers the residents, becomes the major problem to be developed. It is useful for predicting the aerodynamic noise by flow field and pressure distribution analysis on the wind turbine blades. Therefore, the main objective of this study is to use different turbulence models to analyse the flow field and pressure distributions of the wing blades. Three-dimensional Computation Fluid Dynamics (CFD) simulation of the flow field was used to calculate the flow phenomena for the National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine rotor. Two different flow cases with different wind speeds were investigated: 7m/s with 72rpm and 15m/s with 72rpm. Four kinds of RANS-based turbulence models, Standard k-ε, Realizable k-ε, SST k-ω, and v2f, were used to predict and analyse the results in the present work. The results show that the predictions on pressure distributions with SST k-ω and v2f turbulence models have good agreements with experimental data.

Keywords: horizontal axis wind turbine, turbulence model, noise, fluid dynamics

Procedia PDF Downloads 263
6797 A New Approach to the Boom Welding Technique by Determining Seam Profile Tracking

Authors: Muciz Özcan, Mustafa Sacid Endiz, Veysel Alver

Abstract:

In this paper we present a new approach to the boom welding related to the mobile cranes manufacturing, implementing a new method in order to get homogeneous welding quality and reduced energy usage during booms production. We aim to get the realization of the same welding quality carried out on the boom in every region during the manufacturing process and to detect the possible welding errors whether they could be eliminated using laser sensors. We determine the position of the welding region directly through our system and with the help of the welding oscillator we are able to perform a proper boom welding. Errors that may occur in the welding process can be observed by monitoring and eliminated by means of an operator. The major modification in the production of the crane booms will be their form of the booms. Although conventionally, more than one welding is required to perform this process, with the suggested concept, only one particular welding is sufficient, which will be more energy and environment-friendly. Consequently, as only one welding is needed for the manufacturing of the boom, the particular welding quality becomes more essential. As a way to satisfy the welding quality, a welding manipulator was made and fabricated. By using this welding manipulator, the risks of involving dangerous gases formed during the welding process for the operator and the surroundings are diminished as much as possible.

Keywords: boom welding, seam tracking, energy saving, global warming

Procedia PDF Downloads 345
6796 Research on Energy Field Intervening in Lost Space Renewal Strategy

Authors: Tianyue Wan

Abstract:

Lost space is the space that has not been used for a long time and is in decline, proposed by Roger Trancik. And in his book Finding Lost Space: Theories of Urban Design, the concept of lost space is defined as those anti-traditional spaces that are unpleasant, need to be redesigned, and have no benefit to the environment and users. They have no defined boundaries and do not connect the various landscape elements in a coherent way. With the rapid development of urbanization in China, the blind areas of urban renewal have become a chaotic lost space that is incompatible with the rapid development of urbanization. Therefore, lost space needs to be reconstructed urgently under the background of infill development and reduction planning in China. The formation of lost space is also an invisible division of social hierarchy. This paper tries to break down the social class division and the estrangement between people through the regeneration of lost space. Ultimately, it will enhance vitality, rebuild a sense of belonging, and create a continuous open public space for local people. Based on the concept of lost space and energy field, this paper clarifies the significance of the energy field in the lost space renovation. Then it introduces the energy field into lost space by using the magnetic field in physics as a prototype. The construction of the energy field is support by space theory, spatial morphology analysis theory, public communication theory, urban diversity theory and city image theory. Taking Wuhan’s Lingjiao Park of China as an example, this paper chooses the lost space on the west side of the park as the research object. According to the current situation of this site, the energy intervention strategies are proposed from four aspects: natural ecology, space rights, intangible cultural heritage and infrastructure configuration. And six specific lost space renewal methods are used in this work, including “riveting”, “breakthrough”, “radiation”, “inheritance”, “connection” and “intersection”. After the renovation, space will be re-introduced into the active crow. The integration of activities and space creates a sense of place, improve the walking experience, restores the vitality of the space, and provides a reference for the reconstruction of lost space in the city.

Keywords: dynamic vitality intervention, lost space, space vitality, sense of place

Procedia PDF Downloads 111
6795 Feasibility Study and Experiment of On-Site Nuclear Material Identification in Fukushima Daiichi Fuel Debris by Compact Neutron Source

Authors: Yudhitya Kusumawati, Yuki Mitsuya, Tomooki Shiba, Mitsuru Uesaka

Abstract:

After the Fukushima Daiichi nuclear power reactor incident, there are a lot of unaccountable nuclear fuel debris in the reactor core area, which is subject to safeguard and criticality safety. Before the actual precise analysis is performed, preliminary on-site screening and mapping of nuclear debris activity need to be performed to provide a reliable data on the nuclear debris mass-extraction planning. Through a collaboration project with Japan Atomic Energy Agency, an on-site nuclear debris screening system by using dual energy X-Ray inspection and neutron energy resonance analysis has been established. By using the compact and mobile pulsed neutron source constructed from 3.95 MeV X-Band electron linac, coupled with Tungsten as electron-to-photon converter and Beryllium as a photon-to-neutron converter, short-distance neutron Time of Flight measurement can be performed. Experiment result shows this system can measure neutron energy spectrum up to 100 eV range with only 2.5 meters Time of Flightpath in regards to the X-Band accelerator’s short pulse. With this, on-site neutron Time of Flight measurement can be used to identify the nuclear debris isotope contents through Neutron Resonance Transmission Analysis (NRTA). Some preliminary NRTA experiments have been done with Tungsten sample as dummy nuclear debris material, which isotopes Tungsten-186 has close energy absorption value with Uranium-238 (15 eV). The results obtained shows that this system can detect energy absorption in the resonance neutron area within 1-100 eV. It can also detect multiple elements in a material at once with the experiment using a combined sample of Indium, Tantalum, and silver makes it feasible to identify debris containing mixed material. This compact neutron Time of Flight measurement system is a great complementary for dual energy X-Ray Computed Tomography (CT) method that can identify atomic number quantitatively but with 1-mm spatial resolution and high error bar. The combination of these two measurement methods will able to perform on-site nuclear debris screening at Fukushima Daiichi reactor core area, providing the data for nuclear debris activity mapping.

Keywords: neutron source, neutron resonance, nuclear debris, time of flight

Procedia PDF Downloads 236